Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

help, Unsupported activation: relu in function 'ReadDarknetFromCfgStream' #6

Open
x931890193 opened this issue May 11, 2020 · 3 comments

Comments

@x931890193
Copy link

cv2.error: OpenCV(4.0.1) /root/ocr/opencv-4.0.1/modules/dnn/src/darknet/darknet_io.cpp:552: error: (-212:Parsing error) Unsupported activation: relu in function 'ReadDarknetFromCfgStream'

@x931890193
Copy link
Author

x931890193 commented May 11, 2020

the same problem lincolnhard/openpose-darknet#10.

@joawa
Copy link

joawa commented May 21, 2020

@x931890193 I have the same problem, so did u solved it ?

@x931890193
Copy link
Author

@x931890193 I have the same problem, so did u solved it ?

hey, I run in jetson nano, this my env.

(camera) [email protected] /data/ocr/darknet-ocr$ python app.py 
learning_rate: Using default '0.001000'
momentum: Using default '0.900000'
policy: Using default 'constant'
max_batches: Using default '0'
layer     filters    size                  input                output
    0 conv     64  3 x 3 / 1   256 x  32 x   1   ->   256 x  32 x  64  0.009 BFLOPs
    1 max          2 x 2 / 2 x 2   256 x  32 x  64   ->   128 x  16 x  64
    2 conv    128  3 x 3 / 1   128 x  16 x  64   ->   128 x  16 x 128  0.302 BFLOPs
    3 max          2 x 2 / 2 x 2   128 x  16 x 128   ->    64 x   8 x 128
    4 conv    256  3 x 3 / 1    64 x   8 x 128   ->    64 x   8 x 256  0.302 BFLOPs
    5 conv    256  3 x 3 / 1    64 x   8 x 256   ->    64 x   8 x 256  0.604 BFLOPs
    6 max          2 x 2 / 2 x 1    64 x   8 x 256   ->    63 x   4 x 256
Unused field: 'strideW = 1'
Unused field: 'strideH = 2'
    7 conv    512  3 x 3 / 1    63 x   4 x 256   ->    63 x   4 x 512  0.595 BFLOPs
    8 conv    512  3 x 3 / 1    63 x   4 x 512   ->    63 x   4 x 512  1.189 BFLOPs
    9 max          2 x 2 / 2 x 1    63 x   4 x 512   ->    62 x   2 x 512
Unused field: 'strideW = 1'
Unused field: 'strideH = 2'
   10 conv    512  2 x 2 / 1    62 x   2 x 512   ->    61 x   1 x 512  0.128 BFLOPs
   11 conv  11316  1 x 1 / 1    61 x   1 x 512   ->    61 x   1 x11316  0.707 BFLOPs
Loading weights from models/ocr/chinese/ocr.weights...Done!
learning_rate: Using default '0.001000'
momentum: Using default '0.900000'
policy: Using default 'constant'
max_batches: Using default '0'
layer     filters    size                  input                output
    0 conv     64  3 x 3 / 1    32 x  32 x   3   ->    32 x  32 x  64  0.004 BFLOPs
    1 conv     64  3 x 3 / 1    32 x  32 x  64   ->    32 x  32 x  64  0.075 BFLOPs
    2 max          2 x 2 / 2 x 2    32 x  32 x  64   ->    16 x  16 x  64
    3 conv    128  3 x 3 / 1    16 x  16 x  64   ->    16 x  16 x 128  0.038 BFLOPs
    4 conv    128  3 x 3 / 1    16 x  16 x 128   ->    16 x  16 x 128  0.075 BFLOPs
    5 max          2 x 2 / 2 x 2    16 x  16 x 128   ->     8 x   8 x 128
    6 conv    256  3 x 3 / 1     8 x   8 x 128   ->     8 x   8 x 256  0.038 BFLOPs
    7 conv    256  3 x 3 / 1     8 x   8 x 256   ->     8 x   8 x 256  0.075 BFLOPs
    8 conv    256  3 x 3 / 1     8 x   8 x 256   ->     8 x   8 x 256  0.075 BFLOPs
    9 max          2 x 2 / 2 x 2     8 x   8 x 256   ->     4 x   4 x 256
   10 conv    512  3 x 3 / 1     4 x   4 x 256   ->     4 x   4 x 512  0.038 BFLOPs
   11 conv    512  3 x 3 / 1     4 x   4 x 512   ->     4 x   4 x 512  0.075 BFLOPs
   12 conv    512  3 x 3 / 1     4 x   4 x 512   ->     4 x   4 x 512  0.075 BFLOPs
   13 max          2 x 2 / 2 x 2     4 x   4 x 512   ->     2 x   2 x 512
   14 conv    512  3 x 3 / 1     2 x   2 x 512   ->     2 x   2 x 512  0.019 BFLOPs
   15 conv    512  3 x 3 / 1     2 x   2 x 512   ->     2 x   2 x 512  0.019 BFLOPs
   16 conv    512  3 x 3 / 1     2 x   2 x 512   ->     2 x   2 x 512  0.019 BFLOPs
   17 conv    512  3 x 3 / 1     2 x   2 x 512   ->     2 x   2 x 512  0.019 BFLOPs
   18 conv     40  1 x 1 / 1     2 x   2 x 512   ->     2 x   2 x  40  0.000 BFLOPs
Loading weights from models/text/text.weights...Done!
http://0.0.0.0:8080/

env:

^C^C(camera) [email protected] /data/ocr/darknet-ocr$ 
(camera) [email protected] /data/ocr/darknet-ocr$ python
Python 3.6.9 (default, Apr 18 2020, 01:56:04) 
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>> cv2.__version__
'4.1.1'
>>> 

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants