-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
394 lines (352 loc) · 17.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
## python
import argparse
import json
import random
from pathlib import Path
import numpy as np
import pandas as pd
import time
import pickle
## pytorch
import torch
from torch import nn
from torch.optim import Adam, SGD
from torch.backends import cudnn
import torch.nn.functional as F
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
## model
from models import UNet, UNet11, UNet16, UNet16BN, LinkNet34
from loss import LossBinary
from dataset import make_loader
from utils import save_weights, write_event, write_tensorboard,print_model_summay,set_freeze_layers,set_train_layers,get_freeze_layer_names
from validation import validation_binary
from transforms import DualCompose,ImageOnly,Normalize,HorizontalFlip,VerticalFlip
from metrics import AllInOneMeter
def get_split(train_test_split_file='./data/train_test_id.pickle'):
with open(train_test_split_file,'rb') as f:
train_test_id = pickle.load(f)
train_test_id['total'] = train_test_id[['pigment_network',
'negative_network',
'streaks',
'milia_like_cyst',
'globules']].sum(axis=1)
valid = train_test_id[train_test_id.Split != 'train'].copy()
valid['Split'] = 'train'
train_test_id = pd.concat([train_test_id, valid], axis=0)
return train_test_id
def main():
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg('--jaccard-weight', type=float, default=1)
arg('--checkpoint', type=str, default='checkpoint/1_multi_task_unet', help='checkpoint path')
arg('--train-test-split-file', type=str, default='./data/train_test_id.pickle', help='train test split file path')
arg('--image-path', type=str, default='data/task2_h5/', help='image path')
arg('--batch-size', type=int, default=8)
arg('--n-epochs', type=int, default=100)
arg('--optimizer', type=str, default='Adam', help='Adam or SGD')
arg('--lr', type=float, default=0.001)
arg('--workers', type=int, default=4)
arg('--model', type=str, default='UNet16', choices=['UNet', 'UNet11', 'UNet16', 'UNet16BN', 'LinkNet34'])
arg('--model-weight', type=str, default=None)
arg('--resume-path', type=str, default=None)
arg('--attribute', type=str, default='all', choices=['pigment_network', 'negative_network',
'streaks', 'milia_like_cyst',
'globules', 'all'])
args = parser.parse_args()
## folder for checkpoint
checkpoint = Path(args.checkpoint)
checkpoint.mkdir(exist_ok=True, parents=True)
image_path = args.image_path
if args.attribute == 'all':
num_classes = 5
else:
num_classes = 1
args.num_classes = num_classes
### save initial parameters
print('--' * 10)
print(args)
print('--' * 10)
checkpoint.joinpath('params.json').write_text(
json.dumps(vars(args), indent=True, sort_keys=True))
## load pretrained model
if args.model == 'UNet':
model = UNet(num_classes=num_classes)
elif args.model == 'UNet11':
model = UNet11(num_classes=num_classes, pretrained='vgg')
elif args.model == 'UNet16':
model = UNet16(num_classes=num_classes, pretrained='vgg')
elif args.model == 'UNet16BN':
model = UNet16BN(num_classes=num_classes, pretrained='vgg')
elif args.model == 'LinkNet34':
model = LinkNet34(num_classes=num_classes, pretrained=True)
else:
model = UNet(num_classes=num_classes, input_channels=3)
## multiple GPUs
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
model = nn.DataParallel(model)
model.to(device)
## load pretrained model
if args.model_weight is not None:
state = torch.load(args.model_weight)
#epoch = state['epoch']
#step = state['step']
model.load_state_dict(state['model'])
print('--' * 10)
print('Load pretrained model', args.model_weight)
#print('Restored model, epoch {}, step {:,}'.format(epoch, step))
print('--' * 10)
## replace the last layer
## although the model and pre-trained weight have differernt size (the last layer is different)
## pytorch can still load the weight
## I found that the weight for one layer just duplicated for all layers
## therefore, the following code is not necessary
# if args.attribute == 'all':
# model = list(model.children())[0]
# num_filters = 32
# model.final = nn.Conv2d(num_filters, num_classes, kernel_size=1)
# print('--' * 10)
# print('Load pretrained model and replace the last layer', args.model_weight, num_classes)
# print('--' * 10)
# if torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# model.to(device)
## model summary
print_model_summay(model)
## define loss
loss_fn = LossBinary(jaccard_weight=args.jaccard_weight)
## It enables benchmark mode in cudnn.
## benchmark mode is good whenever your input sizes for your network do not vary. This way, cudnn will look for the
## optimal set of algorithms for that particular configuration (which takes some time). This usually leads to faster runtime.
## But if your input sizes changes at each iteration, then cudnn will benchmark every time a new size appears,
## possibly leading to worse runtime performances.
cudnn.benchmark = True
## get train_test_id
train_test_id = get_split(args.train_test_split_file)
## train vs. val
print('--' * 10)
print('num train = {}, num_val = {}'.format((train_test_id['Split'] == 'train').sum(),
(train_test_id['Split'] != 'train').sum()
))
print('--' * 10)
train_transform = DualCompose([
HorizontalFlip(),
VerticalFlip(),
ImageOnly(Normalize())
])
val_transform = DualCompose([
ImageOnly(Normalize())
])
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
## define data loader
train_loader = make_loader(train_test_id, image_path, args, train=True, shuffle=True,
train_test_split_file=args.train_test_split_file,
transform=train_transform)
valid_loader = make_loader(train_test_id, image_path, args, train=False, shuffle=True,
train_test_split_file=args.train_test_split_file,
transform=val_transform)
if True:
print('--'*10)
print('check data')
train_image, train_mask, train_mask_ind = next(iter(train_loader))
print('train_image.shape', train_image.shape)
print('train_mask.shape', train_mask.shape)
print('train_mask_ind.shape', train_mask_ind.shape)
print('train_image.min', train_image.min().item())
print('train_image.max', train_image.max().item())
print('train_mask.min', train_mask.min().item())
print('train_mask.max', train_mask.max().item())
print('train_mask_ind.min', train_mask_ind.min().item())
print('train_mask_ind.max', train_mask_ind.max().item())
print('--' * 10)
valid_fn = validation_binary
###########
## optimizer
if args.optimizer == 'Adam':
optimizer = Adam(model.parameters(), lr=args.lr)
elif args.optimizer == 'SGD':
optimizer = SGD(model.parameters(), lr=args.lr, momentum=0.9)
## loss
criterion = loss_fn
## change LR
scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.8, patience=5, verbose=True)
##########
## load previous model status
previous_valid_loss = 10
model_path = checkpoint / 'model.pt'
if args.resume_path is not None and model_path.exists():
state = torch.load(str(model_path))
epoch = state['epoch']
step = state['step']
model.load_state_dict(state['model'])
epoch = 1
step = 0
try:
previous_valid_loss = state['valid_loss']
except:
previous_valid_loss = 10
print('--' * 10)
print('Restored previous model, epoch {}, step {:,}'.format(epoch, step))
print('--' * 10)
else:
epoch = 1
step = 0
#########
## start training
log = checkpoint.joinpath('train.log').open('at', encoding='utf8')
writer = SummaryWriter(log_dir=checkpoint)
meter = AllInOneMeter()
#if previous_valid_loss = 10000
print('Start training')
print_model_summay(model)
previous_valid_jaccard = 0
for epoch in range(epoch, args.n_epochs + 1):
model.train()
random.seed()
#jaccard = []
start_time = time.time()
meter.reset()
w1 = 1.0
w2 = 0.5
w3 = 0.5
try:
train_loss = 0
valid_loss = 0
# if epoch == 1:
# freeze_layer_names = get_freeze_layer_names(model, part='encoder')
# set_freeze_layers(model, freeze_layer_names=freeze_layer_names)
# #set_train_layers(model, train_layer_names=['module.final.weight','module.final.bias'])
# print_model_summay(model)
# elif epoch == 5:
# w1 = 1.0
# w2 = 0.0
# w3 = 0.5
# freeze_layer_names = get_freeze_layer_names(part='encoder')
# set_freeze_layers(model, freeze_layer_names=freeze_layer_names)
# # set_train_layers(model, train_layer_names=['module.final.weight','module.final.bias'])
# print_model_summay(model)
#elif epoch == 3:
# set_train_layers(model, train_layer_names=['module.dec5.block.0.conv.weight','module.dec5.block.0.conv.bias',
# 'module.dec5.block.1.weight','module.dec5.block.1.bias',
# 'module.dec4.block.0.conv.weight','module.dec4.block.0.conv.bias',
# 'module.dec4.block.1.weight','module.dec4.block.1.bias',
# 'module.dec3.block.0.conv.weight','module.dec3.block.0.conv.bias',
# 'module.dec3.block.1.weight','module.dec3.block.1.bias',
# 'module.dec2.block.0.conv.weight','module.dec2.block.0.conv.bias',
# 'module.dec2.block.1.weight','module.dec2.block.1.bias',
# 'module.dec1.conv.weight','module.dec1.conv.bias',
# 'module.final.weight','module.final.bias'])
# print_model_summa zvgf t5y(model)
# elif epoch == 50:
# set_freeze_layers(model, freeze_layer_names=None)
# print_model_summay(model)
for i, (train_image, train_mask, train_mask_ind) in enumerate(train_loader):
# inputs, targets = variable(inputs), variable(targets)
train_image = train_image.permute(0, 3, 1, 2)
train_mask = train_mask.permute(0, 3, 1, 2)
train_image = train_image.to(device)
train_mask = train_mask.to(device).type(torch.cuda.FloatTensor)
train_mask_ind = train_mask_ind.to(device).type(torch.cuda.FloatTensor)
# if args.problem_type == 'binary':
# train_mask = train_mask.to(device).type(torch.cuda.FloatTensor)
# else:
# #train_mask = train_mask.to(device).type(torch.cuda.LongTensor)
# train_mask = train_mask.to(device).type(torch.cuda.FloatTensor)
outputs, outputs_mask_ind1, outputs_mask_ind2 = model(train_image)
#print('outputs_mask_ind1.size()',outputs_mask_ind1.size())
#print('train_mask_ind.size()', train_mask_ind.size())
### note that the last layer in the model is defined differently
# if args.problem_type == 'binary':
# train_prob = F.sigmoid(outputs)
# loss = criterion(outputs, train_mask)
# else:
# #train_prob = outputs
# train_prob = F.sigmoid(outputs)
# loss = torch.tensor(0).type(train_mask.type())
# for feat_inx in range(train_mask.shape[1]):
# loss += criterion(outputs, train_mask)
train_prob = torch.sigmoid(outputs)
train_mask_ind_prob1 = torch.sigmoid(outputs_mask_ind1)
train_mask_ind_prob2 = torch.sigmoid(outputs_mask_ind2)
loss1 = criterion(outputs, train_mask)
#loss1 = F.binary_cross_entropy_with_logits(outputs, train_mask)
#loss2 = nn.BCEWithLogitsLoss()(outputs_mask_ind1, train_mask_ind)
#print(train_mask_ind.size())
#weight = torch.ones_like(train_mask_ind)
#weight[:, 0] = weight[:, 0] * 1
#weight[:, 1] = weight[:, 1] * 14
#weight[:, 2] = weight[:, 2] * 14
#weight[:, 3] = weight[:, 3] * 4
#weight[:, 4] = weight[:, 4] * 4
#weight = weight * train_mask_ind + 1
#weight = weight.to(device).type(torch.cuda.FloatTensor)
loss2 = F.binary_cross_entropy_with_logits(outputs_mask_ind1, train_mask_ind)
loss3 = F.binary_cross_entropy_with_logits(outputs_mask_ind2, train_mask_ind)
#loss3 = criterion(outputs_mask_ind2, train_mask_ind)
loss = loss1*w1 + loss2*w2 + loss3*w3
print(f'epoch={epoch:3d},iter={i:3d}, loss1={loss1.item():.4g}, loss2={loss2.item():.4g}, loss={loss.item():.4g}')
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
#jaccard += [get_jaccard(train_mask, (train_prob > 0).float()).item()]
meter.add(train_prob, train_mask, train_mask_ind_prob1, train_mask_ind_prob2, train_mask_ind,
loss1.item(),loss2.item(),loss3.item(),loss.item())
# print(train_mask.data.shape)
# print(train_mask.data.sum(dim=-2).shape)
# print(train_mask.data.sum(dim=-2).sum(dim=-1).shape)
# print(train_mask.data.sum(dim=-2).sum(dim=-1).sum(dim=0).shape)
# intersection = train_mask.data.sum(dim=-2).sum(dim=-1)
# print(intersection.shape)
# print(intersection.dtype)
# print(train_mask.data.shape[0])
#torch.zeros([2, 4], dtype=torch.float32)
#########################
## at the end of each epoch, evualte the metrics
epoch_time = time.time() - start_time
train_metrics = meter.value()
train_metrics['epoch_time'] = epoch_time
train_metrics['image'] = train_image.data
train_metrics['mask'] = train_mask.data
train_metrics['prob'] = train_prob.data
#train_jaccard = np.mean(jaccard)
#train_auc = str(round(mtr1.value()[0],2))+' '+str(round(mtr2.value()[0],2))+' '+str(round(mtr3.value()[0],2))+' '+str(round(mtr4.value()[0],2))+' '+str(round(mtr5.value()[0],2))
valid_metrics = valid_fn(model, criterion, valid_loader, device, num_classes)
print(valid_metrics)
##############
## write events
write_event(log, step, epoch=epoch, train_metrics=train_metrics, valid_metrics=valid_metrics)
#save_weights(model, model_path, epoch + 1, step)
#########################
## tensorboard
write_tensorboard(writer, model, epoch, train_metrics=train_metrics, valid_metrics=valid_metrics)
#########################
## save the best model
valid_loss = valid_metrics['loss1']
valid_jaccard = valid_metrics['jaccard']
if valid_loss < previous_valid_loss:
save_weights(model, model_path, epoch + 1, step, train_metrics, valid_metrics)
previous_valid_loss = valid_loss
print('Save best model by loss')
if valid_jaccard > previous_valid_jaccard:
save_weights(model, model_path, epoch + 1, step, train_metrics, valid_metrics)
previous_valid_jaccard = valid_jaccard
print('Save best model by jaccard')
#########################
## change learning rate
scheduler.step(valid_metrics['loss1'])
except KeyboardInterrupt:
# print('--' * 10)
# print('Ctrl+C, saving snapshot')
# save_weights(model, model_path, epoch, step)
# print('done.')
# print('--' * 10)
writer.close()
#return
writer.close()
if __name__ == '__main__':
main()