diff --git a/analysis/children_disagree.Rmd b/analysis/children_disagree.Rmd index c5d014f..558c937 100644 --- a/analysis/children_disagree.Rmd +++ b/analysis/children_disagree.Rmd @@ -102,8 +102,15 @@ l.color = list(agreement = "#89fa50", ### Read in data ```{r, message=FALSE} +# fixed rounding issue; one participant was actually 11 and turned 12 the next day +# participant reported they were 9 despite birth year indicating they were 8; +# recoded to 9.69 given reported age likely more reliable + df.exp1 = read_csv("../data/data1_infer.csv") %>% - rename(trial_order = trial_order_dada) + rename(trial_order = trial_order_dada) %>% + mutate(age_continuous = ifelse(age_continuous == 12, 11.99, + ifelse(age_continuous == 8.69, 9.69, + age_continuous))) ``` ## STATS @@ -222,8 +229,7 @@ df.plot.individual = df.exp1 %>% df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% + mutate(age_group = floor(age_continuous)) %>% group_by(age_group) %>% summarize(age_mean = mean(age_continuous), n = str_c("n = ", n())) %>% @@ -410,7 +416,8 @@ results = fun.regression( formula = "ambiguous_yes ~ 1 + condition_disagree + (1 | participant)", data = df.exp2.infer) -prop.table(table(df.exp2.infer$condition_disagree, df.exp2.infer$ambiguous_yes), margin=1) +prop.table(table(df.exp2.infer$condition_disagree, df.exp2.infer$ambiguous_yes), + margin = 1) fun.table(results, type = "confirmatory") ``` @@ -483,7 +490,8 @@ results = fun.regression( formula = "ambiguous_yes ~ 1 + condition_disagree + (1 | participant)", data = df.exp2.infer.7.1) -prop.table(table(df.exp2.infer.7.1$condition_disagree, df.exp2.infer.7.1$ambiguous_yes), margin=1) +prop.table(table(df.exp2.infer.7.1$condition_disagree, df.exp2.infer.7.1$ambiguous_yes), + margin = 1) fun.table(results, type = "confirmatory") @@ -496,7 +504,8 @@ results = fun.regression( formula = "ambiguous_yes ~ 1 + condition_disagree + (1 | participant)", data = df.exp2.infer.7.4) -prop.table(table(df.exp2.infer.7.4$condition_disagree, df.exp2.infer.7.4$ambiguous_yes), margin=1) +prop.table(table(df.exp2.infer.7.4$condition_disagree, df.exp2.infer.7.4$ambiguous_yes), + margin = 1) fun.table(results, type = "confirmatory") ``` @@ -729,8 +738,7 @@ df.plot.individual = df.exp2.predict %>% df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% + mutate(age_group = floor(age_continuous)) %>% group_by(age_group) %>% summarize(age_mean = mean(age_continuous), n = str_c("n = ", n())) %>% @@ -822,8 +830,7 @@ df.plot.individual = df.exp2.infer %>% df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% + mutate(age_group = floor(age_continuous)) %>% group_by(age_group) %>% summarize(age_mean = mean(age_continuous), n = str_c("n = ", n())) %>% @@ -926,10 +933,12 @@ ggplot() + axis.title.y = element_markdown(color = l.color$ambiguous), legend.position = "right") + guides(fill = guide_legend(override.aes = list(shape = 21, - size = 3), + size = 3, + alpha = 1), reverse = T, order = 1), - shape = guide_legend(override.aes = list(fill = "white", alpha = 1)), + shape = guide_legend(override.aes = list(fill = "white", + alpha = 1)), color = "none") ggsave(filename = "../figures/plots/exp2_inference.pdf", diff --git a/analysis/children_disagree.html b/analysis/children_disagree.html index ff96a15..6e01027 100644 --- a/analysis/children_disagree.html +++ b/analysis/children_disagree.html @@ -11,7 +11,7 @@ - + Children use disagreement to infer what happened @@ -1803,7 +1803,7 @@

Children use disagreement to infer what happened

Jamie Amemiya, Gail D. Heyman & Tobias Gerstenberg

-

April 01, 2024

+

April 03, 2024

@@ -1893,8 +1893,15 @@

3 EXPERIMENT 1

3.1 DATA

3.1.1 Read in data

-
df.exp1 = read_csv("../data/data1_infer.csv") %>% 
-  rename(trial_order = trial_order_dada)
+
# fixed rounding issue; one participant was actually 11 and turned 12 the next day
+# participant reported they were 9 despite birth year indicating they were 8; 
+# recoded to 9.69 given reported age likely more reliable
+
+df.exp1 = read_csv("../data/data1_infer.csv") %>% 
+  rename(trial_order = trial_order_dada) %>%
+  mutate(age_continuous = ifelse(age_continuous == 12, 11.99, 
+                          ifelse(age_continuous == 8.69, 9.69,
+                                 age_continuous)))
@@ -2703,16 +2710,16 @@

3.2.3.1 Trial type by age interac participant) Data: data AIC BIC logLik deviance df.resid - 237.8463 254.5340 -113.9231 227.8463 203 + 237.4681 254.1558 -113.7340 227.4681 203 Random effects: Groups Name Std.Dev. - participant (Intercept) 1.543 + participant (Intercept) 1.546 Number of obs: 208, groups: participant, 52 Fixed Effects: (Intercept) condition_disagree - 2.3556 -5.8141 + 2.5127 -6.0120 age_continuous condition_disagree:age_continuous - -0.4584 0.8275 + -0.4749 0.8474
fun.table(results)
@@ -2749,19 +2756,19 @@

3.2.3.1 Trial type by age interac (Intercept)

@@ -2772,19 +2779,19 @@

3.2.3.1 Trial type by age interac condition_disagree

@@ -2795,19 +2802,19 @@

3.2.3.1 Trial type by age interac age_continuous

@@ -2818,19 +2825,19 @@

3.2.3.1 Trial type by age interac condition_disagree:age_continuous

@@ -2942,85 +2949,84 @@

3.3.1 Inference

df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% - group_by(age_group) %>% - summarize(age_mean = mean(age_continuous), - n = str_c("n = ", n())) %>% - ungroup() - -df.plot.means = df.exp1 %>% - mutate(condition_disagree = as.character(condition_disagree)) %>% - group_by(participant, age_group, condition_disagree) %>% - summarize(pct_amb = sum(ambiguous_yes)/n()) %>% - group_by(age_group, condition_disagree) %>% - reframe(response = smean.cl.boot(pct_amb), - name = c("mean", "low", "high")) %>% - left_join(df.age.means, - by = "age_group") %>% - pivot_wider(names_from = name, - values_from = response) %>% - mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) - -df.plot.text = df.plot.means %>% - distinct(age_group, n) - -ggplot() + - geom_hline(yintercept = 0.5, - linetype = 2, - alpha = 0.1) + - geom_point(data = df.plot.individual, - mapping = aes(x = age_continuous, - y = pct_amb, - color = condition_disagree), - alpha = 0.5, - show.legend = T, - shape = 16, - size = 1.5) + - geom_linerange(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - ymin = low, - ymax = high), - color = "gray40") + - geom_point(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - fill = condition_disagree), - shape = 21, - size = 3, - show.legend = T) + - geom_text(data = df.plot.text, - mapping = aes(x = age_group + 0.5, - y = 1.05, - label = n), - hjust = 0.5) + - scale_y_continuous(labels = percent) + - labs(x = "Age (in years)", - y = "% Infer Ambiguous Utterance", - title = "Experiment 1: Inference") + - coord_cartesian(xlim = c(7, 12), - ylim = c(0, 1), - clip = "off") + - scale_color_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement), - guide = guide_legend(reverse = T)) + - scale_fill_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement), - guide = guide_legend(reverse = T)) + - theme(plot.title = element_text(hjust = 0.5, - vjust = 2, - size = 18, - face = "bold"), - axis.title.y = element_markdown(color = l.color$ambiguous), - legend.position = "right") - -ggsave(filename = "../figures/plots/exp1_inference.pdf", - width = 8, - height = 4) -

+ mutate(age_group = floor(age_continuous)) %>% + group_by(age_group) %>% + summarize(age_mean = mean(age_continuous), + n = str_c("n = ", n())) %>% + ungroup() + +df.plot.means = df.exp1 %>% + mutate(condition_disagree = as.character(condition_disagree)) %>% + group_by(participant, age_group, condition_disagree) %>% + summarize(pct_amb = sum(ambiguous_yes)/n()) %>% + group_by(age_group, condition_disagree) %>% + reframe(response = smean.cl.boot(pct_amb), + name = c("mean", "low", "high")) %>% + left_join(df.age.means, + by = "age_group") %>% + pivot_wider(names_from = name, + values_from = response) %>% + mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) + +df.plot.text = df.plot.means %>% + distinct(age_group, n) + +ggplot() + + geom_hline(yintercept = 0.5, + linetype = 2, + alpha = 0.1) + + geom_point(data = df.plot.individual, + mapping = aes(x = age_continuous, + y = pct_amb, + color = condition_disagree), + alpha = 0.5, + show.legend = T, + shape = 16, + size = 1.5) + + geom_linerange(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + ymin = low, + ymax = high), + color = "gray40") + + geom_point(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + fill = condition_disagree), + shape = 21, + size = 3, + show.legend = T) + + geom_text(data = df.plot.text, + mapping = aes(x = age_group + 0.5, + y = 1.05, + label = n), + hjust = 0.5) + + scale_y_continuous(labels = percent) + + labs(x = "Age (in years)", + y = "% Infer Ambiguous Utterance", + title = "Experiment 1: Inference") + + coord_cartesian(xlim = c(7, 12), + ylim = c(0, 1), + clip = "off") + + scale_color_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement), + guide = guide_legend(reverse = T)) + + scale_fill_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement), + guide = guide_legend(reverse = T)) + + theme(plot.title = element_text(hjust = 0.5, + vjust = 2, + size = 18, + face = "bold"), + axis.title.y = element_markdown(color = l.color$ambiguous), + legend.position = "right") + +ggsave(filename = "../figures/plots/exp1_inference.pdf", + width = 8, + height = 4) +

@@ -4049,7 +4055,8 @@
4.2.2.1.2 Inference condition
-
prop.table(table(df.exp2.infer$condition_disagree, df.exp2.infer$ambiguous_yes), margin=1)
+
prop.table(table(df.exp2.infer$condition_disagree, df.exp2.infer$ambiguous_yes),
+           margin = 1)
   
              0          1
   0 0.91071429 0.08928571
@@ -4650,7 +4657,8 @@ 
4.2.3.2.3 Inference condition: Fi (Intercept) condition_disagree -0.6931 -0.4055 optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
-
prop.table(table(df.exp2.infer.7.1$condition_disagree, df.exp2.infer.7.1$ambiguous_yes), margin=1)
+
prop.table(table(df.exp2.infer.7.1$condition_disagree, df.exp2.infer.7.1$ambiguous_yes),
+           margin = 1)
   
             0         1
   0 0.6666667 0.3333333
@@ -4764,7 +4772,8 @@ 
4.2.3.2.3 Inference condition: Fi (Intercept) condition_disagree -1.099 1.435 optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
-
prop.table(table(df.exp2.infer.7.4$condition_disagree, df.exp2.infer.7.4$ambiguous_yes), margin=1)
+
prop.table(table(df.exp2.infer.7.4$condition_disagree, df.exp2.infer.7.4$ambiguous_yes),
+           margin = 1)
   
             0         1
   0 0.7500000 0.2500000
@@ -5125,85 +5134,84 @@ 

4.3.1 Prediction

df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% - group_by(age_group) %>% - summarize(age_mean = mean(age_continuous), - n = str_c("n = ", n())) %>% - ungroup() - -df.plot.means = df.exp2.predict %>% - mutate(condition_amb = as.character(condition_amb)) %>% - group_by(participant, age_group, condition_amb) %>% - summarize(pct_dis = sum(dis_yes)/n()) %>% - group_by(age_group, condition_amb) %>% - reframe(response = smean.cl.boot(pct_dis), - name = c("mean", "low", "high")) %>% - left_join(df.age.means, - by = "age_group") %>% - pivot_wider(names_from = name, - values_from = response) %>% - mutate(age_mean = ifelse(condition_amb == 0, age_mean - 0.05, age_mean + 0.05)) - -df.plot.text = df.plot.means %>% - distinct(age_group, n) + mutate(age_group = floor(age_continuous)) %>% + group_by(age_group) %>% + summarize(age_mean = mean(age_continuous), + n = str_c("n = ", n())) %>% + ungroup() + +df.plot.means = df.exp2.predict %>% + mutate(condition_amb = as.character(condition_amb)) %>% + group_by(participant, age_group, condition_amb) %>% + summarize(pct_dis = sum(dis_yes)/n()) %>% + group_by(age_group, condition_amb) %>% + reframe(response = smean.cl.boot(pct_dis), + name = c("mean", "low", "high")) %>% + left_join(df.age.means, + by = "age_group") %>% + pivot_wider(names_from = name, + values_from = response) %>% + mutate(age_mean = ifelse(condition_amb == 0, age_mean - 0.05, age_mean + 0.05)) + +df.plot.text = df.plot.means %>% + distinct(age_group, n) + - -ggplot() + - geom_hline(yintercept = 0.5, - linetype = 2, - alpha = 0.1) + - geom_point(data = df.plot.individual, - mapping = aes(x = age_continuous, - y = pct_dis, - color = condition_amb), - alpha = 0.5, - show.legend = T, - shape = 16, - size = 1.5) + - geom_linerange(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - ymin = low, - ymax = high), - color = "gray40") + - geom_point(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - fill = condition_amb), - shape = 21, - size = 3, - show.legend = T) + - geom_text(data = df.plot.text, - mapping = aes(x = age_group + 0.5, - y = 1.05, - label = n), - hjust = 0.5) + - scale_y_continuous(labels = percent) + - labs(x = "Age (in years)", - y = "% Predict Disagreement", - title = "Experiment 2: Prediction") + - coord_cartesian(xlim = c(7, 12), - ylim = c(0, 1), - clip = "off") + - scale_color_manual(name = "Trial Type", - labels = c("Unambiguous", "Ambiguous"), - values = c(l.color$unambiguous, l.color$ambiguous), - guide = guide_legend(reverse = T)) + - scale_fill_manual(name = "Trial Type", - labels = c("Unambiguous", "Ambiguous"), - values = c(l.color$unambiguous, l.color$ambiguous), - guide = guide_legend(reverse = T)) + - theme(plot.title = element_text(hjust = 0.5, - vjust = 2, - size = 18, - face = "bold"), - axis.title.y = element_markdown(color = l.color$disagreement), - legend.position = "right") - -ggsave(filename = "../figures/plots/exp2_prediction.pdf", - width = 8, - height = 4)
+ggplot() + + geom_hline(yintercept = 0.5, + linetype = 2, + alpha = 0.1) + + geom_point(data = df.plot.individual, + mapping = aes(x = age_continuous, + y = pct_dis, + color = condition_amb), + alpha = 0.5, + show.legend = T, + shape = 16, + size = 1.5) + + geom_linerange(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + ymin = low, + ymax = high), + color = "gray40") + + geom_point(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + fill = condition_amb), + shape = 21, + size = 3, + show.legend = T) + + geom_text(data = df.plot.text, + mapping = aes(x = age_group + 0.5, + y = 1.05, + label = n), + hjust = 0.5) + + scale_y_continuous(labels = percent) + + labs(x = "Age (in years)", + y = "% Predict Disagreement", + title = "Experiment 2: Prediction") + + coord_cartesian(xlim = c(7, 12), + ylim = c(0, 1), + clip = "off") + + scale_color_manual(name = "Trial Type", + labels = c("Unambiguous", "Ambiguous"), + values = c(l.color$unambiguous, l.color$ambiguous), + guide = guide_legend(reverse = T)) + + scale_fill_manual(name = "Trial Type", + labels = c("Unambiguous", "Ambiguous"), + values = c(l.color$unambiguous, l.color$ambiguous), + guide = guide_legend(reverse = T)) + + theme(plot.title = element_text(hjust = 0.5, + vjust = 2, + size = 18, + face = "bold"), + axis.title.y = element_markdown(color = l.color$disagreement), + legend.position = "right") + +ggsave(filename = "../figures/plots/exp2_prediction.pdf", + width = 8, + height = 4)

@@ -5217,120 +5225,121 @@

4.3.2 Inference

df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% - group_by(age_group) %>% - summarize(age_mean = mean(age_continuous), - n = str_c("n = ", n())) %>% - ungroup() - -df.plot.means = df.exp2.infer %>% - mutate(condition_disagree = as.character(condition_disagree)) %>% - group_by(participant, age_group, condition_disagree) %>% - summarize(pct_amb = sum(ambiguous_yes)/n()) %>% - group_by(age_group, condition_disagree) %>% - reframe(response = smean.cl.boot(pct_amb), - name = c("mean", "low", "high")) %>% - left_join(df.age.means, - by = "age_group") %>% - pivot_wider(names_from = name, - values_from = response) %>% - mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) - -df.plot.text = df.plot.means %>% - distinct(age_group, n) - -df.model = df.model.posterior %>% - mutate(name = "posterior") %>% - select(-c(utterance, probability, prior)) %>% - bind_rows(df.model.softmax %>% - mutate(name = "softmax")) %>% - bind_rows(df.model.softmax.linear %>% - mutate(name = "softmax increase")) %>% - mutate(condition_disagree = factor(condition, - levels = c("Agreement Trials", - "Disagreement Trials"), - labels = c(0, - 1))) %>% - left_join(df.age.means %>% - select(-n), - by = "age_group") %>% - mutate(age_mean = ifelse(condition_disagree == 0, - age_mean - 0.05, - age_mean + 0.05)) - -ggplot() + - geom_hline(yintercept = 0.5, - linetype = 2, - alpha = 0.1) + - geom_point(data = df.plot.individual, - mapping = aes(x = age_continuous, - y = pct_amb, - color = condition_disagree), - alpha = 0.5, - show.legend = T, - shape = 16, - size = 1.5) + - geom_linerange(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - ymin = low, - ymax = high), - color = "gray40", - show.legend = F) + - geom_point(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - fill = condition_disagree), - shape = 21, - size = 3, - show.legend = F) + - geom_point(data = df.model, - mapping = aes(x = age_mean, - y = posterior, - shape = name, - fill = condition_disagree), - size = 1.5, - alpha = 0.5, - show.legend = T) + - geom_text(data = df.plot.text, - mapping = aes(x = age_group + 0.5, - y = 1.05, - label = n), - hjust = 0.5) + - scale_y_continuous(labels = percent) + - labs(x = "Age (in years)", - y = "% Infer Ambiguous Utterance", - title = "Experiment 2: Inference") + - coord_cartesian(xlim = c(7, 12), - ylim = c(0, 1), - clip = "off") + - scale_color_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement)) + - scale_fill_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement)) + - scale_shape_manual(name = "Model", - labels = c("posterior", "softmax", "softmax increase"), - values = c(21, 22, 23)) + - theme(plot.title = element_text(hjust = 0.5, - vjust = 2, - size = 18, - face = "bold"), - axis.title.y = element_markdown(color = l.color$ambiguous), - legend.position = "right") + - guides(fill = guide_legend(override.aes = list(shape = 21, - size = 3), + mutate(age_group = floor(age_continuous)) %>% + group_by(age_group) %>% + summarize(age_mean = mean(age_continuous), + n = str_c("n = ", n())) %>% + ungroup() + +df.plot.means = df.exp2.infer %>% + mutate(condition_disagree = as.character(condition_disagree)) %>% + group_by(participant, age_group, condition_disagree) %>% + summarize(pct_amb = sum(ambiguous_yes)/n()) %>% + group_by(age_group, condition_disagree) %>% + reframe(response = smean.cl.boot(pct_amb), + name = c("mean", "low", "high")) %>% + left_join(df.age.means, + by = "age_group") %>% + pivot_wider(names_from = name, + values_from = response) %>% + mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) + +df.plot.text = df.plot.means %>% + distinct(age_group, n) + +df.model = df.model.posterior %>% + mutate(name = "posterior") %>% + select(-c(utterance, probability, prior)) %>% + bind_rows(df.model.softmax %>% + mutate(name = "softmax")) %>% + bind_rows(df.model.softmax.linear %>% + mutate(name = "softmax increase")) %>% + mutate(condition_disagree = factor(condition, + levels = c("Agreement Trials", + "Disagreement Trials"), + labels = c(0, + 1))) %>% + left_join(df.age.means %>% + select(-n), + by = "age_group") %>% + mutate(age_mean = ifelse(condition_disagree == 0, + age_mean - 0.05, + age_mean + 0.05)) + +ggplot() + + geom_hline(yintercept = 0.5, + linetype = 2, + alpha = 0.1) + + geom_point(data = df.plot.individual, + mapping = aes(x = age_continuous, + y = pct_amb, + color = condition_disagree), + alpha = 0.5, + show.legend = T, + shape = 16, + size = 1.5) + + geom_linerange(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + ymin = low, + ymax = high), + color = "gray40", + show.legend = F) + + geom_point(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + fill = condition_disagree), + shape = 21, + size = 3, + show.legend = F) + + geom_point(data = df.model, + mapping = aes(x = age_mean, + y = posterior, + shape = name, + fill = condition_disagree), + size = 1.5, + alpha = 0.5, + show.legend = T) + + geom_text(data = df.plot.text, + mapping = aes(x = age_group + 0.5, + y = 1.05, + label = n), + hjust = 0.5) + + scale_y_continuous(labels = percent) + + labs(x = "Age (in years)", + y = "% Infer Ambiguous Utterance", + title = "Experiment 2: Inference") + + coord_cartesian(xlim = c(7, 12), + ylim = c(0, 1), + clip = "off") + + scale_color_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement)) + + scale_fill_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement)) + + scale_shape_manual(name = "Model", + labels = c("posterior", "softmax", "softmax increase"), + values = c(21, 22, 23)) + + theme(plot.title = element_text(hjust = 0.5, + vjust = 2, + size = 18, + face = "bold"), + axis.title.y = element_markdown(color = l.color$ambiguous), + legend.position = "right") + + guides(fill = guide_legend(override.aes = list(shape = 21, + size = 3, + alpha = 1), reverse = T, order = 1), - shape = guide_legend(override.aes = list(fill = "white", alpha = 1)), - color = "none") - -ggsave(filename = "../figures/plots/exp2_inference.pdf", - width = 8, - height = 4)
-

+ shape = guide_legend(override.aes = list(fill = "white", + alpha = 1)), + color = "none") + +ggsave(filename = "../figures/plots/exp2_inference.pdf", + width = 8, + height = 4) +

@@ -5343,7 +5352,7 @@

5 Session info

sessionInfo()
R version 4.3.2 (2023-10-31)
 Platform: aarch64-apple-darwin20 (64-bit)
-Running under: macOS Sonoma 14.1.2
+Running under: macOS Sonoma 14.4.1
 
 Matrix products: default
 BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
diff --git a/docs/index.html b/docs/index.html
index ff96a15..6e01027 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -11,7 +11,7 @@
 
 
 
-
+
 
 Children use disagreement to infer what happened
 
@@ -1803,7 +1803,7 @@
 
 

Children use disagreement to infer what happened

Jamie Amemiya, Gail D. Heyman & Tobias Gerstenberg

-

April 01, 2024

+

April 03, 2024

@@ -1893,8 +1893,15 @@

3 EXPERIMENT 1

3.1 DATA

3.1.1 Read in data

-
df.exp1 = read_csv("../data/data1_infer.csv") %>% 
-  rename(trial_order = trial_order_dada)
+
# fixed rounding issue; one participant was actually 11 and turned 12 the next day
+# participant reported they were 9 despite birth year indicating they were 8; 
+# recoded to 9.69 given reported age likely more reliable
+
+df.exp1 = read_csv("../data/data1_infer.csv") %>% 
+  rename(trial_order = trial_order_dada) %>%
+  mutate(age_continuous = ifelse(age_continuous == 12, 11.99, 
+                          ifelse(age_continuous == 8.69, 9.69,
+                                 age_continuous)))
@@ -2703,16 +2710,16 @@

3.2.3.1 Trial type by age interac participant) Data: data AIC BIC logLik deviance df.resid - 237.8463 254.5340 -113.9231 227.8463 203 + 237.4681 254.1558 -113.7340 227.4681 203 Random effects: Groups Name Std.Dev. - participant (Intercept) 1.543 + participant (Intercept) 1.546 Number of obs: 208, groups: participant, 52 Fixed Effects: (Intercept) condition_disagree - 2.3556 -5.8141 + 2.5127 -6.0120 age_continuous condition_disagree:age_continuous - -0.4584 0.8275

+ -0.4749 0.8474
fun.table(results)
-2.36 +2.51 2.55 -0.93 +0.98 --2.63 +-2.49 -7.34 +7.52
--5.81 +-6.01 -2.73 +2.74 --2.13 +-2.20 --11.16 +-11.38 --0.47 +-0.65
--0.46 +-0.47 0.28 --1.66 +-1.71 --1.00 +-1.02 -0.08 +0.07
-0.83 +0.85 0.30 -2.77 +2.83 -0.24 +0.26 -1.41 +1.43
@@ -2749,19 +2756,19 @@

3.2.3.1 Trial type by age interac (Intercept)

@@ -2772,19 +2779,19 @@

3.2.3.1 Trial type by age interac condition_disagree

@@ -2795,19 +2802,19 @@

3.2.3.1 Trial type by age interac age_continuous

@@ -2818,19 +2825,19 @@

3.2.3.1 Trial type by age interac condition_disagree:age_continuous

@@ -2942,85 +2949,84 @@

3.3.1 Inference

df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% - group_by(age_group) %>% - summarize(age_mean = mean(age_continuous), - n = str_c("n = ", n())) %>% - ungroup() - -df.plot.means = df.exp1 %>% - mutate(condition_disagree = as.character(condition_disagree)) %>% - group_by(participant, age_group, condition_disagree) %>% - summarize(pct_amb = sum(ambiguous_yes)/n()) %>% - group_by(age_group, condition_disagree) %>% - reframe(response = smean.cl.boot(pct_amb), - name = c("mean", "low", "high")) %>% - left_join(df.age.means, - by = "age_group") %>% - pivot_wider(names_from = name, - values_from = response) %>% - mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) - -df.plot.text = df.plot.means %>% - distinct(age_group, n) - -ggplot() + - geom_hline(yintercept = 0.5, - linetype = 2, - alpha = 0.1) + - geom_point(data = df.plot.individual, - mapping = aes(x = age_continuous, - y = pct_amb, - color = condition_disagree), - alpha = 0.5, - show.legend = T, - shape = 16, - size = 1.5) + - geom_linerange(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - ymin = low, - ymax = high), - color = "gray40") + - geom_point(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - fill = condition_disagree), - shape = 21, - size = 3, - show.legend = T) + - geom_text(data = df.plot.text, - mapping = aes(x = age_group + 0.5, - y = 1.05, - label = n), - hjust = 0.5) + - scale_y_continuous(labels = percent) + - labs(x = "Age (in years)", - y = "% Infer Ambiguous Utterance", - title = "Experiment 1: Inference") + - coord_cartesian(xlim = c(7, 12), - ylim = c(0, 1), - clip = "off") + - scale_color_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement), - guide = guide_legend(reverse = T)) + - scale_fill_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement), - guide = guide_legend(reverse = T)) + - theme(plot.title = element_text(hjust = 0.5, - vjust = 2, - size = 18, - face = "bold"), - axis.title.y = element_markdown(color = l.color$ambiguous), - legend.position = "right") - -ggsave(filename = "../figures/plots/exp1_inference.pdf", - width = 8, - height = 4) -

+ mutate(age_group = floor(age_continuous)) %>% + group_by(age_group) %>% + summarize(age_mean = mean(age_continuous), + n = str_c("n = ", n())) %>% + ungroup() + +df.plot.means = df.exp1 %>% + mutate(condition_disagree = as.character(condition_disagree)) %>% + group_by(participant, age_group, condition_disagree) %>% + summarize(pct_amb = sum(ambiguous_yes)/n()) %>% + group_by(age_group, condition_disagree) %>% + reframe(response = smean.cl.boot(pct_amb), + name = c("mean", "low", "high")) %>% + left_join(df.age.means, + by = "age_group") %>% + pivot_wider(names_from = name, + values_from = response) %>% + mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) + +df.plot.text = df.plot.means %>% + distinct(age_group, n) + +ggplot() + + geom_hline(yintercept = 0.5, + linetype = 2, + alpha = 0.1) + + geom_point(data = df.plot.individual, + mapping = aes(x = age_continuous, + y = pct_amb, + color = condition_disagree), + alpha = 0.5, + show.legend = T, + shape = 16, + size = 1.5) + + geom_linerange(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + ymin = low, + ymax = high), + color = "gray40") + + geom_point(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + fill = condition_disagree), + shape = 21, + size = 3, + show.legend = T) + + geom_text(data = df.plot.text, + mapping = aes(x = age_group + 0.5, + y = 1.05, + label = n), + hjust = 0.5) + + scale_y_continuous(labels = percent) + + labs(x = "Age (in years)", + y = "% Infer Ambiguous Utterance", + title = "Experiment 1: Inference") + + coord_cartesian(xlim = c(7, 12), + ylim = c(0, 1), + clip = "off") + + scale_color_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement), + guide = guide_legend(reverse = T)) + + scale_fill_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement), + guide = guide_legend(reverse = T)) + + theme(plot.title = element_text(hjust = 0.5, + vjust = 2, + size = 18, + face = "bold"), + axis.title.y = element_markdown(color = l.color$ambiguous), + legend.position = "right") + +ggsave(filename = "../figures/plots/exp1_inference.pdf", + width = 8, + height = 4) +

@@ -4049,7 +4055,8 @@
4.2.2.1.2 Inference condition
-
prop.table(table(df.exp2.infer$condition_disagree, df.exp2.infer$ambiguous_yes), margin=1)
+
prop.table(table(df.exp2.infer$condition_disagree, df.exp2.infer$ambiguous_yes),
+           margin = 1)
   
              0          1
   0 0.91071429 0.08928571
@@ -4650,7 +4657,8 @@ 
4.2.3.2.3 Inference condition: Fi (Intercept) condition_disagree -0.6931 -0.4055 optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
-
prop.table(table(df.exp2.infer.7.1$condition_disagree, df.exp2.infer.7.1$ambiguous_yes), margin=1)
+
prop.table(table(df.exp2.infer.7.1$condition_disagree, df.exp2.infer.7.1$ambiguous_yes),
+           margin = 1)
   
             0         1
   0 0.6666667 0.3333333
@@ -4764,7 +4772,8 @@ 
4.2.3.2.3 Inference condition: Fi (Intercept) condition_disagree -1.099 1.435 optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
-
prop.table(table(df.exp2.infer.7.4$condition_disagree, df.exp2.infer.7.4$ambiguous_yes), margin=1)
+
prop.table(table(df.exp2.infer.7.4$condition_disagree, df.exp2.infer.7.4$ambiguous_yes),
+           margin = 1)
   
             0         1
   0 0.7500000 0.2500000
@@ -5125,85 +5134,84 @@ 

4.3.1 Prediction

df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% - group_by(age_group) %>% - summarize(age_mean = mean(age_continuous), - n = str_c("n = ", n())) %>% - ungroup() - -df.plot.means = df.exp2.predict %>% - mutate(condition_amb = as.character(condition_amb)) %>% - group_by(participant, age_group, condition_amb) %>% - summarize(pct_dis = sum(dis_yes)/n()) %>% - group_by(age_group, condition_amb) %>% - reframe(response = smean.cl.boot(pct_dis), - name = c("mean", "low", "high")) %>% - left_join(df.age.means, - by = "age_group") %>% - pivot_wider(names_from = name, - values_from = response) %>% - mutate(age_mean = ifelse(condition_amb == 0, age_mean - 0.05, age_mean + 0.05)) - -df.plot.text = df.plot.means %>% - distinct(age_group, n) + mutate(age_group = floor(age_continuous)) %>% + group_by(age_group) %>% + summarize(age_mean = mean(age_continuous), + n = str_c("n = ", n())) %>% + ungroup() + +df.plot.means = df.exp2.predict %>% + mutate(condition_amb = as.character(condition_amb)) %>% + group_by(participant, age_group, condition_amb) %>% + summarize(pct_dis = sum(dis_yes)/n()) %>% + group_by(age_group, condition_amb) %>% + reframe(response = smean.cl.boot(pct_dis), + name = c("mean", "low", "high")) %>% + left_join(df.age.means, + by = "age_group") %>% + pivot_wider(names_from = name, + values_from = response) %>% + mutate(age_mean = ifelse(condition_amb == 0, age_mean - 0.05, age_mean + 0.05)) + +df.plot.text = df.plot.means %>% + distinct(age_group, n) + - -ggplot() + - geom_hline(yintercept = 0.5, - linetype = 2, - alpha = 0.1) + - geom_point(data = df.plot.individual, - mapping = aes(x = age_continuous, - y = pct_dis, - color = condition_amb), - alpha = 0.5, - show.legend = T, - shape = 16, - size = 1.5) + - geom_linerange(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - ymin = low, - ymax = high), - color = "gray40") + - geom_point(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - fill = condition_amb), - shape = 21, - size = 3, - show.legend = T) + - geom_text(data = df.plot.text, - mapping = aes(x = age_group + 0.5, - y = 1.05, - label = n), - hjust = 0.5) + - scale_y_continuous(labels = percent) + - labs(x = "Age (in years)", - y = "% Predict Disagreement", - title = "Experiment 2: Prediction") + - coord_cartesian(xlim = c(7, 12), - ylim = c(0, 1), - clip = "off") + - scale_color_manual(name = "Trial Type", - labels = c("Unambiguous", "Ambiguous"), - values = c(l.color$unambiguous, l.color$ambiguous), - guide = guide_legend(reverse = T)) + - scale_fill_manual(name = "Trial Type", - labels = c("Unambiguous", "Ambiguous"), - values = c(l.color$unambiguous, l.color$ambiguous), - guide = guide_legend(reverse = T)) + - theme(plot.title = element_text(hjust = 0.5, - vjust = 2, - size = 18, - face = "bold"), - axis.title.y = element_markdown(color = l.color$disagreement), - legend.position = "right") - -ggsave(filename = "../figures/plots/exp2_prediction.pdf", - width = 8, - height = 4)
+ggplot() + + geom_hline(yintercept = 0.5, + linetype = 2, + alpha = 0.1) + + geom_point(data = df.plot.individual, + mapping = aes(x = age_continuous, + y = pct_dis, + color = condition_amb), + alpha = 0.5, + show.legend = T, + shape = 16, + size = 1.5) + + geom_linerange(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + ymin = low, + ymax = high), + color = "gray40") + + geom_point(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + fill = condition_amb), + shape = 21, + size = 3, + show.legend = T) + + geom_text(data = df.plot.text, + mapping = aes(x = age_group + 0.5, + y = 1.05, + label = n), + hjust = 0.5) + + scale_y_continuous(labels = percent) + + labs(x = "Age (in years)", + y = "% Predict Disagreement", + title = "Experiment 2: Prediction") + + coord_cartesian(xlim = c(7, 12), + ylim = c(0, 1), + clip = "off") + + scale_color_manual(name = "Trial Type", + labels = c("Unambiguous", "Ambiguous"), + values = c(l.color$unambiguous, l.color$ambiguous), + guide = guide_legend(reverse = T)) + + scale_fill_manual(name = "Trial Type", + labels = c("Unambiguous", "Ambiguous"), + values = c(l.color$unambiguous, l.color$ambiguous), + guide = guide_legend(reverse = T)) + + theme(plot.title = element_text(hjust = 0.5, + vjust = 2, + size = 18, + face = "bold"), + axis.title.y = element_markdown(color = l.color$disagreement), + legend.position = "right") + +ggsave(filename = "../figures/plots/exp2_prediction.pdf", + width = 8, + height = 4)

@@ -5217,120 +5225,121 @@

4.3.2 Inference

df.age.means = df.plot.individual %>% distinct(participant, age_continuous) %>% - mutate(age_continuous = ifelse(age_continuous == 12, 11.99, age_continuous), - age_group = floor(age_continuous)) %>% - group_by(age_group) %>% - summarize(age_mean = mean(age_continuous), - n = str_c("n = ", n())) %>% - ungroup() - -df.plot.means = df.exp2.infer %>% - mutate(condition_disagree = as.character(condition_disagree)) %>% - group_by(participant, age_group, condition_disagree) %>% - summarize(pct_amb = sum(ambiguous_yes)/n()) %>% - group_by(age_group, condition_disagree) %>% - reframe(response = smean.cl.boot(pct_amb), - name = c("mean", "low", "high")) %>% - left_join(df.age.means, - by = "age_group") %>% - pivot_wider(names_from = name, - values_from = response) %>% - mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) - -df.plot.text = df.plot.means %>% - distinct(age_group, n) - -df.model = df.model.posterior %>% - mutate(name = "posterior") %>% - select(-c(utterance, probability, prior)) %>% - bind_rows(df.model.softmax %>% - mutate(name = "softmax")) %>% - bind_rows(df.model.softmax.linear %>% - mutate(name = "softmax increase")) %>% - mutate(condition_disagree = factor(condition, - levels = c("Agreement Trials", - "Disagreement Trials"), - labels = c(0, - 1))) %>% - left_join(df.age.means %>% - select(-n), - by = "age_group") %>% - mutate(age_mean = ifelse(condition_disagree == 0, - age_mean - 0.05, - age_mean + 0.05)) - -ggplot() + - geom_hline(yintercept = 0.5, - linetype = 2, - alpha = 0.1) + - geom_point(data = df.plot.individual, - mapping = aes(x = age_continuous, - y = pct_amb, - color = condition_disagree), - alpha = 0.5, - show.legend = T, - shape = 16, - size = 1.5) + - geom_linerange(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - ymin = low, - ymax = high), - color = "gray40", - show.legend = F) + - geom_point(data = df.plot.means, - mapping = aes(x = age_mean, - y = mean, - fill = condition_disagree), - shape = 21, - size = 3, - show.legend = F) + - geom_point(data = df.model, - mapping = aes(x = age_mean, - y = posterior, - shape = name, - fill = condition_disagree), - size = 1.5, - alpha = 0.5, - show.legend = T) + - geom_text(data = df.plot.text, - mapping = aes(x = age_group + 0.5, - y = 1.05, - label = n), - hjust = 0.5) + - scale_y_continuous(labels = percent) + - labs(x = "Age (in years)", - y = "% Infer Ambiguous Utterance", - title = "Experiment 2: Inference") + - coord_cartesian(xlim = c(7, 12), - ylim = c(0, 1), - clip = "off") + - scale_color_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement)) + - scale_fill_manual(name = "Trial Type", - labels = c("Agreement", "Disagreement"), - values = c(l.color$agreement, l.color$disagreement)) + - scale_shape_manual(name = "Model", - labels = c("posterior", "softmax", "softmax increase"), - values = c(21, 22, 23)) + - theme(plot.title = element_text(hjust = 0.5, - vjust = 2, - size = 18, - face = "bold"), - axis.title.y = element_markdown(color = l.color$ambiguous), - legend.position = "right") + - guides(fill = guide_legend(override.aes = list(shape = 21, - size = 3), + mutate(age_group = floor(age_continuous)) %>% + group_by(age_group) %>% + summarize(age_mean = mean(age_continuous), + n = str_c("n = ", n())) %>% + ungroup() + +df.plot.means = df.exp2.infer %>% + mutate(condition_disagree = as.character(condition_disagree)) %>% + group_by(participant, age_group, condition_disagree) %>% + summarize(pct_amb = sum(ambiguous_yes)/n()) %>% + group_by(age_group, condition_disagree) %>% + reframe(response = smean.cl.boot(pct_amb), + name = c("mean", "low", "high")) %>% + left_join(df.age.means, + by = "age_group") %>% + pivot_wider(names_from = name, + values_from = response) %>% + mutate(age_mean = ifelse(condition_disagree == 0, age_mean - 0.05, age_mean + 0.05)) + +df.plot.text = df.plot.means %>% + distinct(age_group, n) + +df.model = df.model.posterior %>% + mutate(name = "posterior") %>% + select(-c(utterance, probability, prior)) %>% + bind_rows(df.model.softmax %>% + mutate(name = "softmax")) %>% + bind_rows(df.model.softmax.linear %>% + mutate(name = "softmax increase")) %>% + mutate(condition_disagree = factor(condition, + levels = c("Agreement Trials", + "Disagreement Trials"), + labels = c(0, + 1))) %>% + left_join(df.age.means %>% + select(-n), + by = "age_group") %>% + mutate(age_mean = ifelse(condition_disagree == 0, + age_mean - 0.05, + age_mean + 0.05)) + +ggplot() + + geom_hline(yintercept = 0.5, + linetype = 2, + alpha = 0.1) + + geom_point(data = df.plot.individual, + mapping = aes(x = age_continuous, + y = pct_amb, + color = condition_disagree), + alpha = 0.5, + show.legend = T, + shape = 16, + size = 1.5) + + geom_linerange(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + ymin = low, + ymax = high), + color = "gray40", + show.legend = F) + + geom_point(data = df.plot.means, + mapping = aes(x = age_mean, + y = mean, + fill = condition_disagree), + shape = 21, + size = 3, + show.legend = F) + + geom_point(data = df.model, + mapping = aes(x = age_mean, + y = posterior, + shape = name, + fill = condition_disagree), + size = 1.5, + alpha = 0.5, + show.legend = T) + + geom_text(data = df.plot.text, + mapping = aes(x = age_group + 0.5, + y = 1.05, + label = n), + hjust = 0.5) + + scale_y_continuous(labels = percent) + + labs(x = "Age (in years)", + y = "% Infer Ambiguous Utterance", + title = "Experiment 2: Inference") + + coord_cartesian(xlim = c(7, 12), + ylim = c(0, 1), + clip = "off") + + scale_color_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement)) + + scale_fill_manual(name = "Trial Type", + labels = c("Agreement", "Disagreement"), + values = c(l.color$agreement, l.color$disagreement)) + + scale_shape_manual(name = "Model", + labels = c("posterior", "softmax", "softmax increase"), + values = c(21, 22, 23)) + + theme(plot.title = element_text(hjust = 0.5, + vjust = 2, + size = 18, + face = "bold"), + axis.title.y = element_markdown(color = l.color$ambiguous), + legend.position = "right") + + guides(fill = guide_legend(override.aes = list(shape = 21, + size = 3, + alpha = 1), reverse = T, order = 1), - shape = guide_legend(override.aes = list(fill = "white", alpha = 1)), - color = "none") - -ggsave(filename = "../figures/plots/exp2_inference.pdf", - width = 8, - height = 4)
-

+ shape = guide_legend(override.aes = list(fill = "white", + alpha = 1)), + color = "none") + +ggsave(filename = "../figures/plots/exp2_inference.pdf", + width = 8, + height = 4) +

@@ -5343,7 +5352,7 @@

5 Session info

sessionInfo()
R version 4.3.2 (2023-10-31)
 Platform: aarch64-apple-darwin20 (64-bit)
-Running under: macOS Sonoma 14.1.2
+Running under: macOS Sonoma 14.4.1
 
 Matrix products: default
 BLAS:   /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib 
diff --git a/figures/plots/exp1_inference.pdf b/figures/plots/exp1_inference.pdf
index 86c25a6..ebb343f 100644
Binary files a/figures/plots/exp1_inference.pdf and b/figures/plots/exp1_inference.pdf differ
diff --git a/figures/plots/exp2_inference.pdf b/figures/plots/exp2_inference.pdf
index 9ba5e6a..51b4030 100644
Binary files a/figures/plots/exp2_inference.pdf and b/figures/plots/exp2_inference.pdf differ
diff --git a/figures/plots/exp2_prediction.pdf b/figures/plots/exp2_prediction.pdf
index f8a87a1..c050df8 100644
Binary files a/figures/plots/exp2_prediction.pdf and b/figures/plots/exp2_prediction.pdf differ
-2.36 +2.51 2.55 -0.93 +0.98 --2.63 +-2.49 -7.34 +7.52
--5.81 +-6.01 -2.73 +2.74 --2.13 +-2.20 --11.16 +-11.38 --0.47 +-0.65
--0.46 +-0.47 0.28 --1.66 +-1.71 --1.00 +-1.02 -0.08 +0.07
-0.83 +0.85 0.30 -2.77 +2.83 -0.24 +0.26 -1.41 +1.43