Skip to content

Latest commit

 

History

History
120 lines (83 loc) · 2.18 KB

226.Invert-Binary-Tree.md

File metadata and controls

120 lines (83 loc) · 2.18 KB

226. Invert Binary Tree

題目


Given the root of a binary tree, invert the tree, and return its root.

Example 1:

https://assets.leetcode.com/uploads/2021/03/14/invert1-tree.jpg

Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]

Example 2:

https://assets.leetcode.com/uploads/2021/03/14/invert2-tree.jpg

Input: root = [2,1,3]
Output: [2,3,1]

Example 3:

Input: root = []
Output: []

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • 100 <= Node.val <= 100

思路


Code


  • PHP

    Runtime 4ms Beats 76.82% of users with PHP

    Memory 19.64 MB Beats 96.03% of users with PHP

    /**
     * Definition for a binary tree node.
     * class TreeNode {
     *     public $val = null;
     *     public $left = null;
     *     public $right = null;
     *     function __construct($val = 0, $left = null, $right = null) {
     *         $this->val = $val;
     *         $this->left = $left;
     *         $this->right = $right;
     *     }
     * }
     */
    class Solution {
    
        /**
         * @param TreeNode $root
         * @return TreeNode
         */
        function invertTree($root) {
            if (is_null($root)) {
                return $root;
            } 
    
            $tmp = $this->invertTree($root->left);
            $root->left = $this->invertTree($root->right);
            $root->right = $tmp;
            
            return $root;
        }
    }
  • GoLang

    Runtime 0 ms Beats 100%

    Memory 2.2 MB Beats 10.77%

    /**
     * Definition for a binary tree node.
     * type TreeNode struct {
     *     Val int
     *     Left *TreeNode
     *     Right *TreeNode
     * }
     */
    func invertTree(root *TreeNode) *TreeNode {
        if root == nil {
            return root
        }
        
        root.Left, root.Right = invertTree(root.Right), invertTree(root.Left)
    
        return root
    }

Reference