-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
277 lines (248 loc) · 8.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
from openai import OpenAI
import re
import tiktoken
import vertexai
import json
import time
from vertexai.generative_models import (
GenerationConfig,
GenerativeModel,
HarmBlockThreshold,
HarmCategory,
SafetySetting,
Part,
)
from transformers import pipeline
from datasets import Dataset, DatasetDict
from vllm import LLM, SamplingParams
import vertexai
from anthropic import AnthropicVertex
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
from tqdm import trange
from sklearn import metrics
import numpy as np
import pandas as pd
# ---* Prompting API *----
client = OpenAI(
api_key=os.environ["OPENAI_API_KEY"], organization=os.environ["OPENAI_API_ORG"]
)
def prompt_openai(
prompt,
verbose=False,
metadata={
"model": "gpt-4o-2024-08-06",
"temp": 1.0,
"top_p": 1.0,
"max_tokens": 4095,
},
system_message="You are a helpful assistant.",
):
"""
Given a prompt and metadata, return the completion from OpenAI's API.
"""
completion = client.chat.completions.create(
model=metadata["model"],
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": prompt},
],
max_tokens=metadata["max_tokens"],
temperature=metadata["temp"],
top_p=metadata["top_p"],
)
if verbose:
print("Prompt usage:", completion.usage.prompt_tokens)
print("Response usage:", completion.usage.completion_tokens)
return completion.choices[0].message.content
def prompt_claude(
prompt,
verbose=True,
metadata={"model": "claude-3-5-sonnet@20240620", "temp": 1.0, "max_tokens": 4095},
system_message="You are a helpful assistant.",
project_id=os.environ["VERTEX_PROJECT_ID"],
):
"""
Prompt Claude with VertexAI API
- prompt: The prompt to be sent to the model
- verbose: Print usage details
- metadata: Model metadata (model, temp, max_tokens)
- system_message: System message
- project_id: Google Cloud project ID
"""
client = AnthropicVertex(region="europe-west1", project_id=project_id)
message = client.messages.create(
model=metadata["model"],
max_tokens=metadata["max_tokens"],
temperature=metadata["temp"],
system=system_message,
messages=[
{
"role": "user",
"content": prompt,
}
],
)
message_json_str = message.model_dump_json(indent=2)
message_dict = json.loads(message_json_str)
text_content = message_dict["content"][0]["text"]
if verbose:
print(
"Prompt usage:",
message_dict["usage"]["input_tokens"],
f"${message_dict['usage']['input_tokens']/1000000*3}",
)
print(
"Prompt usage:",
message_dict["usage"]["output_tokens"],
f"${message_dict['usage']['output_tokens']/1000000*15}",
)
return text_content.strip()
def format_batch_openai(
prompts,
input_fpath,
output_fpath,
metadata={
"model": "gpt-4o-2024-08-06",
"max_tokens": 4095,
"temp": 0.0,
"top_p": 1.0,
"system_message": "You are a helpful assistant.",
},
):
"""
Create new batch request based on the prompts (OpenAI batch API)
"""
entries = []
for i, prompt in enumerate(prompts):
message = [
{"role": "system", "content": metadata["system_message"]},
{"role": "user", "content": prompt},
]
entry = {
"custom_id": f"request-{i}",
"method": "POST",
"url": "/v1/chat/completions",
"body": {
"model": metadata["model"],
"max_tokens": metadata["max_tokens"],
"top_p": metadata["top_p"],
"temperature": metadata["temp"],
"messages": message,
},
}
entries.append(entry)
with open(input_fpath, "w") as f:
for entry in entries:
f.write(json.dumps(entry) + "\n")
batch_input_file = client.files.create(
file=open(input_fpath, "rb"), purpose="batch"
)
batch_input_file_id = batch_input_file.id
batch = client.batches.create(
input_file_id=batch_input_file_id,
endpoint="/v1/chat/completions",
completion_window="24h",
metadata={"description": "Chau's batch"},
)
# Retrieve and extract batch content
while not client.batches.retrieve(batch.id).output_file_id:
print("Waiting an additional of 20 seconds for the batch to complete")
time.sleep(20)
out_id = client.batches.retrieve(batch.id).output_file_id
file_response = client.files.content(out_id)
# Write the output to a file
with open(output_fpath, "w") as f:
f.write(file_response.text)
df = pd.read_json(output_fpath, lines=True)
return df
def count_tiktoken(messages, model):
"""Return the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using o200k_base encoding.")
encoding = tiktoken.get_encoding("o200k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
"gpt-4o-2024-08-06",
"claude",
"claude-3-5-sonnet@20240620",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = (
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
)
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
print(
"Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613."
)
return count_tiktoken(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
print(
"Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4o."
)
return count_tiktoken(messages, model="gpt-4o-2024-08-06")
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not implemented for model {model}."""
)
num_tokens = tokens_per_message + len(encoding.encode(messages))
num_tokens += 3
return num_tokens
def truncating_tokens(document, max_tokens, model="gpt-4o"):
"""
Truncating the document down to contain only a max_tokens number of tokens
"""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using o200k_base encoding.")
encoding = tiktoken.get_encoding("o200k_base")
tokens = encoding.encode(document)
if len(tokens) + 3 > max_tokens:
tokens = tokens[: max_tokens - 3]
return encoding.decode(tokens)
def extract_batch_content(obj):
text = obj["body"]["choices"][0]["message"]["content"]
return text
# ---* Random utils *---
def extract_tag_text(text, tag, random=False):
"""
Extract text between two tags
random=True: Extracts text between the first tag and the next tag
random=False: Extracts text between the first tag and the closing tag
"""
if random:
pattern = re.compile(rf"<{tag}>(.*?)<(.*?)>", re.DOTALL)
else:
pattern = re.compile(rf"<{tag}>(.*?)</{tag}>", re.DOTALL)
return pattern.findall(text)[0]
def insert_closing_tag(text):
"""
Insert missing closing tags to the text
"""
tags = re.findall(r"<(\w*?)>", text)
missing_tags = [tag for tag in tags if f"</{tag}>" not in text]
for tag in missing_tags:
in_text = extract_tag_text(text, tag, random=True)[0]
text = text.replace(in_text, f"{in_text.strip()}</{tag}>\n\n")
return text
def clean_word(text):
# Deal with situation where the word ends with 're, 's, 't, etc.
# However, we don't want to remove O'Connor, O'Neil, etc.
to_remove = ["'re", "'s", "'t", "'ve", "'ll", "'d", "'m"]
for r in to_remove:
if text.endswith(r):
find_index = text.find(r)
text = text[:find_index]
return re.sub(r"[^a-zA-Z]", "", text)