-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDQN.py
242 lines (195 loc) · 8.01 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from pacman_env_v2 import *
from tqdm import tqdm
import random
from IPython.display import clear_output
from collections import namedtuple, deque
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as T
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
########################## replay memory #########################
class ReplayMemory(object):
def __init__(self, capacity):
self.memory = deque([],maxlen = capacity)
def push(self, *args):
self.memory.append(Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
########################## CNN #########################
class DQN(nn.Module):
def __init__(self, outputs=4):
super(DQN, self).__init__()
self.conv1 = nn.Conv2d(1, 8, kernel_size=3)
self.conv2 = nn.Conv2d(8, 16, kernel_size=3)
self.conv3 = nn.Conv2d(16, 32, kernel_size=4)
self.flat = nn.Linear(1664, 256)
self.output = nn.Linear(256,outputs)
def forward(self, x):
x = x.to(device)
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
#x = torch.flatten(x)
x = F.relu(self.flat(x.view(x.size(0), -1)))
return self.output(x)
########################## Agent #########################
class DQNAgent():
def agent_init(self, agent_init_info, env):
"""Setup for the agent called when the experiment first starts.
Args:
agent_init_info (dict), the parameters used to initialize the agent. The dictionary contains:
{
num_states (int): The number of states,
num_actions (int): The number of actions,
epsilon (float): The epsilon parameter for exploration,
step_size (float): The step-size,
discount (float): The discount factor,
}
"""
# Store the parameters provided in agent_init_info.
self.num_actions = agent_init_info["num_actions"]
self.epsilon = agent_init_info["epsilon"]
self.step_size = agent_init_info["step_size"]
self.discount = agent_init_info["discount"]
self.rand_generator = np.random.RandomState(agent_init_info["seed"])
# Memory : storing the last 100,000 experiences
self.memory = ReplayMemory(100000)
self.env = env
self.state = self.env.reset()
self.action = [0,1,2,3,4]
self.reward_history = []
# Statistics
self.episode_number = 0
self.episode_reward = 0
self.counter = 0
self.win_counter = 0
self.epsilon_decay = 0.9
self.epsilon_min = 0.01
# DQN
self.batch_size = 32
# init model
self.model = DQN().to(device)
self.target_model = DQN().to(device)
self.optimizer = optim.Adam(self.model.parameters(), lr=0.01)
self.criterion = nn.MSELoss()
def agent_start(self):
"""The first method called when the episode starts, called after
the environment starts.
Args:
state (int): the state from the
environment's evn_start function.
Returns:
action (int): the first action the agent takes.
"""
# Choose action using epsilon greedy.
if self.rand_generator.rand() < self.epsilon:
action = self.rand_generator.randint(self.num_actions) # random action selection
else:
outputs= torch.tensor(self.state).float().to(device)
outputs = torch.reshape(outputs,(1,1,11,20))
outputs = self.model(outputs)
action = self.action[np.random.choice(torch.where(outputs == outputs.max()))]
return action
def set_epsilon(self, value):
self.epsilon = value
def train(self):
if len(self.memory) < self.batch_size:
return
transitions = self.memory.sample(self.batch_size)
batch = Transition(*zip(*transitions))
# Get State
state_batch = torch.tensor(batch.state).float().to(device)
state_batch = torch.reshape(state_batch,(self.batch_size,1,11,20))
# Get Action
action_batch = torch.tensor(batch.action)
# Get Q(s, a)
state_action_values = self.model(state_batch).gather(1, action_batch.unsqueeze(1).to(device))
# Get Next State
next_state_batch = torch.tensor(batch.next_state).float().to(device)
next_state_batch = torch.reshape(next_state_batch,(self.batch_size,1,11,20))
# Get V(s')
next_state_values = self.target_model(next_state_batch)
# Compute the expected Q values
next_state_values = next_state_values.detach().max(1)[0]
next_state_values = next_state_values.unsqueeze(1)
# Get Reward
reward_batch = torch.tensor(batch.reward)#.float()
# Loss
expected_state_action_values = (next_state_values * 0.9) + reward_batch.unsqueeze(1)
loss = self.criterion(state_action_values, expected_state_action_values.to(device))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
########################## Run Episode #########################
def run_episode(agent):
agent.state = agent.env.reset()
## decrease epsilon :
if agent.epsilon > agent.epsilon_min:
epsilon_value = agent.epsilon * agent.epsilon_decay
agent.set_epsilon(epsilon_value)
while True:
action = agent.agent_start()
next_state, reward, done = agent.env.step(action, DQN = True)
agent.episode_reward += reward
agent.memory.push(agent.state, action, next_state, reward)
agent.train()
agent.state = next_state
if done:
break
agent.episode_number += 1
agent.reward_history.append(agent.episode_reward)
print("Episode no = ", str(agent.episode_number))
print("Episode Reward: ", agent.episode_reward)
print("Average Reward: ", np.mean(agent.reward_history))
print()
agent.episode_reward = 0
agent.counter += 1
return reward
########################## main #########################
if __name__ == '__main__':
#setup(420, 420, 370, 0)
#hideturtle()
#tracer(False)
##### initiate environment
env = PacManEnv2(size = "medium")
env.reset()
#env.writer.color('black')
###### main parameters
number_of_episodes = 1000
epsilon_value = 0.1
epsilon_decay = 0.9 # every 5000 episodes
agent_info = {"num_actions": 4 , "epsilon": epsilon_value, "step_size": 0.1, "discount": 1.0, "seed": 0}
##### initialize both agents
agents_dict = {'DQN': DQNAgent()}
for agent_name in agents_dict.keys():
agents_dict[agent_name].agent_init(agent_info, env)
#### play episode
rewards = {}
for name, agent in agents_dict.items():
print(f"Start training {name}")
rewards_dict = {}
epsilon_value = 0.1
agent.set_epsilon(epsilon_value)
for episode in tqdm(range(number_of_episodes), position = 0):
new_reward = run_episode(agent)
rewards_dict[episode] = new_reward # if episodes terminates, save the obtained reward
rewards[name] = rewards_dict
#### play episode
env = PacManEnv2(size = 'medium')
number_of_episodes = 100
rewards = {}
for name, agent in agents_dict.items():
print(f"Start playing {name}")
rewards_dict = {}
agent.set_epsilon(epsilon_value)
for episode in tqdm(range(number_of_episodes), position = 0):
new_reward = run_episode(agent)
rewards_dict[episode] = new_reward # if episodes terminates, save the obtained reward
rewards[name] = rewards_dict