diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..dde3895 --- /dev/null +++ b/.gitignore @@ -0,0 +1,2 @@ +.DS_Store +*.pyc diff --git a/README.md b/README.md new file mode 100644 index 0000000..68c4a32 --- /dev/null +++ b/README.md @@ -0,0 +1,108 @@ +# Explanations Communicate Optimal Interventions + + +This repository contains the experiment, data, analyses and figured for the CogSci 2024 paper "Do as I explain" Explanations communicate optimal interventions" by Lara Kirfel, Jacqueline Harding, Jeong Shin, Cindy Wu, Thomas Icard and Tobias Gerstenberg. + +## Abstract + +People often select only a few events when explaining what happened. What drives people's explanation selection? Prior research argued that people's explanation choices are affected by event normality and causal structure. Here, we propose a new model of these existing findings and test its predictions in a novel experiment. The model predicts that speakers value accuracy and relevance. They choose explanations that are true, and that communicate useful information to the listener. We test the model's predictions empirically by manipulating what goals a listener has and what actions they can take. Across twelve experimental conditions, we find that our model accurately predicts that people like to choose explanations that communicate optimal interventions. + +## Pre-registrations + +The pre-registrations for all experiments may be accessed via the Open Science Framework [here](https://osf.io/fpyst/). + +Here are separate links for each experiment: + - [Condition "Hard Intervention / Negative Outcome"](https://osf.io/8k9sy) + - [Condition "Hard Intervention / Positive Outcome"](https://osf.io/7qzu9) + - [Condition "Soft Intervention / Negative Outcome"](https://osf.io/aw286) + - [Condition "Soft Intervention / Positive Outcome"](https://osf.io/dmgcw) + - [Condition "Fixed Intervention / Negative Outcome"](https://osf.io/49bfq) + - [Condition "Fixed Intervention / Positive Outcome"](https://osf.io/rbu7y) + +## Repository structure + +``` +. +├── code +│   └── R +├── data +├── docs +│   ├── analyses +│   ├── experiment_1 +│   ├── experiment_2 +│   └── experiment_3 +├── figures +│   └── plots +└── writeup + └── cogsci +``` + +### code + +This folder contains two types of R scripts. + +- The model predictions can be seen [here](https://cicl-stanford.github.io/explanation_intervention/analyses/model/index.html) +- The analyses and plots can be seen [here](https://cicl-stanford.github.io/explanation_intervention/analyses/experiments/index.html) + +- R/optimal_intervention_model: + - R/optimal_intervention.rmd creates the model predictions for the intervention model, the truth model and a combined model. + - explanation_predictions_truth_only.csv, for example, contains the predictions for a "Truth Only" model. +- R/experiments: This folder contains all raw data from all experimental conditions. + - [...]study_X-responses.csv contains the response data (i.e., intervention and explanation selection). + - [...]study_X-participants.csv contains demographic information and post-experiment feedback/comments from participants. + - Experiment.rmd reads in the response data from each experimental condition (e.g., fixed intervention / negative), calculates average responses and outputs these in a new data file (e.g., fixedint_negative.csv). + +### docs + +Contains all the experiment code. You can preview the experiments below: + +- [Condition "Hard Intervention / Positive Outcome"](https://cicl-stanford.github.io/explanation_intervention/experiment_1/index.html?condition=1) + +- [Condition "Hard Intervention / Negative Outcome"](https://cicl-stanford.github.io/explanation_intervention/experiment_1/index.html?condition=3) + +- [Condition "Soft Intervention / Positive Outcome"](https://cicl-stanford.github.io/explanation_intervention/experiment_2/index.html?condition=1) + +- [Condition "Soft Intervention / Negative Outcome"](https://cicl-stanford.github.io/explanation_intervention/experiment_2/index.html?condition=3) + +- [Condition "Fixed Intervention / Positive Outcome"](https://cicl-stanford.github.io/explanation_intervention/experiment_3/index.html?condition=1) + +- [Condition "Fixed Intervention / Negative Outcome"](https://cicl-stanford.github.io/explanation_intervention/experiment_3/index.html?condition=3) + + +### data + +Contains anonymized combined data for all experimental conditions (hard / soft / fixed intervention x positive / negative outcome) (for raw data and how these were computed, see code/R/). + +For example, fixedint_negative.csv contains the average percentage of choice selection (abnormal switch, normal switch, no preference) in the intervention and explanation task. + +data_int.csv combines all four dataframes (hardint_pos, hardint_neg, softint_pos, softint_neg, fixedint_pos, fixedint_neg) + + +### figures + +Contains all the figures from the paper (generated using the script in code/R/experiments). + +### writeup + +Contains a pdf of the CogSci 2024 paper. + +## CRediT + +Please see [here](https://www.elsevier.com/researcher/author/policies-and-guidelines/credit-author-statement) for definitions of the different terms. + +| | Lara | Jacqueline | Jeong | Cindy | Thomas | Tobias | +|----------------------------|------|------------|-------|-------|--------|--------| +| Conceptualization | X | | | | X | X | +| Methodology | X | X | X | | | X | +| Software | X | X | X | X | | X | +| Validation | X | | | | | X | +| Formal analysis | X | X | | | | X | +| Investigation | X | | X | | | | +| Resources | | | | | | | +| Data Curation | X | | | | | X | +| Writing - Original Draft | X | X | | | | | +| Writing - Review & Editing | X | X | X | X | X | X | +| Visualization | | | | | | X | +| Supervision | | | | | X | X | +| Project administration | | | | | | X | +| Funding acquisition | | | | | | X | \ No newline at end of file diff --git a/code/R/experiments-readme.md b/code/R/experiments-readme.md new file mode 100644 index 0000000..fa77071 --- /dev/null +++ b/code/R/experiments-readme.md @@ -0,0 +1,51 @@ +# Experiments readme + +Information about each of the experiment that is run as part of this project. + +Experiment 1: Missing --- was it turned into Experiment 1b? + +Experiment 1b: "Hard Interventions" +"The Influence of Outcome Valence on Explanation Selection in Positive / Negative Outcome Cases" +People select a hard intervention that turns the switch ON or OFF in Conjunctive and Disjunctive Structures with positive and negative outcomes. +Condition 1: Con/Pos , Dis/Pos +Condition 2: Dis/Pos , Con/Pos +Condition 3: Con/Neg , Dis/Neg +Condition 4: Dis/Neg , Con/Neg + +Positive Condition pre-reg: https://osf.io/7qzu9 +Negative Condition pre-reg: https://osf.io/8k9sy + +Experiment 2: "Probability Estimation" +"Estimating outcome probability in causal structures with positive and negative outcomes" +One Condition +Pre-reg: https://osf.io/dmgcw + +Experiment 3: "Soft interventions" +"The Influence of Normality on Explanation Selection in Soft Intervention Cases for Positive and Negative Outcomes" +People select a soft intervention of increasing or decreasing the probablity by 20%. +Condition 1: Con/Pos , Dis/Pos +Condition 2: Dis/Pos , Con/Pos +Condition 3: Con/Neg , Dis/Neg +Condition 4: Dis/Neg , Con/Neg + + +Positive Condition pre-reg: https://osf.io/dmgcw +Negative Condition pre-reg: https://osf.io/aw286 + +Experiment 4: Fixed Interventions +"The Influence of Normality on Explanation Selection in Fixed Intervention Cases for Positive and Negative Outcomes" +People select a fixed intervention of increasing or decreasing the probablity to 90%/10%, irrespective of the probability + +Condition 1: Con/Pos , Dis/Pos +Condition 2: Dis/Pos , Con/Pos +Condition 3: Con/Neg , Dis/Neg +Condition 4: Dis/Neg , Con/Neg + +Experiment 5: Cost of Interventions, with Intervention Task +"The Influence of Cost of Interventions on Explanation Selection" +People select an intervention that is either cheap or expensive. Includes Intervention Task + +Condition 1: Con/Pos +Condition 2: Dis/Pos + + diff --git a/code/R/experiments/Experiment.Rmd b/code/R/experiments/Experiment.Rmd new file mode 100644 index 0000000..cda070b --- /dev/null +++ b/code/R/experiments/Experiment.Rmd @@ -0,0 +1,1083 @@ +--- +title: "Explanation and Intervention Data" +author: "Tobias Gerstenberg & Lara Kirfel" +date: "`r format(Sys.Date(), '%B %d, %Y')`" +bibliography: grateful-refs.bib +output: + bookdown::html_document2: + toc: true + toc_depth: 4 + toc_float: true + theme: cosmo + highlight: tango +--- + +```{r, message=FALSE} +library("knitr") +library("modelr") # for bootstrapping +library("patchwork") # making figure panels +library("tidyverse") # for data wrangling, visualization, etc. +``` + +# Set options + +```{r} +theme_set(theme_classic() + + theme(text = element_text(size = 24))) + +opts_chunk$set(comment = "", + fig.show = "hold") + +# suppress grouping warning +options(dplyr.summarise.inform = F) +``` + +# Condition 1: Hard Intervention: Positive Outcome +## Read in Data +```{r} + +#### Read in Data +df.responses = read.csv(file = "explanation_selection_positive_outcome_study_2-responses.csv", stringsAsFactors = F, sep = ",") %>% + select(-error) + + +df.participants <- read.csv(file = "explanation_selection_positive_outcome_study_2-participants.csv", stringsAsFactors = F, sep = ",") %>% + select(-c(proliferate.condition, error)) + + +df.data1 <- merge(df.responses, df.participants, by="workerid") +``` + +## Wrangle Data + +```{r} +df.exp1 <- df.data1 %>% + gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% + mutate(CausalStructure = + case_when( + str_detect(proliferate.condition, "Conpos_") & str_detect(index, "response_1") ~ "Conjunctive", + str_detect(proliferate.condition, "Conpos_") & str_detect(index, "response_2") ~ "Disjunctive", + str_detect(proliferate.condition, "Dispos_") & str_detect(index, "response_1") ~ "Disjunctive", + str_detect(proliferate.condition, "Dispos_") & str_detect(index, "response_2") ~ "Conjunctive"))%>% + mutate(Order = + case_when( + str_detect(proliferate.condition, "Conpos_") ~ "conjunctive first", + str_detect(proliferate.condition, "Dispos_") ~ "disjunctive first"))%>% + mutate(ResponseType = + case_when( + str_detect(index, "explanation") ~ "explanation", + str_detect(index, "intervention") ~ "intervention"))%>% + select(-index) %>% + spread(ResponseType, response) %>% + mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>% + mutate(explanation = recode (explanation, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(intervention = recode (intervention, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(abnormal_explanation = + case_when( + explanation == "abnormal" ~ "abnormal", + explanation != "abnormal"~ "other")) %>% + mutate(normal_explanation = + case_when( + explanation == "normal" ~ "normal", + explanation != "normal"~ "other")) %>% + mutate(nopreference_explanation = + case_when( + explanation == "no preference" ~ "no preference", + explanation != "no preference"~ "other")) %>% + mutate(abnormal_intervention = + case_when( + intervention== "abnormal" ~ "abnormal", + intervention!= "abnormal"~ "other")) %>% + mutate(normal_intervention = + case_when( + intervention == "normal" ~ "normal", + intervention != "normal"~ "other")) %>% + mutate(nopreference_intervention = + case_when( + intervention== "no preference" ~ "no preference", + intervention!= "no preference"~ "other")) %>% + mutate(intervention = "hard") %>% + mutate(outcome = "positive") + + + + +``` + +## Prepate Dataset + +```{r} +df.exp1_summary <- df.exp1 %>% + group_by(CausalStructure) %>% + summarise( + abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100, + normal_explanation_percentage = mean(normal_explanation == "normal") * 100, + nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100, + + abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100, + normal_intervention_percentage = mean(normal_intervention == "normal") * 100, + nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100 + ) %>% + mutate(Outcome = "positive") %>% + mutate(Experiment = "hardint") + +write_csv(df.exp1_summary, "hardint_pos.csv") + +``` + +# Condition 2: Hard Intervention: Negative Outcome + +## Read in Data + +```{r} + +#### Read in Data +df.responses = read.csv(file = "explanation_selection_negative_outcome-responses.csv", stringsAsFactors = F, sep = ",") %>% + select(-error) + + +df.participants <- read.csv(file = "explanation_selection_negative_outcome-participants.csv", stringsAsFactors = F, sep = ",") %>% + select(-c(proliferate.condition, error)) + + +df.data2 <- merge(df.responses, df.participants, by="workerid") +``` + +## Wrangle Data + +```{r} +df.exp2 <- df.data2 %>% + gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% + mutate(CausalStructure = + case_when( + str_detect(proliferate.condition, "Conneg_") & str_detect(index, "response_1") ~ "Conjunctive", + str_detect(proliferate.condition, "Conneg_") & str_detect(index, "response_2") ~ "Disjunctive", + str_detect(proliferate.condition, "Disneg_") & str_detect(index, "response_1") ~ "Disjunctive", + str_detect(proliferate.condition, "Disneg_") & str_detect(index, "response_2") ~ "Conjunctive"))%>% + mutate(Order = + case_when( + str_detect(proliferate.condition, "Conneg_") ~ "conjunctive first", + str_detect(proliferate.condition, "Disneg_") ~ "disjunctive first"))%>% + mutate(ResponseType = + case_when( + str_detect(index, "explanation") ~ "explanation", + str_detect(index, "intervention") ~ "intervention"))%>% + select(-index) %>% + spread(ResponseType, response) %>% + mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>% + mutate(explanation = recode (explanation, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(intervention = recode (intervention, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(abnormal_explanation = + case_when( + explanation == "abnormal" ~ "abnormal", + explanation != "abnormal"~ "other")) %>% + mutate(normal_explanation = + case_when( + explanation == "normal" ~ "normal", + explanation != "normal"~ "other")) %>% + mutate(nopreference_explanation = + case_when( + explanation == "no preference" ~ "no preference", + explanation != "no preference"~ "other")) %>% + mutate(abnormal_intervention = + case_when( + intervention== "abnormal" ~ "abnormal", + intervention!= "abnormal"~ "other")) %>% + mutate(normal_intervention = + case_when( + intervention == "normal" ~ "normal", + intervention != "normal"~ "other")) %>% + mutate(nopreference_intervention = + case_when( + intervention== "no preference" ~ "no preference", + intervention!= "no preference"~ "other")) %>% + mutate(intervention = "hard") %>% + mutate(outcome = "negative") + +``` + +## Prepare Dataset + +```{r} +df.exp2_summary <- df.exp2 %>% + group_by(CausalStructure) %>% + summarise( + abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100, + normal_explanation_percentage = mean(normal_explanation == "normal") * 100, + nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100, + + abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100, + normal_intervention_percentage = mean(normal_intervention == "normal") * 100, + nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100 + ) %>% + mutate(Outcome = "negative") %>% + mutate(Experiment = "hardint") + +write_csv(df.exp2_summary, "hardint_neg.csv") + +``` + +# Condition 3: Soft Intervention: Positive Outcome + +## Read in Data + +```{r} +###Experiment 4 +#### Read in Data + +df.responses = read.csv(file = "pressbutton_positivecondition-responses.csv", stringsAsFactors = F, sep = ",") %>% + select(-error) + + +df.participants <- read.csv(file = "pressbutton_positivecondition-participants.csv", stringsAsFactors = F, sep = ",") %>% + select(-c(proliferate.condition, error)) + + +df.data3 <- merge(df.responses, df.participants, by="workerid") +``` + +## Wrangle Data + +```{r} +df.exp3 <- df.data3 %>% + gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% + mutate(CausalStructure = + case_when( + str_detect(proliferate.condition, "Condition_1") & str_detect(index, "response_1") ~ "Conjunctive", + str_detect(proliferate.condition, "Condition_1") & str_detect(index, "response_2") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition_2") & str_detect(index, "response_1") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition_2") & str_detect(index, "response_2") ~ "Conjunctive"))%>% + mutate(Order = + case_when( + str_detect(proliferate.condition, "Condition_1") ~ "conjunctive first", + str_detect(proliferate.condition, "Condition_2") ~ "disjunctive first"))%>% + mutate(ResponseType = + case_when( + str_detect(index, "explanation") ~ "explanation", + str_detect(index, "intervention") ~ "intervention"))%>% + select(-index) %>% + spread(ResponseType, response) %>% + mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>% + mutate(explanation = recode (explanation, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(intervention = recode (intervention, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(abnormal_explanation = + case_when( + explanation == "abnormal" ~ "abnormal", + explanation != "abnormal"~ "other")) %>% + mutate(normal_explanation = + case_when( + explanation == "normal" ~ "normal", + explanation != "normal"~ "other")) %>% + mutate(nopreference_explanation = + case_when( + explanation == "no preference" ~ "no preference", + explanation != "no preference"~ "other")) %>% + mutate(abnormal_intervention = + case_when( + intervention== "abnormal" ~ "abnormal", + intervention!= "abnormal"~ "other")) %>% + mutate(normal_intervention = + case_when( + intervention == "normal" ~ "normal", + intervention != "normal"~ "other")) %>% + mutate(nopreference_intervention = + case_when( + intervention== "no preference" ~ "no preference", + intervention!= "no preference"~ "other"))%>% + mutate(intervention = "soft") %>% + mutate(outcome = "positive") + + +``` + +## Prepare Dataset + +```{r} +df.exp3_summary <- df.exp3 %>% + group_by(CausalStructure) %>% + summarise( + abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100, + normal_explanation_percentage = mean(normal_explanation == "normal") * 100, + nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100, + + abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100, + normal_intervention_percentage = mean(normal_intervention == "normal") * 100, + nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100 + ) %>% + mutate(Outcome = "positive") %>% + mutate(Experiment = "softint") + +write_csv(df.exp3_summary, "softint_pos.csv") + +``` + +# Condition 4: Soft Intervention: Negative Outcome +## Read in Data + +```{r} +###Experiment 4 +#### Read in Data + +df.responses = read.csv(file = "pressbutton_negativecondition-responses.csv", stringsAsFactors = F, sep = ",") %>% + select(-error) + + +df.participants <- read.csv(file = "pressbutton_negativecondition-participants.csv", stringsAsFactors = F, sep = ",") %>% + select(-c(proliferate.condition, error)) + + +df.data4 <- merge(df.responses, df.participants, by="workerid") %>% + filter(!row_number() %in% c(71, 72)) +``` + +## Wrangle Data + +```{r} +df.exp4 <- df.data4 %>% + gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% + mutate(CausalStructure = + case_when( + str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_1") ~ "Conjunctive", + str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_2") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_1") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_2") ~ "Conjunctive"))%>% + mutate(Order = + case_when( + str_detect(proliferate.condition, "Condition_3") ~ "conjunctive first", + str_detect(proliferate.condition, "Condition_4") ~ "disjunctive first"))%>% + mutate(ResponseType = + case_when( + str_detect(index, "explanation") ~ "explanation", + str_detect(index, "intervention") ~ "intervention"))%>% + select(-index) %>% + spread(ResponseType, response) %>% + mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>% + mutate(explanation = recode (explanation, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(intervention = recode (intervention, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(abnormal_explanation = + case_when( + explanation == "abnormal" ~ "abnormal", + explanation != "abnormal"~ "other")) %>% + mutate(normal_explanation = + case_when( + explanation == "normal" ~ "normal", + explanation != "normal"~ "other")) %>% + mutate(nopreference_explanation = + case_when( + explanation == "no preference" ~ "no preference", + explanation != "no preference"~ "other")) %>% + mutate(abnormal_intervention = + case_when( + intervention== "abnormal" ~ "abnormal", + intervention!= "abnormal"~ "other")) %>% + mutate(normal_intervention = + case_when( + intervention == "normal" ~ "normal", + intervention != "normal"~ "other")) %>% + mutate(nopreference_intervention = + case_when( + intervention== "no preference" ~ "no preference", + intervention!= "no preference"~ "other")) %>% + mutate(intervention = "soft") %>% + mutate(outcome = "negative") + + +``` + +## Prepare Dataset + +```{r} +df.exp4_summary <- df.exp4 %>% + group_by(CausalStructure) %>% + summarise( + abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100, + normal_explanation_percentage = mean(normal_explanation == "normal") * 100, + nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100, + + abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100, + normal_intervention_percentage = mean(normal_intervention == "normal") * 100, + nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100 + ) %>% + mutate(Outcome = "negative") %>% + mutate(Experiment = "softint") + +write_csv(df.exp4_summary, "softint_neg.csv") + +``` + +# Condition 5: Fixed Intervention: Positive Outcome +## Read in Data + +```{r} +###Experiment 5 +#### Read in Data + +df.responses = read.csv(file = "fixedintervention_positive-responses.csv", stringsAsFactors = F, sep = ",") %>% + select(-error) + + +df.participants <- read.csv(file = "fixedintervention_positive-participants.csv", stringsAsFactors = F, sep = ",") %>% + select(-c(proliferate.condition, error)) + + +df.data5 <- merge(df.responses, df.participants, by="workerid") +``` + +## Wrangle Data + +```{r} +df.exp5 <- df.data5 %>% + gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% + mutate(CausalStructure = + case_when( + str_detect(proliferate.condition, "Condition1") & str_detect(index, "response_1") ~ "Conjunctive", + str_detect(proliferate.condition, "Condition1") & str_detect(index, "response_2") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition2") & str_detect(index, "response_1") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition2") & str_detect(index, "response_2") ~ "Conjunctive"))%>% + mutate(Order = + case_when( + str_detect(proliferate.condition, "Condition1") ~ "conjunctive first", + str_detect(proliferate.condition, "Condition2") ~ "disjunctive first"))%>% + mutate(ResponseType = + case_when( + str_detect(index, "explanation") ~ "explanation", + str_detect(index, "intervention") ~ "intervention"))%>% + select(-index) %>% + spread(ResponseType, response) %>% + mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>% + mutate(explanation = recode (explanation, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(intervention = recode (intervention, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(abnormal_explanation = + case_when( + explanation == "abnormal" ~ "abnormal", + explanation != "abnormal"~ "other")) %>% + mutate(normal_explanation = + case_when( + explanation == "normal" ~ "normal", + explanation != "normal"~ "other")) %>% + mutate(nopreference_explanation = + case_when( + explanation == "no preference" ~ "no preference", + explanation != "no preference"~ "other")) %>% + mutate(abnormal_intervention = + case_when( + intervention== "abnormal" ~ "abnormal", + intervention!= "abnormal"~ "other")) %>% + mutate(normal_intervention = + case_when( + intervention == "normal" ~ "normal", + intervention != "normal"~ "other")) %>% + mutate(nopreference_intervention = + case_when( + intervention== "no preference" ~ "no preference", + intervention!= "no preference"~ "other")) %>% + mutate(intervention = "fixed") %>% + mutate(outcome = "positive") + +``` + +## Prepare Dataset + +```{r} +df.exp5_summary <- df.exp5 %>% + group_by(CausalStructure) %>% + summarise( + abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100, + normal_explanation_percentage = mean(normal_explanation == "normal") * 100, + nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100, + + abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100, + normal_intervention_percentage = mean(normal_intervention == "normal") * 100, + nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100 + ) %>% + mutate(Outcome = "negative") %>% + mutate(Experiment = "fixedint") + +write_csv(df.exp5_summary, "fixedint_pos.csv") + +``` + +# Condition 6: Fixed Intervention: Negative Outcome + + +## Read in Data + +```{r} +###Experiment 6 +#### Read in Data + +df.responses = read.csv(file = "fixedintervention_negative-responses.csv", stringsAsFactors = F, sep = ",") %>% + select(-error) + + +df.participants <- read.csv(file = "fixedintervention_negative-participants.csv", stringsAsFactors = F, sep = ",") %>% + select(-c(proliferate.condition, error)) + + +df.data6 <- merge(df.responses, df.participants, by="workerid") +``` + +## Wrangle Data + +```{r} +df.exp6 <- df.data6 %>% + gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% + mutate(CausalStructure = + case_when( + str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_1") ~ "Conjunctive", + str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_2") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_1") ~ "Disjunctive", + str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_2") ~ "Conjunctive"))%>% + mutate(Order = + case_when( + str_detect(proliferate.condition, "Condition_3") ~ "conjunctive first", + str_detect(proliferate.condition, "Condition_4") ~ "disjunctive first"))%>% + mutate(ResponseType = + case_when( + str_detect(index, "explanation") ~ "explanation", + str_detect(index, "intervention") ~ "intervention"))%>% + select(-index) %>% + spread(ResponseType, response) %>% + mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>% + mutate(explanation = recode (explanation, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(intervention = recode (intervention, + "orange" = "abnormal", + "blue" = "normal" )) %>% + mutate(abnormal_explanation = + case_when( + explanation == "abnormal" ~ "abnormal", + explanation != "abnormal"~ "other")) %>% + mutate(normal_explanation = + case_when( + explanation == "normal" ~ "normal", + explanation != "normal"~ "other")) %>% + mutate(nopreference_explanation = + case_when( + explanation == "no preference" ~ "no preference", + explanation != "no preference"~ "other")) %>% + mutate(abnormal_intervention = + case_when( + intervention== "abnormal" ~ "abnormal", + intervention!= "abnormal"~ "other")) %>% + mutate(normal_intervention = + case_when( + intervention == "normal" ~ "normal", + intervention != "normal"~ "other")) %>% + mutate(nopreference_intervention = + case_when( + intervention== "no preference" ~ "no preference", + intervention!= "no preference"~ "other")) %>% + mutate(intervention = "fixed") %>% + mutate(outcome = "negative") + + +``` + +## Prepare Dataset + +```{r} +df.exp6_summary <- df.exp6 %>% + group_by(CausalStructure) %>% + summarise( + abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100, + normal_explanation_percentage = mean(normal_explanation == "normal") * 100, + nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100, + + abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100, + normal_intervention_percentage = mean(normal_intervention == "normal") * 100, + nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100 + ) %>% + mutate(Outcome = "negative") %>% + mutate(Experiment = "fixedint") + +write_csv(df.exp6_summary, "fixedint_neg.csv") + +``` + +# Create Dataset including raw data from all conditions + +```{r} +df.exp_all <- rbind(df.exp1, df.exp2, df.exp3, df.exp4, df.exp5, df.exp6) + +``` + +# Bootstrapping + +## DATA + +### Data frame + +```{r} +df.boot = df.exp_all %>% + select(workerid, + structure = CausalStructure, + outcome, + action = intervention, + explanation, + abnormal_intervention, + normal_intervention, + nopreference_intervention) %>% + mutate(structure = tolower(structure), + intervention = abnormal_intervention, + intervention = ifelse(normal_intervention != "other", normal_intervention, intervention), + intervention = ifelse(nopreference_intervention != "other", nopreference_intervention, intervention), + intervention = factor(intervention, + levels = c("abnormal", "no preference", "normal")), + explanation = factor(explanation, + levels = c("abnormal", "no preference", "normal"))) %>% + select(-contains("_")) + +``` + +### Percentages + +```{r} +df.percentage = df.boot %>% + count(structure, outcome, action, choice = intervention, + name = "intervention_n") %>% + left_join(df.boot %>% + count(structure, outcome, action, choice = explanation, + name = "explanation_n"), + by = c("structure", "outcome", "action", "choice")) %>% + group_by(structure, outcome, action) %>% + mutate(intervention_p = intervention_n/sum(intervention_n), + explanation_p = explanation_n/sum(explanation_n)) %>% + ungroup() +``` + +### Bootstrapped confidence intervals + +```{r} +set.seed(1) + +# percentages with bootstrapped confidence intervals +df.confidence = df.boot %>% + group_by(structure, outcome, action) %>% + nest() %>% + mutate(bootstraps = map(.x = data, + .f = ~ bootstrap(.x, n = 1000))) %>% + unnest(bootstraps) %>% + mutate(intervention = map(.x = strap, + .f = ~ .x %>% + as_tibble() %>% + count(intervention, + name = "intervention_n", + .drop = F) %>% + mutate(intervention_p = intervention_n/sum(intervention_n))), + explanation = map(.x = strap, + .f = ~ .x %>% + as_tibble() %>% + count(explanation, + name = "explanation_n", + .drop = F) %>% + mutate(explanation_p = explanation_n/sum(explanation_n)))) %>% + select(structure, outcome, action, intervention, explanation) %>% + unnest(c(intervention, explanation)) %>% + select(everything(), choice = intervention, -explanation) %>% + group_by(structure, outcome, action, choice) %>% + summarize(intervention_low = as.numeric(quantile(intervention_p, probs = 0.025)), + intervention_high = as.numeric(quantile(intervention_p, probs = 0.975)), + explanation_low = as.numeric(quantile(explanation_p, probs = 0.025)), + explanation_high = as.numeric(quantile(explanation_p, probs = 0.975))) %>% + ungroup() +``` + +### Combined data frame + +```{r} +df.combined = df.confidence %>% + left_join(df.percentage %>% + select(-(contains("_n"))), + by = c("structure", "outcome", "action", "choice")) %>% + select(structure, outcome, action, choice, contains("intervention"), + contains("explanation")) +``` + +## PLOTS + +### Read in model predictions + +```{r, message=FALSE, warning=FALSE} +df.prediction_intervention = read_csv("intervention_predictions.csv") +df.prediction_explanation = read_csv("explanation_predictions.csv") %>% + select(-truth) + +df.optimal_intervention_model = df.prediction_intervention %>% + mutate(index = "intervention_prediction") %>% + bind_rows(df.prediction_explanation %>% + mutate(index = "explanation_prediction")) %>% + select(structure = causal_structure, + outcome, + action = intervention, + choice, + index, + prediction) %>% + pivot_wider(names_from = index, + values_from = prediction) + +df.intervention_only_model = read_csv("explanation_predictions_intervention_only.csv") +df.truth_only_model = read_csv("explanation_predictions_truth_only.csv") + +df.alternative_models = df.intervention_only_model %>% + mutate(model = "intervention_only") %>% + bind_rows(df.truth_only_model %>% + mutate(model = "truth_only")) %>% + select(structure = causal_structure, + outcome, + action = intervention, + choice, + model, + prediction) %>% + pivot_wider(names_from = model, + values_from = prediction) + +df.models = df.optimal_intervention_model %>% + left_join(df.alternative_models) +``` + +### Bar plot + +```{r, fig.width=20, fig.height=14, warning=FALSE, message=FALSE} + +df.plot = df.combined %>% + mutate(choice = factor(choice, + labels = c("abnormal", "no\npreference", "normal")), + outcome = factor(outcome, + levels = c("positive", "negative"), + labels = c("positive outcome", "negative outcome")), + action = factor(action, + levels = c("hard", "soft", "fixed"))) + +df.model = df.optimal_intervention_model %>% + left_join(df.alternative_models) %>% + mutate(choice = factor(choice, + labels = c("abnormal", "no\npreference", "normal")), + outcome = factor(outcome, + levels = c("positive", "negative"), + labels = c("positive outcome", "negative outcome")), + action = factor(action, + levels = c("hard", "soft", "fixed"))) + +df.model2 = df.model %>% + select(-intervention_prediction) %>% + pivot_longer(cols = c("explanation_prediction", "intervention_only", "truth_only"), + names_to = "model", + values_to = "prediction") %>% + mutate(model = factor(model, + levels = c("truth_only", "explanation_prediction", "intervention_only"))) %>% + arrange(structure, outcome, action, choice, model) + +p_intervention = ggplot(data = df.plot, + mapping = aes(x = action, + y = intervention_p, + group = choice, + fill = action, + alpha = choice)) + + geom_col(color = "black", + position = position_dodge(width = 0.9)) + + geom_linerange(mapping = aes(ymin = intervention_low, + ymax = intervention_high), + position = position_dodge(width = 0.9), + alpha = 1, + linewidth = 1) + + geom_point(data = df.model, + mapping = aes(y = intervention_prediction), + position = position_dodge(width = 0.9), + shape = 21, + size = 4, + show.legend = F) + + facet_grid(structure ~ outcome) + + scale_y_continuous(limits = c(0, 1), + breaks = seq(0, 1, 0.25), + labels = scales::label_percent()) + + scale_alpha_manual(values = c(0.4, 0.65, 0.9)) + + labs(title = "Intervention Task", + x = "type of intervention", + y = "percent selected") + + theme(legend.position = "bottom", + plot.title = element_text(hjust = 0.5)) + + guides(fill = "none", + alpha = "none") + +p_explanation = ggplot(data = df.plot, + mapping = aes(x = action, + y = explanation_p, + group = choice, + fill = action, + alpha = choice)) + + geom_col(color = "black", + position = position_dodge(width = 0.9)) + + geom_linerange(mapping = aes(ymin = explanation_low, + ymax = explanation_high), + position = position_dodge(width = 0.9), + alpha = 1, + linewidth = 1) + + geom_point(data = df.model2, + mapping = aes(y = prediction, + shape = model), + position = position_dodge2(width = 0.9, + padding = 0.2), + size = 4, + show.legend = F) + + facet_grid(structure ~ outcome) + + scale_y_continuous(limits = c(0, 1), + breaks = seq(0, 1, 0.25), + labels = scales::label_percent()) + + scale_alpha_manual(values = c(0.4, 0.65, 0.9)) + + scale_shape_manual(values = c("truth_only" = 22, + "explanation_prediction" = 21, + "intervention_only" = 23)) + + labs(title = "Explanation Task", + x = "type of intervention", + y = "percent selected") + + theme(legend.position = "bottom", + plot.title = element_text(hjust = 0.5)) + + guides(fill = "none") + +p_intervention + p_explanation + + plot_layout(ncol = 1) + plot_annotation(tag_levels = "A") & + theme(plot.tag = element_text(size = 40, face = "bold")) + +ggsave(filename = "../../../figures/plots/bars.pdf", + width = 20, + height = 14) +``` + +### Scatter plots + +#### Scatter plot function + +```{r} +fun.scatter = function(data, xtitle, ytitle, legend = F){ + p = ggplot(data = data, + mapping = aes(x = model, + y = p, + ymin = low, + ymax = high)) + + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + + annotate(geom = "text", + x = 0, + y = 1, + hjust = 0, + label = str_c("r = ", round(cor(data$model, data$p), 2)), + size = 8) + + annotate(geom = "text", + x = 0, + y = 0.92, + hjust = 0, + label = str_c("RMSE = ", round(sqrt(mean((data$model - data$p)^2)), 2)), + size = 8) + + geom_smooth(method = "lm", + color = "black", + alpha = 0.2, + show.legend = F) + + geom_linerange(alpha = 0.2) + + geom_point(mapping = aes(fill = action), + alpha = 0.9, + shape = 21, + size = 4) + + scale_x_continuous(limits = c(0, 1), + breaks = seq(0, 1, 0.25), + labels = scales::label_percent()) + + scale_y_continuous(limits = c(0, 1), + breaks = seq(0, 1, 0.25), + labels = scales::label_percent()) + + labs(x = xtitle, + y = ytitle) + + theme(legend.position = c(1, 0), + legend.justification = c(1.2, -0.1)) + + if(legend == F){ + p = p + theme(legend.position = "none") + } + + return(p) +} +``` + +#### Combined scatter plots + +```{r, warning=FALSE, message=FALSE, fig.width=16, fig.height=12} +df.plot = df.combined %>% + left_join(df.models %>% + mutate(choice = factor(choice, + levels = c("abnormal", "nopreference", "normal"), + labels = c("abnormal", "no preference", "normal")))) %>% + mutate(structure = factor(structure, + levels = c("conjunctive", "disjunctive")), + choice = factor(choice, + labels = c("abnormal", "no\npreference", "normal")), + outcome = factor(outcome, + levels = c("positive", "negative"), + labels = c("positive outcome", "negative outcome")), + action = factor(action, + levels = c("hard", "soft", "fixed"))) + +df.plot.intervention = df.plot %>% + select(structure, outcome, action, choice, + low = intervention_low, high = intervention_high, + p = intervention_p, model = intervention_prediction) + +df.plot.explanation = df.plot %>% + select(structure, outcome, action, choice, + low = explanation_low, high = explanation_high, + p = explanation_p, + explanation_prediction, + intervention_only, + truth_only) + +scatter1 = fun.scatter(data = df.plot.intervention, + xtitle = "model prediction", + ytitle = "intervention choices", + legend = T) + +scatter2 = fun.scatter(data = df.plot.explanation %>% + mutate(model = intervention_only), + xtitle = "relevance only model", + ytitle = "explanation choices") + +scatter3 = fun.scatter(data = df.plot.explanation %>% + mutate(model = truth_only), + xtitle = "accuracy only model", + ytitle = "explanation choices") + +scatter4 = fun.scatter(data = df.plot.explanation %>% + mutate(model = explanation_prediction), + xtitle = "combined model", + ytitle = "explanation choices") + +scatter1 + scatter2 + scatter3 + scatter4 + + plot_layout(ncol = 2) + + plot_annotation(tag_levels = "A") & + theme(text = element_text(size = 30), + plot.tag = element_text(size = 40, face = "bold"), + plot.margin = margin(t = 0, + r = 0.35, + b = 0, + l = 0, + "cm")) + +ggsave(filename = "../../../figures/plots/scatter.pdf", + width = 16, + height = 12) +``` + +#### Overall + +```{r, warning=FALSE, message=FALSE, fig.width=8, fig.height=6} +df.scatter = df.plot %>% + ungroup() %>% + pivot_longer(cols = contains("_"), + names_to = c("task", "index"), + names_sep = "_", + values_to = "value") %>% + pivot_wider(names_from = index, + values_from = value) %>% + left_join(df.model %>% + pivot_longer(cols = contains("_"), + names_to = c("task", "index"), + names_sep = "_", + values_to = "model") %>% + select(-index), + by = c("structure", "outcome", "action", "choice", "task")) + + +ggplot(data = df.scatter, + mapping = aes(x = model, + y = p, + ymin = low, + ymax = high)) + + geom_abline(intercept = 0, slope = 1, linetype = "dashed") + + annotate(geom = "text", + x = 0, + y = 1, + hjust = 0, + label = str_c("r = ", round(cor(df.scatter$model, df.scatter$p), 2)), + size = 8) + + annotate(geom = "text", + x = 0, + y = 0.92, + hjust = 0, + label = str_c("RMSE = ", round(sqrt(mean((df.scatter$model - df.scatter$p)^2)), 2)), + size = 8) + + geom_smooth(method = "lm", + color = "black", + alpha = 0.2, + show.legend = F) + + geom_linerange(alpha = 0.2) + + geom_point(mapping = aes(fill = action), + # shape = task), + shape = 21, + size = 2) + + scale_x_continuous(limits = c(0, 1), + breaks = seq(0, 1, 0.25), + labels = scales::label_percent()) + + scale_y_continuous(limits = c(0, 1), + breaks = seq(0, 1, 0.25), + labels = scales::label_percent()) + + # scale_shape_manual(values = c("intervention" = 21, + # "explanation" = 22)) + + labs(x = "model prediction", + y = "participant choices") + + theme(legend.position = c(1, 0), + legend.justification = c(1.2, -0.1)) + +ggsave(filename = "../../../figures/plots/scatter.pdf", + width = 8, + height = 6) +``` + +## STATS + +### Correlations and RMSE + +```{r, warning=FALSE, message=FALSE} +df.combined %>% + ungroup() %>% + select(-(contains("low") | contains("high"))) %>% + mutate(choice = str_replace(choice, "no preference", "nopreference")) %>% + left_join(df.alternative_models) %>% + left_join(df.optimal_intervention_model %>% + select(-intervention_prediction)) %>% + summarize(across(c(explanation_prediction, intervention_only, truth_only), + list(r = ~ cor(.x, explanation_p), + rmse = ~ sqrt(mean((.x - explanation_p)^2))), + .names = "{.col}.{.fn}")) %>% + pivot_longer(cols = everything(), + names_to = c("model", "stat"), + names_sep = "\\.", + values_to = "value") %>% + pivot_wider(names_from = stat, + values_from = value) %>% + mutate(across(where(is.numeric), + ~ round(., 2))) +``` + + +# Session info + +```{r, echo=F} +sessionInfo() +``` \ No newline at end of file diff --git a/code/R/experiments/Experiment.html b/code/R/experiments/Experiment.html new file mode 100644 index 0000000..9963616 --- /dev/null +++ b/code/R/experiments/Experiment.html @@ -0,0 +1,2706 @@ + + + + + + + + + + + + + + + +Explanation and Intervention Data + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +
library("knitr")
+library("modelr")        # for bootstrapping
+library("patchwork")        # making figure panels
+library("tidyverse") # for data wrangling, visualization, etc. 
+
+

1 Set options

+
theme_set(theme_classic() + 
+    theme(text = element_text(size = 24)))
+
+opts_chunk$set(comment = "",
+               fig.show = "hold")
+
+# suppress grouping warning 
+options(dplyr.summarise.inform = F)
+
+
+

2 Condition 1: Hard Intervention: Positive Outcome

+
+

2.1 Read in Data

+
#### Read in Data
+df.responses = read.csv(file = "explanation_selection_positive_outcome_study_2-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "explanation_selection_positive_outcome_study_2-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data1 <- merge(df.responses, df.participants, by="workerid")
+
+
+

2.2 Wrangle Data

+
df.exp1 <- df.data1 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Conpos_") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Conpos_") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Dispos_") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Dispos_") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Conpos_") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Dispos_") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+   mutate(intervention = "hard") %>% 
+   mutate(outcome = "positive") 
+
+
+

2.3 Prepate Dataset

+
df.exp1_summary <- df.exp1 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "positive") %>% 
+    mutate(Experiment = "hardint")
+
+write_csv(df.exp1_summary, "hardint_pos.csv")
+
+
+
+

3 Condition 2: Hard Intervention: Negative Outcome

+
+

3.1 Read in Data

+
#### Read in Data
+df.responses = read.csv(file = "explanation_selection_negative_outcome-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "explanation_selection_negative_outcome-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data2 <- merge(df.responses, df.participants, by="workerid")
+
+
+

3.2 Wrangle Data

+
df.exp2 <- df.data2 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Conneg_") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Conneg_") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Disneg_") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Disneg_") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Conneg_") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Disneg_") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+     mutate(intervention = "hard") %>% 
+   mutate(outcome = "negative") 
+
+
+

3.3 Prepare Dataset

+
df.exp2_summary <- df.exp2 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "hardint")
+
+write_csv(df.exp2_summary, "hardint_neg.csv")
+
+
+
+

4 Condition 3: Soft Intervention: Positive Outcome

+
+

4.1 Read in Data

+
###Experiment 4
+#### Read in Data
+
+df.responses = read.csv(file = "pressbutton_positivecondition-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "pressbutton_positivecondition-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data3 <- merge(df.responses, df.participants, by="workerid")
+
+
+

4.2 Wrangle Data

+
df.exp3 <- df.data3 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition_1") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition_1") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_2") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_2") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition_1") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition_2") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other"))%>% 
+     mutate(intervention = "soft") %>% 
+   mutate(outcome = "positive")  
+
+
+

4.3 Prepare Dataset

+
df.exp3_summary <- df.exp3 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "positive") %>% 
+    mutate(Experiment = "softint")
+
+write_csv(df.exp3_summary, "softint_pos.csv")
+
+
+
+

5 Condition 4: Soft Intervention: Negative Outcome

+
+

5.1 Read in Data

+
###Experiment 4
+#### Read in Data
+
+df.responses = read.csv(file = "pressbutton_negativecondition-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "pressbutton_negativecondition-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data4 <- merge(df.responses, df.participants, by="workerid") %>% 
+  filter(!row_number() %in% c(71, 72))
+
+
+

5.2 Wrangle Data

+
df.exp4 <- df.data4 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition_4") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+     mutate(intervention = "soft") %>% 
+   mutate(outcome = "negative") 
+
+
+

5.3 Prepare Dataset

+
df.exp4_summary <- df.exp4 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "softint")
+
+write_csv(df.exp4_summary, "softint_neg.csv")
+
+
+
+

6 Condition 5: Fixed Intervention: Positive Outcome

+
+

6.1 Read in Data

+
###Experiment 5
+#### Read in Data
+
+df.responses = read.csv(file = "fixedintervention_positive-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "fixedintervention_positive-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data5 <- merge(df.responses, df.participants, by="workerid") 
+
+
+

6.2 Wrangle Data

+
df.exp5 <- df.data5 %>% 
+   gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition1") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition1") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition2") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition2") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition1") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition2") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+     mutate(intervention = "fixed") %>% 
+   mutate(outcome = "positive") 
+
+
+

6.3 Prepare Dataset

+
df.exp5_summary <- df.exp5 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "fixedint")
+
+write_csv(df.exp5_summary, "fixedint_pos.csv")
+
+
+
+

7 Condition 6: Fixed Intervention: Negative Outcome

+
+

7.1 Read in Data

+
###Experiment 6
+#### Read in Data
+
+df.responses = read.csv(file = "fixedintervention_negative-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "fixedintervention_negative-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data6 <- merge(df.responses, df.participants, by="workerid") 
+
+
+

7.2 Wrangle Data

+
df.exp6 <- df.data6 %>% 
+   gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition_4") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other"))    %>%  
+  mutate(intervention = "fixed") %>% 
+   mutate(outcome = "negative") 
+
+
+

7.3 Prepare Dataset

+
df.exp6_summary <- df.exp6 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "fixedint")
+
+write_csv(df.exp6_summary, "fixedint_neg.csv")
+
+
+
+

8 Create Dataset including raw data from all conditions

+
df.exp_all <- rbind(df.exp1, df.exp2, df.exp3, df.exp4, df.exp5, df.exp6)
+
+
+

9 Bootstrapping

+
+

9.1 DATA

+
+

9.1.1 Data frame

+
df.boot = df.exp_all %>% 
+  select(workerid,
+         structure = CausalStructure,
+         outcome,
+         action = intervention,
+         explanation,
+         abnormal_intervention,
+         normal_intervention,
+         nopreference_intervention) %>% 
+  mutate(structure = tolower(structure),
+         intervention = abnormal_intervention,
+         intervention = ifelse(normal_intervention != "other", normal_intervention, intervention),
+         intervention = ifelse(nopreference_intervention != "other", nopreference_intervention, intervention),
+         intervention = factor(intervention,
+                               levels = c("abnormal", "no preference", "normal")),
+         explanation = factor(explanation,
+                               levels = c("abnormal", "no preference", "normal"))) %>% 
+  select(-contains("_"))
+
+
+

9.1.2 Percentages

+
df.percentage = df.boot %>% 
+  count(structure, outcome, action, choice = intervention,
+        name = "intervention_n") %>% 
+  left_join(df.boot %>% 
+              count(structure, outcome, action, choice = explanation,
+                    name = "explanation_n"),
+            by = c("structure", "outcome", "action", "choice")) %>% 
+  group_by(structure, outcome, action) %>% 
+  mutate(intervention_p = intervention_n/sum(intervention_n),
+         explanation_p = explanation_n/sum(explanation_n)) %>% 
+  ungroup()
+
+
+

9.1.3 Bootstrapped confidence intervals

+
set.seed(1)
+
+# percentages with bootstrapped confidence intervals 
+df.confidence = df.boot %>% 
+  group_by(structure, outcome, action) %>% 
+  nest() %>% 
+  mutate(bootstraps = map(.x = data,
+                          .f = ~ bootstrap(.x, n = 1000))) %>% 
+  unnest(bootstraps) %>% 
+  mutate(intervention = map(.x = strap, 
+                      .f = ~ .x %>% 
+                        as_tibble() %>% 
+                        count(intervention,
+                              name = "intervention_n",
+                              .drop = F) %>% 
+                        mutate(intervention_p = intervention_n/sum(intervention_n))),
+         explanation = map(.x = strap, 
+                      .f = ~ .x %>% 
+                        as_tibble() %>% 
+                        count(explanation,
+                              name = "explanation_n",
+                              .drop = F) %>% 
+                        mutate(explanation_p = explanation_n/sum(explanation_n)))) %>%
+  select(structure, outcome, action, intervention, explanation) %>%
+  unnest(c(intervention, explanation)) %>%
+  select(everything(), choice = intervention, -explanation) %>% 
+  group_by(structure, outcome, action, choice) %>%
+  summarize(intervention_low = as.numeric(quantile(intervention_p, probs = 0.025)),
+            intervention_high = as.numeric(quantile(intervention_p, probs = 0.975)),
+            explanation_low = as.numeric(quantile(explanation_p, probs = 0.025)),
+            explanation_high = as.numeric(quantile(explanation_p, probs = 0.975))) %>% 
+  ungroup()
+
+
+

9.1.4 Combined data frame

+
df.combined = df.confidence %>%
+  left_join(df.percentage %>% 
+              select(-(contains("_n"))), 
+            by = c("structure", "outcome", "action", "choice")) %>% 
+  select(structure, outcome, action, choice, contains("intervention"),
+         contains("explanation"))
+
+
+
+

9.2 PLOTS

+
+

9.2.1 Read in model predictions

+
df.prediction_intervention = read_csv("intervention_predictions.csv")
+df.prediction_explanation = read_csv("explanation_predictions.csv") %>% 
+  select(-truth)
+
+df.optimal_intervention_model = df.prediction_intervention %>% 
+  mutate(index = "intervention_prediction") %>% 
+  bind_rows(df.prediction_explanation %>% 
+              mutate(index = "explanation_prediction")) %>% 
+  select(structure = causal_structure,
+         outcome, 
+         action = intervention,
+         choice,
+         index,
+         prediction) %>% 
+  pivot_wider(names_from = index,
+              values_from = prediction)
+
+df.intervention_only_model = read_csv("explanation_predictions_intervention_only.csv")
+df.truth_only_model = read_csv("explanation_predictions_truth_only.csv")
+
+df.alternative_models = df.intervention_only_model %>% 
+  mutate(model = "intervention_only") %>% 
+  bind_rows(df.truth_only_model %>% 
+              mutate(model = "truth_only")) %>% 
+  select(structure = causal_structure,
+         outcome, 
+         action = intervention,
+         choice,
+         model, 
+         prediction) %>% 
+  pivot_wider(names_from = model,
+              values_from = prediction)
+
+df.models = df.optimal_intervention_model %>% 
+  left_join(df.alternative_models) 
+
+
+

9.2.2 Bar plot

+
df.plot = df.combined %>% 
+  mutate(choice = factor(choice,
+                         labels = c("abnormal", "no\npreference", "normal")),
+         outcome = factor(outcome,
+                          levels = c("positive", "negative"),
+                          labels = c("positive outcome", "negative outcome")),
+         action = factor(action,
+                         levels = c("hard", "soft", "fixed")))
+
+df.model = df.optimal_intervention_model %>%
+  left_join(df.alternative_models) %>% 
+  mutate(choice = factor(choice,
+                         labels = c("abnormal", "no\npreference", "normal")),
+         outcome = factor(outcome,
+                          levels = c("positive", "negative"),
+                          labels = c("positive outcome", "negative outcome")),
+         action = factor(action,
+                         levels = c("hard", "soft", "fixed")))
+
+df.model2 = df.model %>% 
+  select(-intervention_prediction) %>% 
+  pivot_longer(cols = c("explanation_prediction", "intervention_only", "truth_only"),
+               names_to = "model",
+               values_to = "prediction") %>% 
+  mutate(model = factor(model,
+                        levels = c("truth_only", "explanation_prediction", "intervention_only"))) %>% 
+  arrange(structure, outcome, action, choice, model)
+  
+p_intervention = ggplot(data = df.plot,
+                        mapping = aes(x = action,
+                                      y = intervention_p,
+                                      group = choice,
+                                      fill = action,
+                                      alpha = choice)) + 
+  geom_col(color = "black",
+           position = position_dodge(width = 0.9)) +
+  geom_linerange(mapping = aes(ymin = intervention_low,
+                               ymax = intervention_high),
+                 position = position_dodge(width = 0.9),
+                 alpha = 1,
+                 linewidth = 1) +
+  geom_point(data = df.model,
+             mapping = aes(y = intervention_prediction),
+             position = position_dodge(width = 0.9),
+             shape = 21,
+             size = 4,
+             show.legend = F) +
+  facet_grid(structure ~ outcome) +
+  scale_y_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  scale_alpha_manual(values = c(0.4, 0.65, 0.9)) +
+  labs(title = "Intervention Task",
+       x = "type of intervention",
+       y = "percent selected") + 
+  theme(legend.position = "bottom",
+        plot.title = element_text(hjust = 0.5)) + 
+  guides(fill = "none",
+         alpha = "none")
+
+p_explanation = ggplot(data = df.plot,
+               mapping = aes(x = action,
+                             y = explanation_p,
+                             group = choice,
+                             fill = action,
+                             alpha = choice)) + 
+  geom_col(color = "black",
+           position = position_dodge(width = 0.9)) +
+  geom_linerange(mapping = aes(ymin = explanation_low,
+                               ymax = explanation_high),
+                 position = position_dodge(width = 0.9),
+                 alpha = 1,
+                 linewidth = 1) +
+  geom_point(data = df.model2,
+             mapping = aes(y = prediction,
+                           shape = model),
+             position = position_dodge2(width = 0.9,
+                                        padding = 0.2),
+             size = 4,
+             show.legend = F) +
+  facet_grid(structure ~ outcome) +
+  scale_y_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  scale_alpha_manual(values = c(0.4, 0.65, 0.9)) +
+  scale_shape_manual(values = c("truth_only" = 22,
+                                "explanation_prediction" = 21,
+                                "intervention_only" = 23)) +
+  labs(title = "Explanation Task",
+       x = "type of intervention",
+       y = "percent selected") + 
+  theme(legend.position = "bottom",
+        plot.title = element_text(hjust = 0.5)) + 
+  guides(fill = "none")
+
+p_intervention + p_explanation + 
+  plot_layout(ncol = 1) + plot_annotation(tag_levels = "A") & 
+  theme(plot.tag = element_text(size = 40, face = "bold"))
+
+ggsave(filename = "../../../figures/plots/bars.pdf",
+       width = 20,
+       height = 14)
+

+
+
+

9.2.3 Scatter plots

+
+

9.2.3.1 Scatter plot function

+
fun.scatter = function(data, xtitle, ytitle, legend = F){
+  p = ggplot(data = data,
+             mapping = aes(x = model,
+                           y = p,
+                           ymin = low,
+                           ymax = high)) +
+    geom_abline(intercept = 0, slope = 1, linetype = "dashed") +
+    annotate(geom = "text",
+             x = 0,
+             y = 1,
+             hjust = 0,
+             label = str_c("r = ", round(cor(data$model, data$p), 2)),
+             size = 8) +
+    annotate(geom = "text",
+             x = 0,
+             y = 0.92,
+             hjust = 0,
+             label = str_c("RMSE = ", round(sqrt(mean((data$model -  data$p)^2)), 2)),
+             size = 8) +
+    geom_smooth(method = "lm",
+                color = "black",
+                alpha = 0.2,
+                show.legend = F) + 
+    geom_linerange(alpha = 0.2) +
+    geom_point(mapping = aes(fill = action),
+               alpha = 0.9,
+               shape = 21,
+               size = 4) +
+    scale_x_continuous(limits = c(0, 1),
+                       breaks = seq(0, 1, 0.25),
+                       labels = scales::label_percent()) +
+    scale_y_continuous(limits = c(0, 1),
+                       breaks = seq(0, 1, 0.25),
+                       labels = scales::label_percent()) +
+    labs(x = xtitle,
+         y = ytitle) + 
+    theme(legend.position = c(1, 0),
+          legend.justification = c(1.2, -0.1)) 
+  
+  if(legend == F){
+    p = p + theme(legend.position = "none")
+  }
+ 
+ return(p)
+}
+
+
+

9.2.3.2 Combined scatter plots

+
df.plot = df.combined %>% 
+  left_join(df.models %>% 
+              mutate(choice = factor(choice,
+                                     levels = c("abnormal", "nopreference", "normal"),
+                                     labels = c("abnormal", "no preference", "normal")))) %>% 
+  mutate(structure = factor(structure,
+                            levels = c("conjunctive", "disjunctive")),
+         choice = factor(choice,
+                         labels = c("abnormal", "no\npreference", "normal")),
+         outcome = factor(outcome,
+                          levels = c("positive", "negative"),
+                          labels = c("positive outcome", "negative outcome")),
+         action = factor(action,
+                         levels = c("hard", "soft", "fixed")))
+
+df.plot.intervention = df.plot %>% 
+  select(structure, outcome, action, choice,
+         low = intervention_low, high = intervention_high,
+         p = intervention_p, model = intervention_prediction)
+
+df.plot.explanation = df.plot %>%
+  select(structure, outcome, action, choice,
+         low = explanation_low, high = explanation_high,
+         p = explanation_p,
+         explanation_prediction,
+         intervention_only,
+         truth_only)
+  
+scatter1 = fun.scatter(data = df.plot.intervention,
+                       xtitle = "model prediction",
+                       ytitle = "intervention choices",
+                       legend = T)
+
+scatter2 = fun.scatter(data = df.plot.explanation %>% 
+                         mutate(model = intervention_only),
+                       xtitle = "relevance only model",
+                       ytitle = "explanation choices")
+
+scatter3 = fun.scatter(data = df.plot.explanation %>% 
+                         mutate(model = truth_only),
+                       xtitle = "accuracy only model",
+                       ytitle = "explanation choices")
+
+scatter4 = fun.scatter(data = df.plot.explanation %>% 
+                         mutate(model = explanation_prediction),
+                       xtitle = "combined model",
+                       ytitle = "explanation choices")
+
+scatter1 + scatter2 + scatter3 + scatter4 + 
+  plot_layout(ncol = 2) + 
+  plot_annotation(tag_levels = "A") & 
+  theme(text = element_text(size = 30),
+        plot.tag = element_text(size = 40, face = "bold"),
+        plot.margin = margin(t = 0, 
+                             r = 0.35, 
+                             b = 0, 
+                             l = 0,
+                             "cm"))
+
+ggsave(filename = "../../../figures/plots/scatter.pdf",
+       width = 16,
+       height = 12)
+

+
+
+

9.2.3.3 Overall

+
df.scatter = df.plot %>% 
+  ungroup() %>% 
+  pivot_longer(cols = contains("_"),
+               names_to = c("task", "index"),
+               names_sep = "_",
+               values_to = "value") %>% 
+  pivot_wider(names_from = index,
+              values_from = value) %>% 
+  left_join(df.model %>% 
+              pivot_longer(cols = contains("_"),
+                           names_to = c("task", "index"),
+                           names_sep = "_",
+                           values_to = "model") %>% 
+              select(-index),
+            by = c("structure", "outcome", "action", "choice", "task"))
+
+
+ggplot(data = df.scatter,
+       mapping = aes(x = model,
+                     y = p,
+                     ymin = low,
+                     ymax = high)) +
+  geom_abline(intercept = 0, slope = 1, linetype = "dashed") +
+  annotate(geom = "text",
+           x = 0,
+           y = 1,
+           hjust = 0,
+           label = str_c("r = ", round(cor(df.scatter$model, df.scatter$p), 2)),
+           size = 8) +
+  annotate(geom = "text",
+           x = 0,
+           y = 0.92,
+           hjust = 0,
+           label = str_c("RMSE = ", round(sqrt(mean((df.scatter$model -  df.scatter$p)^2)), 2)),
+           size = 8) +
+  geom_smooth(method = "lm",
+              color = "black",
+              alpha = 0.2,
+              show.legend = F) + 
+  geom_linerange(alpha = 0.2) +
+  geom_point(mapping = aes(fill = action),
+                           # shape = task),
+             shape = 21,
+             size = 2) +
+  scale_x_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  scale_y_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  # scale_shape_manual(values = c("intervention" = 21,
+  #                               "explanation" = 22)) +
+  labs(x = "model prediction",
+       y = "participant choices") +
+  theme(legend.position = c(1, 0),
+        legend.justification = c(1.2, -0.1))
+
+ggsave(filename = "../../../figures/plots/scatter.pdf",
+       width = 8,
+       height = 6)
+

+
+
+
+
+

9.3 STATS

+
+

9.3.1 Correlations and RMSE

+
df.combined %>% 
+  ungroup() %>% 
+  select(-(contains("low") | contains("high"))) %>%
+  mutate(choice = str_replace(choice, "no preference", "nopreference")) %>% 
+  left_join(df.alternative_models) %>% 
+  left_join(df.optimal_intervention_model %>% 
+              select(-intervention_prediction)) %>% 
+  summarize(across(c(explanation_prediction, intervention_only, truth_only),
+                   list(r = ~ cor(.x, explanation_p),
+                        rmse = ~ sqrt(mean((.x - explanation_p)^2))),
+                   .names = "{.col}.{.fn}")) %>% 
+  pivot_longer(cols = everything(),
+               names_to = c("model", "stat"),
+               names_sep = "\\.",
+               values_to = "value") %>% 
+  pivot_wider(names_from = stat,
+              values_from = value) %>% 
+  mutate(across(where(is.numeric),
+                ~ round(., 2)))
+
# A tibble: 3 × 3
+  model                      r  rmse
+  <chr>                  <dbl> <dbl>
+1 explanation_prediction  0.81  0.09
+2 intervention_only       0.61  0.13
+3 truth_only              0.47  0.14
+
+
+
+
+

10 Session info

+
R version 4.1.3 (2022-03-10)
+Platform: x86_64-apple-darwin17.0 (64-bit)
+Running under: macOS Big Sur/Monterey 10.16
+
+Matrix products: default
+BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
+LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
+
+locale:
+[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
+
+attached base packages:
+[1] stats     graphics  grDevices utils     datasets  methods   base     
+
+other attached packages:
+ [1] lubridate_1.9.2 forcats_1.0.0   stringr_1.5.0   dplyr_1.1.4    
+ [5] purrr_1.0.1     readr_2.1.4     tidyr_1.3.0     tibble_3.2.1   
+ [9] ggplot2_3.4.4   tidyverse_2.0.0 patchwork_1.1.2 modelr_0.1.11  
+[13] knitr_1.38     
+
+loaded via a namespace (and not attached):
+ [1] tidyselect_1.2.0  xfun_0.30         bslib_0.3.1       lattice_0.20-45  
+ [5] splines_4.1.3     colorspace_2.0-3  vctrs_0.6.5       generics_0.1.2   
+ [9] htmltools_0.5.2   mgcv_1.8-39       yaml_2.3.5        utf8_1.2.2       
+[13] rlang_1.1.1       jquerylib_0.1.4   pillar_1.9.0      glue_1.6.2       
+[17] withr_2.5.0       bit64_4.0.5       lifecycle_1.0.3   munsell_0.5.0    
+[21] gtable_0.3.0      ragg_1.2.5        evaluate_0.15     tzdb_0.4.0       
+[25] fastmap_1.1.0     parallel_4.1.3    fansi_1.0.3       highr_0.9        
+[29] broom_1.0.5       backports_1.4.1   scales_1.2.1      vroom_1.6.3      
+[33] jsonlite_1.8.4    systemfonts_1.0.4 farver_2.1.0      bit_4.0.4        
+[37] textshaping_0.3.6 hms_1.1.3         digest_0.6.29     stringi_1.7.6    
+[41] bookdown_0.25     grid_4.1.3        cli_3.6.1         tools_4.1.3      
+[45] magrittr_2.0.3    sass_0.4.1        crayon_1.5.1      pkgconfig_2.0.3  
+[49] Matrix_1.4-0      timechange_0.2.0  rmarkdown_2.13    rstudioapi_0.15.0
+[53] R6_2.5.1          nlme_3.1-155      compiler_4.1.3   
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/code/R/experiments/experiments.Rproj b/code/R/experiments/experiments.Rproj new file mode 100644 index 0000000..8e3c2eb --- /dev/null +++ b/code/R/experiments/experiments.Rproj @@ -0,0 +1,13 @@ +Version: 1.0 + +RestoreWorkspace: Default +SaveWorkspace: Default +AlwaysSaveHistory: Default + +EnableCodeIndexing: Yes +UseSpacesForTab: Yes +NumSpacesForTab: 2 +Encoding: UTF-8 + +RnwWeave: Sweave +LaTeX: pdfLaTeX diff --git a/code/R/experiments/explanation_predictions.csv b/code/R/experiments/explanation_predictions.csv new file mode 100644 index 0000000..f4093ef --- /dev/null +++ b/code/R/experiments/explanation_predictions.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","truth","probability","prediction" +"fixed","conjunctive","positive","abnormal",0.72,0,0.535353535353535,0.503204613224164 +"fixed","conjunctive","positive","normal",0.18,0,0.0909090909090909,0.102232604560875 +"fixed","conjunctive","positive","nopreference",0.45,1,0.373737373737374,0.39456278221496 +"fixed","conjunctive","negative","abnormal",0.92,0,0.171717171717172,0.244237215269761 +"fixed","conjunctive","negative","normal",0.98,0,0.424242424242424,0.291553306873668 +"fixed","conjunctive","negative","nopreference",0.95,1,0.404040404040404,0.46420947785657 +"fixed","disjunctive","positive","abnormal",0.98,0,0.272727272727273,0.291553306873668 +"fixed","disjunctive","positive","normal",0.92,0,0.181818181818182,0.244237215269762 +"fixed","disjunctive","positive","nopreference",0.95,1,0.545454545454545,0.46420947785657 +"fixed","disjunctive","negative","abnormal",0.18,0,0.0808080808080808,0.102232604560875 +"fixed","disjunctive","negative","normal",0.72,0,0.393939393939394,0.503204613224165 +"fixed","disjunctive","negative","nopreference",0.45,1,0.525252525252525,0.39456278221496 +"hard","conjunctive","positive","abnormal",0.8,0,0.494845360824742,0.529702731783576 +"hard","conjunctive","positive","normal",0.2,0,0.164948453608247,0.0901510713180212 +"hard","conjunctive","positive","nopreference",0.5,1,0.34020618556701,0.380146196898403 +"hard","conjunctive","negative","abnormal",1,0,0.171717171717172,0.267408365272958 +"hard","conjunctive","negative","normal",1,0,0.373737373737374,0.267408365272958 +"hard","conjunctive","negative","nopreference",1,1,0.454545454545455,0.465183269454083 +"hard","disjunctive","positive","abnormal",1,0,0.268041237113402,0.267408365272958 +"hard","disjunctive","positive","normal",1,0,0.195876288659794,0.267408365272958 +"hard","disjunctive","positive","nopreference",1,1,0.536082474226804,0.465183269454083 +"hard","disjunctive","negative","abnormal",0.2,0,0.0808080808080808,0.0901510713180212 +"hard","disjunctive","negative","normal",0.8,0,0.484848484848485,0.529702731783576 +"hard","disjunctive","negative","nopreference",0.5,1,0.434343434343434,0.380146196898403 +"soft","conjunctive","positive","abnormal",0.32,0,0.510204081632653,0.316552018509573 +"soft","conjunctive","positive","normal",0.2,0,0.112244897959184,0.222143097392714 +"soft","conjunctive","positive","nopreference",0.26,1,0.377551020408163,0.461304884097713 +"soft","conjunctive","negative","abnormal",1,0,0.454545454545455,0.316552018509573 +"soft","conjunctive","negative","normal",0.88,0,0.141414141414141,0.222143097392714 +"soft","conjunctive","negative","nopreference",0.94,1,0.404040404040404,0.461304884097713 +"soft","disjunctive","positive","abnormal",0.88,0,0.0612244897959184,0.222143097392714 +"soft","disjunctive","positive","normal",1,0,0.581632653061224,0.316552018509573 +"soft","disjunctive","positive","nopreference",0.94,1,0.357142857142857,0.461304884097713 +"soft","disjunctive","negative","abnormal",0.2,0,0.111111111111111,0.222143097392714 +"soft","disjunctive","negative","normal",0.32,0,0.353535353535354,0.316552018509573 +"soft","disjunctive","negative","nopreference",0.26,1,0.535353535353535,0.461304884097713 diff --git a/code/R/experiments/explanation_predictions_intervention_only.csv b/code/R/experiments/explanation_predictions_intervention_only.csv new file mode 100644 index 0000000..7e70019 --- /dev/null +++ b/code/R/experiments/explanation_predictions_intervention_only.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","truth","probability","prediction","type" +"fixed","conjunctive","positive","abnormal",0.72,0,0.535353535353535,0.529149726577864,"explanation" +"fixed","conjunctive","positive","normal",0.18,0,0.0909090909090909,0.170491378005861,"explanation" +"fixed","conjunctive","positive","nopreference",0.45,1,0.373737373737374,0.300358895416275,"explanation" +"fixed","conjunctive","negative","abnormal",0.92,0,0.171717171717172,0.312593066503816,"explanation" +"fixed","conjunctive","negative","normal",0.98,0,0.424242424242424,0.354513066613215,"explanation" +"fixed","conjunctive","negative","nopreference",0.95,1,0.404040404040404,0.33289386688297,"explanation" +"fixed","disjunctive","positive","abnormal",0.98,0,0.272727272727273,0.354513066613215,"explanation" +"fixed","disjunctive","positive","normal",0.92,0,0.181818181818182,0.312593066503816,"explanation" +"fixed","disjunctive","positive","nopreference",0.95,1,0.545454545454545,0.33289386688297,"explanation" +"fixed","disjunctive","negative","abnormal",0.18,0,0.0808080808080808,0.170491378005861,"explanation" +"fixed","disjunctive","negative","normal",0.72,0,0.393939393939394,0.529149726577865,"explanation" +"fixed","disjunctive","negative","nopreference",0.45,1,0.525252525252525,0.300358895416275,"explanation" +"hard","conjunctive","positive","abnormal",0.8,0,0.494845360824742,0.550324432912458,"explanation" +"hard","conjunctive","positive","normal",0.2,0,0.164948453608247,0.156347065222755,"explanation" +"hard","conjunctive","positive","nopreference",0.5,1,0.34020618556701,0.293328501864786,"explanation" +"hard","conjunctive","negative","abnormal",1,0,0.171717171717172,0.333333333333333,"explanation" +"hard","conjunctive","negative","normal",1,0,0.373737373737374,0.333333333333333,"explanation" +"hard","conjunctive","negative","nopreference",1,1,0.454545454545455,0.333333333333333,"explanation" +"hard","disjunctive","positive","abnormal",1,0,0.268041237113402,0.333333333333333,"explanation" +"hard","disjunctive","positive","normal",1,0,0.195876288659794,0.333333333333333,"explanation" +"hard","disjunctive","positive","nopreference",1,1,0.536082474226804,0.333333333333333,"explanation" +"hard","disjunctive","negative","abnormal",0.2,0,0.0808080808080808,0.156347065222755,"explanation" +"hard","disjunctive","negative","normal",0.8,0,0.484848484848485,0.550324432912458,"explanation" +"hard","disjunctive","negative","nopreference",0.5,1,0.434343434343434,0.293328501864786,"explanation" +"soft","conjunctive","positive","abnormal",0.32,0,0.510204081632653,0.376046983001778,"explanation" +"soft","conjunctive","positive","normal",0.2,0,0.112244897959184,0.292372348649304,"explanation" +"soft","conjunctive","positive","nopreference",0.26,1,0.377551020408163,0.331580668348918,"explanation" +"soft","conjunctive","negative","abnormal",1,0,0.454545454545455,0.376046983001778,"explanation" +"soft","conjunctive","negative","normal",0.88,0,0.141414141414141,0.292372348649304,"explanation" +"soft","conjunctive","negative","nopreference",0.94,1,0.404040404040404,0.331580668348918,"explanation" +"soft","disjunctive","positive","abnormal",0.88,0,0.0612244897959184,0.292372348649304,"explanation" +"soft","disjunctive","positive","normal",1,0,0.581632653061224,0.376046983001778,"explanation" +"soft","disjunctive","positive","nopreference",0.94,1,0.357142857142857,0.331580668348918,"explanation" +"soft","disjunctive","negative","abnormal",0.2,0,0.111111111111111,0.292372348649304,"explanation" +"soft","disjunctive","negative","normal",0.32,0,0.353535353535354,0.376046983001778,"explanation" +"soft","disjunctive","negative","nopreference",0.26,1,0.535353535353535,0.331580668348918,"explanation" diff --git a/code/R/experiments/explanation_predictions_truth_only.csv b/code/R/experiments/explanation_predictions_truth_only.csv new file mode 100644 index 0000000..76ca78e --- /dev/null +++ b/code/R/experiments/explanation_predictions_truth_only.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","truth","probability","prediction","type" +"fixed","conjunctive","positive","abnormal",0.72,0,0.535353535353535,0.279677081797963,"explanation" +"fixed","conjunctive","positive","normal",0.18,0,0.0909090909090909,0.279677081797963,"explanation" +"fixed","conjunctive","positive","nopreference",0.45,1,0.373737373737374,0.440645836404074,"explanation" +"fixed","conjunctive","negative","abnormal",0.92,0,0.171717171717172,0.279677081797963,"explanation" +"fixed","conjunctive","negative","normal",0.98,0,0.424242424242424,0.279677081797963,"explanation" +"fixed","conjunctive","negative","nopreference",0.95,1,0.404040404040404,0.440645836404074,"explanation" +"fixed","disjunctive","positive","abnormal",0.98,0,0.272727272727273,0.279677081797963,"explanation" +"fixed","disjunctive","positive","normal",0.92,0,0.181818181818182,0.279677081797963,"explanation" +"fixed","disjunctive","positive","nopreference",0.95,1,0.545454545454545,0.440645836404074,"explanation" +"fixed","disjunctive","negative","abnormal",0.18,0,0.0808080808080808,0.279677081797963,"explanation" +"fixed","disjunctive","negative","normal",0.72,0,0.393939393939394,0.279677081797963,"explanation" +"fixed","disjunctive","negative","nopreference",0.45,1,0.525252525252525,0.440645836404074,"explanation" +"hard","conjunctive","positive","abnormal",0.8,0,0.494845360824742,0.279677081797963,"explanation" +"hard","conjunctive","positive","normal",0.2,0,0.164948453608247,0.279677081797963,"explanation" +"hard","conjunctive","positive","nopreference",0.5,1,0.34020618556701,0.440645836404074,"explanation" +"hard","conjunctive","negative","abnormal",1,0,0.171717171717172,0.279677081797963,"explanation" +"hard","conjunctive","negative","normal",1,0,0.373737373737374,0.279677081797963,"explanation" +"hard","conjunctive","negative","nopreference",1,1,0.454545454545455,0.440645836404074,"explanation" +"hard","disjunctive","positive","abnormal",1,0,0.268041237113402,0.279677081797963,"explanation" +"hard","disjunctive","positive","normal",1,0,0.195876288659794,0.279677081797963,"explanation" +"hard","disjunctive","positive","nopreference",1,1,0.536082474226804,0.440645836404074,"explanation" +"hard","disjunctive","negative","abnormal",0.2,0,0.0808080808080808,0.279677081797963,"explanation" +"hard","disjunctive","negative","normal",0.8,0,0.484848484848485,0.279677081797963,"explanation" +"hard","disjunctive","negative","nopreference",0.5,1,0.434343434343434,0.440645836404074,"explanation" +"soft","conjunctive","positive","abnormal",0.32,0,0.510204081632653,0.279677081797963,"explanation" +"soft","conjunctive","positive","normal",0.2,0,0.112244897959184,0.279677081797963,"explanation" +"soft","conjunctive","positive","nopreference",0.26,1,0.377551020408163,0.440645836404074,"explanation" +"soft","conjunctive","negative","abnormal",1,0,0.454545454545455,0.279677081797963,"explanation" +"soft","conjunctive","negative","normal",0.88,0,0.141414141414141,0.279677081797963,"explanation" +"soft","conjunctive","negative","nopreference",0.94,1,0.404040404040404,0.440645836404074,"explanation" +"soft","disjunctive","positive","abnormal",0.88,0,0.0612244897959184,0.279677081797963,"explanation" +"soft","disjunctive","positive","normal",1,0,0.581632653061224,0.279677081797963,"explanation" +"soft","disjunctive","positive","nopreference",0.94,1,0.357142857142857,0.440645836404074,"explanation" +"soft","disjunctive","negative","abnormal",0.2,0,0.111111111111111,0.279677081797963,"explanation" +"soft","disjunctive","negative","normal",0.32,0,0.353535353535354,0.279677081797963,"explanation" +"soft","disjunctive","negative","nopreference",0.26,1,0.535353535353535,0.440645836404074,"explanation" diff --git a/code/R/experiments/explanation_selection_negative_outcome-participants.csv b/code/R/experiments/explanation_selection_negative_outcome-participants.csv new file mode 100644 index 0000000..e9e9ab5 --- /dev/null +++ b/code/R/experiments/explanation_selection_negative_outcome-participants.csv @@ -0,0 +1,105 @@ +workerid,proliferate.condition,age,ethnicity,feedback,gender,race,error +1510,Disneg_Conneg,30,Non-Hispanic,The factor that determined point loss in each round influenced the way I responded.,Male,Black/African American, +1512,Disneg_Conneg,41,Non-Hispanic,"If both need to be on to lose the point, then our ability to turn either off will make us keep the point - so it's irrelevant why we lost on the first round. ",Male,White, +1494,Disneg_Conneg,25,Non-Hispanic,,Male,White, +1527,Disneg_Conneg,25,Hispanic,statistics knowledge,Female,White, +1549,Disneg_Conneg,27,Non-Hispanic,"I assumed if I told her it was because the blue switch turned on, that's the switch she would manually turn to off in the next round. That way, the blue switch is off and no matter which way the orange switch goes, we won't lose a point. ",Non-binary,White, +1565,Disneg_Conneg,22,Non-Hispanic,,Female,White, +1539,Disneg_Conneg,25,Non-Hispanic,"I was mostly focused on the orange switch due to its lower chance of switching on. Looking back, I would've explained to the other player that the point was lost due to the blue switch.",Female,Asian, +1559,Disneg_Conneg,42,Non-Hispanic,I look at the probability of the switches.,Male,Asian, +1525,Disneg_Conneg,39,Non-Hispanic,I just tried to answer honestly. No one switch was the problem if both switches were on.,Female,White, +1468,Disneg_Conneg,33,Non-Hispanic,"I think it is more like a ""blaming"" game, like we are trying to figure out what we find is blamable. I think we tend to blame something if it has a lower chance to happen and it happened, so we tend to focus on that part like a person usually don't sleep during the day and one day he sleeps, his car got stolen, we blame him for sleeping that day.",Male,White, +1569,Disneg_Conneg,26,Non-Hispanic,,Female,White, +1535,Disneg_Conneg,38,Non-Hispanic,,Male,Multiracial, +1496,Disneg_Conneg,20,Non-Hispanic,It wouldn't make sense if I said one color is turned on so we should turn if off if we had one choice on which one we should turn off when both of them our off and she doesn't know the probability.,Female,Multiracial, +1555,Disneg_Conneg,35,Hispanic,I just read and thought about the chances.,Male,White, +1537,Disneg_Conneg,25,Non-Hispanic,I would turn them off everytime because of the likelihood of losing a point,Male,White, +1490,Disneg_Conneg,25,Non-Hispanic,,Non-binary,White, +1502,Disneg_Conneg,26,Non-Hispanic,i made my decisions based on the probability of each switch turning on. I assumed that 80% probability meant it would indeed go in that direction,Male,White, +1561,Disneg_Conneg,49,Non-Hispanic,,Male,White, +1486,Disneg_Conneg,41,Non-Hispanic,There is a higher probability of the blue switch to turn on. ,Female,White, +1563,Disneg_Conneg,31,Non-Hispanic,Knowing about the probabilities for each switch influenced how I decided to respond. The conditions for losing a point also affected relevant probabilities.,Male,Asian, +1545,Disneg_Conneg,48,Non-Hispanic,no,Male,White, +1474,Disneg_Conneg,21,Non-Hispanic,I was influenced by which switch had a higher likelihood of turning on. ,Female,Black/African American, +1529,Disneg_Conneg,20,Non-Hispanic,"I tried to place myself in the other participant's position, and say what I thought would make them more likely turn the blue switch off",Female,White, +1570,Disneg_Conneg,26,Non-Hispanic,,Male,White, +1488,Disneg_Conneg,26,Non-Hispanic,I responded the way I did because it was the most likely to allow my team to win in future plays,Non-binary,White, +1498,Disneg_Conneg,37,Non-Hispanic,calculated the odds,Male,White, +1519,Disneg_Conneg,53,Non-Hispanic,I answered purely based on the probability given.,Female,White, +1541,Disneg_Conneg,22,Non-Hispanic, just based on the facts given,Female,Black/African American, +1523,Disneg_Conneg,32,Non-Hispanic,"For the first scenario I wanted to get Alice to turn off the blue switch. So I made it seem like that was the reason we lost. + +For the second one, it really doesn't matter what switch is turned off because no matter what we won't lose a point",Male,White, +1553,Disneg_Conneg,30,Non-Hispanic,I tried to use statistics to explain how favorable an outcome would be and how my choices would lead to the best outcome,Female,White, +1492,Disneg_Conneg,35,Non-Hispanic,The probability of the blue switch turning on was higher and therefore turning it off was more likely to positively impact the outcome of the game.,Female,White, +1557,Disneg_Conneg,36,Hispanic,giving us the best chance to win,Male,Multiracial, +1482,Disneg_Conneg,24,Non-Hispanic,Just reading the explanations,Female,White, +1571,Disneg_Conneg,19,Non-Hispanic,,Female,Asian, +1514,Disneg_Conneg,21,Non-Hispanic,"I told them about the blue switch because if the blue switch is guaranteed to be off, we have a really high probability of not losing a point.",Male,White, +1567,Disneg_Conneg,55,Non-Hispanic,my understanding of probability ,Male,White, +1472,Disneg_Conneg,46,Non-Hispanic,I thought there would be more rounds to the game and telling the first player it was the blue one would maker her less likely to turn blue on which I don't know even has any effect on whether or not the machine actually turns to on. This was confusing.,Female,White, +1484,Disneg_Conneg,35,Non-Hispanic,Just what I thought was the best way to look at it,Female,White, +1533,Disneg_Conneg,36,Non-Hispanic,no,Female,White, +1521,Disneg_Conneg,43,Hispanic,The blue switch had the more likely chance of influencing a negative outcome in both games so I tried to maximize the chances of winning by instructing the player in such a way as to minimize blue being the cause of a loss.,Male,Multiracial, +1500,Disneg_Conneg,26,Non-Hispanic,,Male,White, +1476,Disneg_Conneg,26,Non-Hispanic,The likelihood of the switches turning on and off and the rules of the game.,Female,White, +1480,Disneg_Conneg,42,Non-Hispanic,The instructions influenced how I responded. ,Female,White, +1506,Disneg_Conneg,51,Non-Hispanic,answered based on info i was given as i remembered it,Female,White, +1516,Disneg_Conneg,24,Hispanic,,Male,White, +1531,Disneg_Conneg,29,Non-Hispanic,very straight forward,Male,White, +1508,Disneg_Conneg,28,Non-Hispanic,,Male,Black/African American, +1470,Disneg_Conneg,23,Non-Hispanic,if i would lose a point or not,Female,White, +1547,Disneg_Conneg,31,Non-Hispanic,I decided to focus on the blue switch because it was the most likely to turn on. I wanted my teammates to focus on turning that switch off because it was the one most likely to lose us a point. ,Female,White, +1478,Disneg_Conneg,23,Non-Hispanic,Great survey!,Male,White, +1504,Disneg_Conneg,22,Non-Hispanic,"What my teammate knew influenced my decisions to respond. + +By the way, this experiment is quite hard to understand. There's a lot going on - lots of angles you expect the survey participants to remember.",Male,White, +1520,Conneg_Disneg,36,Non-Hispanic,Just the math. I tried my best to prevent my team form losing points.,Male,Multiracial, +1554,Conneg_Disneg,51,Non-Hispanic,if you want to play an honest game you tell the truth as far as picking the one with the most likely to turn on. i was confused because you said at first we worked together then you said I scored a point. which would mean i stole her point so we were actually competitors.,Female,White, +1556,Conneg_Disneg,26,Non-Hispanic,NA,Male,White, +1505,Conneg_Disneg,30,Non-Hispanic,,Female,White, +1483,Conneg_Disneg,27,Non-Hispanic,n/a,Female,White, +1564,Conneg_Disneg,30,Non-Hispanic,My decisions were based on how many switches needed to be turned on in order to lose points.,Female,Asian, +1558,Conneg_Disneg,25,Hispanic,No,Female,White, +1562,Conneg_Disneg,38,Non-Hispanic,the percentage chance of blue turning on,Female,White, +1471,Conneg_Disneg,29,,I decided based on the chances of the switches being turned on or off by themselves. ,Male,Asian, +1526,Conneg_Disneg,47,Non-Hispanic,the likelihood of each switch turning on,Female,Multiracial, +1493,Conneg_Disneg,20,Non-Hispanic,,Male,White, +1499,Conneg_Disneg,25,Non-Hispanic,,Female,Asian, +1566,Conneg_Disneg,39,Non-Hispanic,The probability of each switch turning on.,Male,Black/African American, +1530,Conneg_Disneg,27,Non-Hispanic,"Trying to maximize points and winning, based on probability of outcomes",Male,Asian, +1518,Conneg_Disneg,52,Non-Hispanic,n/a,Male,White, +1487,Conneg_Disneg,31,Hispanic,I decided my answers based on how I would feel playing such a game.,Male,Asian, +1507,Conneg_Disneg,37,Non-Hispanic,no,Male,White, +1538,Conneg_Disneg,29,Hispanic,what my partner knew,Male,White, +1534,Conneg_Disneg,19,Non-Hispanic,"The whole game seemed predicated on whether a switch would be turned on, so I thought that the blue switch was the most important.",Male,Asian, +1473,Conneg_Disneg,41,Non-Hispanic,,Male,White, +1513,Conneg_Disneg,56,Non-Hispanic,I told my partner based on which had a higher likelihood of being switched on,Female,White, +1546,Conneg_Disneg,37,Non-Hispanic,I know the chances of the blue one turning on is higher so I want Alice to think the blue one needs to be turned off. That will give us the highest chance of both of the switches staying off and us not losing a point,Male,Asian, +1491,Conneg_Disneg,24,Non-Hispanic,,Male,White, +1511,Conneg_Disneg,51,Non-Hispanic,,Female,White, +1536,Conneg_Disneg,35,Non-Hispanic,the conditions that lead to losing a point and the information the other player has and what decision they are making and how that will effect the outcome.,Male,Asian, +1548,Conneg_Disneg,24,Hispanic,logic,Male,White, +1522,Conneg_Disneg,21,Non-Hispanic,The choice with the higher percentage of turning on should be prioritized at all points,Male,Asian, +1540,Conneg_Disneg,30,Non-Hispanic,I was influenced both by the fact that neither of my partners knew the likelihood that a switch would turn on as well as the fact that only 1 switch had to be turned on in the second round to lose a point,Non-binary,White, +1497,Conneg_Disneg,22,Non-Hispanic,Primarily the likelihoods of which switch turning on and off.,Male,White, +1517,Conneg_Disneg,53,Non-Hispanic,BLue was more like to switch on so pick blue all the time Alice. Also this seemed very repetitive and tedious with all the comprehension checks. You should make a real interactive game for future iterations of this study. ,other_gender,White, +1479,Conneg_Disneg,34,Non-Hispanic,I responded with the blue switch being the problem because it has the higher probability of being turned on and therefore the easiest to control. ,Female,White, +1509,Conneg_Disneg,54,Non-Hispanic,I assessed the chances of the blue and orange switches being turned on to make a decision. I looked at the probability of the switches turning on.,Male,White, +1515,Conneg_Disneg,60,Non-Hispanic,common sense,Female,White, +1552,Conneg_Disneg,34,Non-Hispanic,Logic. You always remove the variable with the higher chance of having the outcome you do not want. ,Non-binary,Multiracial, +1568,Conneg_Disneg,21,Non-Hispanic,i just tried to avoid the blue (80% chance) of turning on,Female,Asian, +1542,Conneg_Disneg,24,Non-Hispanic,The percentage that the switch would turn on or off,Female,White, +1489,Conneg_Disneg,47,,"The probability of the switch turning on. +",Male,White, +1524,Conneg_Disneg,21,Non-Hispanic,the percentage of the switches being turned on and off,Female,White, +1532,Conneg_Disneg,19,Non-Hispanic,The percentages influenced my choices.,Male,White, +1475,Conneg_Disneg,36,Non-Hispanic,Just tried to give the best response based on the probability. ,Female,White, +1560,Conneg_Disneg,44,Non-Hispanic,The probability of each switch being on,Female,Multiracial, +1550,Conneg_Disneg,35,Non-Hispanic,I told them of the higher probability of them turning on so they'd likely turn off that switch.,Male,White, +1481,Conneg_Disneg,27,Non-Hispanic,,Female,White, +1495,Conneg_Disneg,40,Non-Hispanic,The blue switch had the biggest influence on what would happen in each round because of it's 80% probability of being in the on position. ,Female,White, +1503,Conneg_Disneg,33,Non-Hispanic,"If I say we lost because the blue switch was on, they will manually turn off the blue switch the next round, which is most advantageous.",Male,White, +1501,Conneg_Disneg,51,Non-Hispanic,The chances influenced me a lot.,Female,White, +1485,Conneg_Disneg,44,,I would always suggest the blue switch because of the higher probability of it turning on since the other player is unaware of the probability of both switches.,Female,White, +1469,Conneg_Disneg,18,Hispanic,,Male,White, \ No newline at end of file diff --git a/code/R/experiments/explanation_selection_negative_outcome-responses.csv b/code/R/experiments/explanation_selection_negative_outcome-responses.csv new file mode 100644 index 0000000..5856201 --- /dev/null +++ b/code/R/experiments/explanation_selection_negative_outcome-responses.csv @@ -0,0 +1,100 @@ +workerid,proliferate.condition,explanation_response_1,explanation_response_2,intervention_response_1,intervention_response_2,error +1510,Disneg_Conneg,blue,no preference,blue,blue, +1512,Disneg_Conneg,blue,no preference,blue,no preference, +1494,Disneg_Conneg,blue,orange,orange,blue, +1527,Disneg_Conneg,no preference,no preference,orange,orange, +1549,Disneg_Conneg,blue,blue,blue,orange, +1565,Disneg_Conneg,blue,no preference,blue,no preference, +1539,Disneg_Conneg,orange,orange,blue,blue, +1559,Disneg_Conneg,no preference,no preference,blue,blue, +1525,Disneg_Conneg,no preference,no preference,blue,blue, +1468,Disneg_Conneg,no preference,orange,blue,orange, +1569,Disneg_Conneg,no preference,no preference,orange,blue, +1535,Disneg_Conneg,blue,no preference,blue,no preference, +1496,Disneg_Conneg,no preference,no preference,blue,blue, +1555,Disneg_Conneg,orange,no preference,blue,orange, +1537,Disneg_Conneg,no preference,no preference,no preference,no preference, +1490,Disneg_Conneg,no preference,no preference,blue,no preference, +1502,Disneg_Conneg,blue,orange,blue,orange, +1561,Disneg_Conneg,blue,no preference,blue,no preference, +1486,Disneg_Conneg,blue,blue,blue,blue, +1563,Disneg_Conneg,no preference,orange,blue,no preference, +1545,Disneg_Conneg,blue,blue,orange,blue, +1474,Disneg_Conneg,no preference,no preference,blue,blue, +1529,Disneg_Conneg,blue,blue,blue,blue, +1570,Disneg_Conneg,no preference,no preference,blue,blue, +1488,Disneg_Conneg,orange,blue,blue,blue, +1498,Disneg_Conneg,no preference,blue,blue,blue, +1519,Disneg_Conneg,blue,no preference,blue,blue, +1541,Disneg_Conneg,no preference,no preference,no preference,blue, +1523,Disneg_Conneg,blue,no preference,blue,no preference, +1553,Disneg_Conneg,blue,orange,blue,blue, +1492,Disneg_Conneg,blue,blue,blue,blue, +1557,Disneg_Conneg,blue,blue,blue,blue, +1482,Disneg_Conneg,no preference,no preference,blue,blue, +1571,Disneg_Conneg,no preference,no preference,blue,orange, +1514,Disneg_Conneg,blue,blue,blue,blue, +1567,Disneg_Conneg,blue,blue,blue,blue, +1472,Disneg_Conneg,blue,no preference,blue,no preference, +1484,Disneg_Conneg,orange,no preference,blue,no preference, +1533,Disneg_Conneg,no preference,orange,blue,orange, +1521,Disneg_Conneg,blue,blue,blue,blue, +1500,Disneg_Conneg,blue,no preference,blue,no preference, +1476,Disneg_Conneg,no preference,no preference,blue,blue, +1480,Disneg_Conneg,blue,no preference,orange,blue, +1506,Disneg_Conneg,no preference,no preference,blue,blue, +1516,Disneg_Conneg,blue,orange,blue,blue, +1531,Disneg_Conneg,blue,orange,blue,orange, +1508,Disneg_Conneg,no preference,no preference,orange,orange, +1470,Disneg_Conneg,blue,no preference,blue,blue, +1547,Disneg_Conneg,blue,blue,blue,blue, +1478,Disneg_Conneg,orange,no preference,blue,orange, +1504,Disneg_Conneg,no preference,no preference,blue,no preference, +1520,Conneg_Disneg,blue,blue,blue,blue, +1554,Conneg_Disneg,orange,blue,blue,blue, +1556,Conneg_Disneg,blue,blue,no preference,no preference, +1505,Conneg_Disneg,blue,no preference,orange,orange, +1483,Conneg_Disneg,no preference,no preference,blue,blue, +1564,Conneg_Disneg,blue,no preference,blue,no preference, +1558,Conneg_Disneg,blue,no preference,blue,blue, +1562,Conneg_Disneg,no preference,no preference,blue,blue, +1471,Conneg_Disneg,no preference,no preference,blue,blue, +1526,Conneg_Disneg,no preference,orange,orange,orange, +1493,Conneg_Disneg,no preference,no preference,blue,blue, +1499,Conneg_Disneg,blue,blue,orange,blue, +1566,Conneg_Disneg,no preference,no preference,blue,blue, +1530,Conneg_Disneg,orange,no preference,blue,blue, +1518,Conneg_Disneg,orange,no preference,blue,no preference, +1487,Conneg_Disneg,no preference,no preference,blue,blue, +1507,Conneg_Disneg,no preference,no preference,no preference,blue, +1538,Conneg_Disneg,no preference,no preference,orange,blue, +1534,Conneg_Disneg,blue,blue,blue,blue, +1473,Conneg_Disneg,no preference,no preference,orange,blue, +1513,Conneg_Disneg,blue,blue,blue,blue, +1546,Conneg_Disneg,no preference,blue,no preference,blue, +1491,Conneg_Disneg,orange,no preference,blue,blue, +1511,Conneg_Disneg,blue,orange,orange,blue, +1536,Conneg_Disneg,orange,no preference,no preference,blue, +1548,Conneg_Disneg,blue,no preference,blue,orange, +1522,Conneg_Disneg,blue,blue,blue,blue, +1540,Conneg_Disneg,blue,no preference,blue,blue, +1497,Conneg_Disneg,orange,blue,blue,blue, +1517,Conneg_Disneg,blue,blue,blue,blue, +1479,Conneg_Disneg,blue,blue,blue,blue, +1509,Conneg_Disneg,orange,orange,blue,orange, +1515,Conneg_Disneg,no preference,no preference,blue,orange, +1552,Conneg_Disneg,blue,blue,blue,blue, +1568,Conneg_Disneg,no preference,blue,orange,blue, +1542,Conneg_Disneg,blue,blue,blue,blue, +1489,Conneg_Disneg,orange,blue,blue,blue, +1524,Conneg_Disneg,blue,blue,blue,blue, +1532,Conneg_Disneg,no preference,no preference,orange,orange, +1475,Conneg_Disneg,blue,no preference,blue,blue, +1560,Conneg_Disneg,no preference,no preference,blue,blue, +1550,Conneg_Disneg,blue,blue,blue,blue, +1481,Conneg_Disneg,blue,no preference,orange,orange, +1495,Conneg_Disneg,blue,blue,blue,blue, +1503,Conneg_Disneg,blue,blue,blue,blue, +1501,Conneg_Disneg,blue,blue,blue,blue, +1485,Conneg_Disneg,blue,blue,blue,blue, +1469,Conneg_Disneg,blue,blue,blue,blue, diff --git a/code/R/experiments/explanation_selection_positive_outcome_study_2-participants.csv b/code/R/experiments/explanation_selection_positive_outcome_study_2-participants.csv new file mode 100644 index 0000000..befb62e --- /dev/null +++ b/code/R/experiments/explanation_selection_positive_outcome_study_2-participants.csv @@ -0,0 +1,100 @@ +workerid,proliferate.condition,age,ethnicity,feedback,gender,race,error +1415,Conpos_Dispos,20,Non-Hispanic,The probability of the switch turning on and whether or not both switches needed to be on ,Non-binary,White, +1429,Conpos_Dispos,23,Non-Hispanic,"logic, i guess",Female,White, +1439,Conpos_Dispos,25,Hispanic,Only thing that factored was weather the other person knew the chance of the switches on.,Male,other_race, +1407,Conpos_Dispos,27,Non-Hispanic,"The factors like, the chances that I knew.",Female,Black/African American, +1393,Conpos_Dispos,45,,,Female,White, +1377,Conpos_Dispos,47,,none,Male,Black/African American, +1400,Conpos_Dispos,51,Non-Hispanic,because either way there would be a win,Female,White, +1435,Conpos_Dispos,44,Non-Hispanic,"In the first choice, given only those two options, I chose to tell Zarah the orange switch was what enabled us to score (even though this wasn't technically true). That way, if she was asked to throw a switch herself, she would choose that one and we'd be more likely to win.",Male,White, +1397,Conpos_Dispos,31,Non-Hispanic,,Male,White, +1417,Conpos_Dispos,37,Non-Hispanic,None,Male,White, +1403,Conpos_Dispos,68,Non-Hispanic,The factor that influenced my response was the probability of the switch turning on or off.,Female,White, +1425,Conpos_Dispos,24,Non-Hispanic,,Male,Asian, +1389,Conpos_Dispos,19,Non-Hispanic,i just went by the facts that were presented to me,Female,White, +1447,Conpos_Dispos,27,Non-Hispanic,first round needed both sitches so it would be better to flip the switch with the lower probability of being on; in the second round it didn't matter since only one switch was needed,Female,White, +1437,Conpos_Dispos,33,Non-Hispanic,,Male,White, +1365,Conpos_Dispos,24,Non-Hispanic,Just a basic understanding of the game - it wasn't super hard to follow.,Female,White, +1375,Conpos_Dispos,26,Hispanic,I don't actually think any of the explanations provided as options are legitimate enough to be a satisfactory answer.,Male,White, +1455,Conpos_Dispos,43,Non-Hispanic,My answers were based on the information that was provided to me.,Male,Asian, +1449,Conpos_Dispos,50,Non-Hispanic,The 80% chance of the switch being on,Female,White, +1359,Conpos_Dispos,66,Non-Hispanic,"I made my best guesses about probability in each scenario. I have never formally studied probability, though. I'm curious about what this study is actually investigating. ",Female,White, +1459,Conpos_Dispos,24,Non-Hispanic,"In the first round I thought about what I was most likely to do with each piece of advice and chose the one that I thought would cause me to turn on the orange switch. In the second one, it did not matter which switch was on, so the explanation itself did not matter as long as it involved one switch being turned on.",Female,White, +1443,Conpos_Dispos,38,Non-Hispanic,I thought about which statement would be more likely to help my game partner.,Female,White, +1369,Conpos_Dispos,71,Non-Hispanic,Just tried to go wth the one with greater probability,Female,White, +1379,Conpos_Dispos,51,,,Female,Asian, +1409,Conpos_Dispos,54,Hispanic,I chose to state that we scored a point because orange switch turned on hoping to influence my teammate to turn on the orange switch if we were ever given an opportunity to do so. The blue switch would switch on 80% of the time.,Male,White, +1427,Conpos_Dispos,39,Non-Hispanic,I thought about the odds of each choice happening and the importance of final result. ,Male,White, +1383,Conpos_Dispos,24,Non-Hispanic,"the factors that influenced me was I always went for the higher percentage of turning the switch on, regardless of only one switch needed to be turned on or not",Female,Black/African American, +1453,Conpos_Dispos,32,Non-Hispanic,the percentage of being turned on.,Female,Asian, +1433,Conpos_Dispos,22,Non-Hispanic,,Female,Asian, +1457,Conpos_Dispos,49,Non-Hispanic,"I tried to respond in a way that nudged the other player to manually turn on the switch with the lower chance of randomly ending up in the ""on"" position.",Female,White, +1423,Conpos_Dispos,26,Hispanic,Just trying to play with the oddds,Male,Multiracial, +1431,Conpos_Dispos,32,Non-Hispanic,,Non-binary,Asian, +1451,Conpos_Dispos,36,Hispanic,I responded based on the information given in the prompts.,Female,Black/African American, +1381,Conpos_Dispos,30,Non-Hispanic,I didn't feel like the information I could provide would really help,Non-binary,White, +1361,Conpos_Dispos,24,Non-Hispanic,THe chance that the would help me win,Female,Black/African American, +1441,Conpos_Dispos,21,Hispanic,probability,Female,Multiracial, +1421,Conpos_Dispos,21,Non-Hispanic,"The probability of each switch turning ""on"" or ""off"" influenced my decisions. ",Female,White, +1385,Conpos_Dispos,61,Non-Hispanic,I looked at the logic given.,Male,White, +1401,Conpos_Dispos,28,Non-Hispanic,The chance of orange being on and as long was it was it was the highest chance of winning.,Male,White, +1405,Conpos_Dispos,37,Non-Hispanic,My only concern was the math or probability behind the chance of winning.,Male,White, +1387,Conpos_Dispos,42,Non-Hispanic,How it would make sense to me. ,Female,White, +1371,Conpos_Dispos,48,Non-Hispanic,,Female,Multiracial, +1419,Conpos_Dispos,46,Non-Hispanic,"The way you win in each scenario was how I decided how to respond (either both switches on or only one on). In the first scenario, I also took the percentage of turning on into account when responding.",Female,White, +1445,Conpos_Dispos,31,Non-Hispanic,Based on the chances of scoring a point is switching on,Male,Black/African American, +1363,Conpos_Dispos,57,Non-Hispanic,I just based it on the information given to me.,Male,White, +1391,Conpos_Dispos,26,Non-Hispanic,probability of each switch turning on,Male,White, +1411,Conpos_Dispos,34,Hispanic,I decided to always turn on the orange switch because it was likely that the blue would turn on anyway.,Male,American Indian/Alaska Native, +1373,Conpos_Dispos,44,Non-Hispanic,"If you can choose to turn either one on, and only one needs to be on, then as long as you turn one on, you will win. Any explination about which one is on is unnecessary.",Male,White, +1367,Conpos_Dispos,34,Non-Hispanic,Tried to consider the odds.,Female,White, +1398,Dispos_Conpos,44,Non-Hispanic,"I'm trying to win. and I know inside information and extra information. So, I'm not going to give extra information that I do not need to increase my chance of winning. ",Male,White, +1396,Dispos_Conpos,31,Non-Hispanic,,Male,White, +1406,Dispos_Conpos,52,Non-Hispanic,Knowing the orange switch only had a 20 percent chance to turn on made it of the upmost performance to make sure my partner turned it on when they had the chance.,Male,White, +1394,Dispos_Conpos,28,Hispanic,,Female,White, +1432,Dispos_Conpos,34,Hispanic,"My interpretation of the instructions influenced how I responded. For example, if both switches came on, then it made sense to me that explaining either one was on to the other player made the most sense, especially since they knew that either one or both had to be on to get a point. + +This was an interesting survey, but a bit strange to me. I thought an actual game would be played in between, didn't realize the entire thing would be about the explanations I chose, so this page came up abruptly, in my opinion.",other_gender,Multiracial, +1442,Dispos_Conpos,55,Non-Hispanic,no,Female,White, +1434,Dispos_Conpos,55,Non-Hispanic,Since the blue switch turns on 80% of the time then telling her the orange switch since it has the least probability of turning on.,Female,White, +1366,Dispos_Conpos,21,Non-Hispanic,I wanted to get the most points and from a probability standpoint switching the orange one on yielding the best result.,Male,White, +1374,Dispos_Conpos,23,Non-Hispanic,,Male,White, +1384,Dispos_Conpos,20,Non-Hispanic,no,Female,Black/African American, +1410,Dispos_Conpos,38,Non-Hispanic,"The blue seems like the greatest asset toward winning any of the rounds, so I would try to aim toward using the blue whenever possible ",Male,White, +1388,Dispos_Conpos,24,Non-Hispanic,The rules of the game (which changed per scenario) influenced my responses. ,Female,Multiracial, +1380,Dispos_Conpos,45,Non-Hispanic,No matter which way you put it the answer still comes out the same vice versa.,Female,White, +1368,Dispos_Conpos,30,Non-Hispanic,reading comprehension and short term memory,Male,White, +1399,Dispos_Conpos,21,Non-Hispanic,how logical each answer seemed,Male,White, +1370,Dispos_Conpos,40,Non-Hispanic,I just used to information given to me.,Male,White, +1372,Dispos_Conpos,31,Non-Hispanic,,Female,Asian, +1358,Dispos_Conpos,40,Non-Hispanic,"If we both got to pick a switch to manually turn on, I'd want to influence Zarah to pick the blue knowing I'd pick the orange to turn on.",Female,White, +1450,Dispos_Conpos,38,Non-Hispanic,"The blue had a much higher chance of being turned ""ON""",Female,White, +1418,Dispos_Conpos,25,Non-Hispanic,"I didn't give them truthful information. I gave them information that would give me the desired result, which is the highest percent chance both switches turn on. ",Male,Multiracial, +1414,Dispos_Conpos,27,Non-Hispanic,I chose based on the facts I was given. I tried picking an answer that would get the other participant to turn on the switch that would benefit us. ,Female,White, +1454,Dispos_Conpos,21,Hispanic,The likely hood of me winning a point was the deciding factor of all my responses. I wanted as many lights on as possible even if that meant that my teammate had slightly less information ,Male,Multiracial, +1408,Dispos_Conpos,23,Hispanic,the probability of the switch turning on influenced my response,Male,White, +1360,Dispos_Conpos,30,Non-Hispanic,,Female,White, +1428,Dispos_Conpos,25,Non-Hispanic,"I have a feeling she would've turned on the blue switch, so bc the orange switch also turned on, we won the point",Female,Asian, +1386,Dispos_Conpos,29,Non-Hispanic,,Female,White, +1402,Dispos_Conpos,32,Non-Hispanic,probability ,Male,White, +1424,Dispos_Conpos,36,Non-Hispanic,I was influenced by the fact that I wanted Zarah to choose the orange switch to turn on in future rounds. By saying orange I put Zarah's focus on the orange switch so Zarah would have a high likelihood of choose the Orange Switch in the future.,Male,White, +1416,Dispos_Conpos,23,Non-Hispanic,"I mean, especially in the second instance, it wouldn't matter which of the three options I chose because it didn't matter which of the switches was on (they both needed to be on) so it would not have benefitted Zarah to hear either explanation, therefore both were equally helpful. Now, if there was an option to explain that the orange was less likely to turn on, that would be helpful, but that wasn't an option.",Female,White, +1362,Dispos_Conpos,54,Hispanic,"The orange switch turning on is far more unlikely and event, so I felt that was the one to include in my explanation.",Male,White, +1461,Dispos_Conpos,24,Non-Hispanic,I tried to turn the switch that was least likely to be turned on otherwise.,Non-binary,American Indian/Alaska Native, +1376,Dispos_Conpos,48,Non-Hispanic,Depending on how many switches needed to be on to win a point was what influenced my response.,Female,White, +1462,Dispos_Conpos,40,Non-Hispanic,What needed done to win the point.,Male,White, +1390,Dispos_Conpos,20,Non-Hispanic,I chose answers logically based on the given situation to maximize the chances of getting a point.,Male,White, +1436,Dispos_Conpos,25,Non-Hispanic,"If shes focused on turning orange on, blue's high probability will handle the rest",Male,White, +1452,Dispos_Conpos,34,Non-Hispanic,I chose an explanation that would likely make my teammate choose the switch that was less likely to turn on.,Male,White, +1440,Dispos_Conpos,29,Non-Hispanic,,Female,White, +1446,Dispos_Conpos,36,Non-Hispanic,I tried to respond in a way that would give the player with less information a hint.,Female,White, +1392,Dispos_Conpos,23,Non-Hispanic,Depending if one or both switches needed to be on,Female,Asian, +1422,Dispos_Conpos,34,Non-Hispanic,"I always play fair so I would inform everyone involved how likely we are to get a point. It was unlikely the orange would turn on the second game, so that is why I would say we won.",Female,White, +1364,Dispos_Conpos,27,,I feel it's more indicative of the blue switch having a higher chance of turning on if I tell my partner that we scored a point because of it.,other_gender,other_race, +1456,Dispos_Conpos,47,Non-Hispanic,The orange switch has a lower probability of being on and needs to be on in order to win,Female,White, +1438,Dispos_Conpos,57,Non-Hispanic,None,Female,White, +1378,Dispos_Conpos,40,Non-Hispanic,The percentage of each switch turning on influenced my decision. By stating that the reason we got a point was because of the orange switch turning on I was trying to hint to the importance of it being on since it had relatively lower odds of turning on.,Female,White, +1430,Dispos_Conpos,50,Non-Hispanic,I tried to give them a better chance of choosing the hardest switch to turn on.,Female,White, +1382,Dispos_Conpos,21,Hispanic,The lower probability led me to attempt to convince my teammate to turn on the orange switch when it was their turn to turn a switch on manually.,Male,Multiracial, +1404,Dispos_Conpos,27,Non-Hispanic,the likelihood of a payout,Male,White, +1426,Dispos_Conpos,36,Non-Hispanic,I went with the higher probability because it mattered more i think.,Male,White, \ No newline at end of file diff --git a/code/R/experiments/explanation_selection_positive_outcome_study_2-responses.csv b/code/R/experiments/explanation_selection_positive_outcome_study_2-responses.csv new file mode 100644 index 0000000..2a97c2e --- /dev/null +++ b/code/R/experiments/explanation_selection_positive_outcome_study_2-responses.csv @@ -0,0 +1,98 @@ +workerid,proliferate.condition,explanation_response_1,explanation_response_2,intervention_response_1,intervention_response_2,error +1415,Conpos_Dispos,orange,no preference,orange,no preference, +1429,Conpos_Dispos,orange,no preference,orange,no preference, +1439,Conpos_Dispos,no preference,no preference,orange,orange, +1407,Conpos_Dispos,blue,orange,blue,orange, +1393,Conpos_Dispos,no preference,no preference,blue,blue, +1377,Conpos_Dispos,no preference,no preference,blue,no preference, +1400,Conpos_Dispos,orange,no preference,orange,orange, +1435,Conpos_Dispos,orange,no preference,orange,no preference, +1397,Conpos_Dispos,orange,no preference,orange,no preference, +1417,Conpos_Dispos,orange,no preference,orange,orange, +1403,Conpos_Dispos,no preference,no preference,orange,no preference, +1425,Conpos_Dispos,blue,no preference,blue,blue, +1389,Conpos_Dispos,no preference,no preference,blue,no preference, +1447,Conpos_Dispos,orange,no preference,orange,no preference, +1437,Conpos_Dispos,orange,orange,blue,blue, +1365,Conpos_Dispos,orange,no preference,orange,no preference, +1375,Conpos_Dispos,orange,no preference,orange,orange, +1455,Conpos_Dispos,blue,no preference,blue,blue, +1449,Conpos_Dispos,no preference,no preference,blue,blue, +1359,Conpos_Dispos,orange,no preference,orange,orange, +1459,Conpos_Dispos,orange,no preference,orange,no preference, +1443,Conpos_Dispos,orange,no preference,orange,no preference, +1369,Conpos_Dispos,blue,blue,blue,blue, +1379,Conpos_Dispos,no preference,no preference,blue,blue, +1409,Conpos_Dispos,orange,orange,orange,no preference, +1427,Conpos_Dispos,orange,no preference,orange,no preference, +1383,Conpos_Dispos,no preference,no preference,blue,blue, +1453,Conpos_Dispos,no preference,blue,blue,no preference, +1433,Conpos_Dispos,orange,no preference,orange,no preference, +1457,Conpos_Dispos,orange,orange,orange,orange, +1423,Conpos_Dispos,orange,no preference,orange,blue, +1431,Conpos_Dispos,blue,orange,blue,orange, +1451,Conpos_Dispos,no preference,no preference,orange,blue, +1381,Conpos_Dispos,no preference,no preference,orange,no preference, +1361,Conpos_Dispos,orange,blue,orange,orange, +1441,Conpos_Dispos,no preference,no preference,orange,orange, +1421,Conpos_Dispos,orange,orange,orange,orange, +1385,Conpos_Dispos,no preference,orange,blue,orange, +1401,Conpos_Dispos,orange,orange,orange,orange, +1405,Conpos_Dispos,orange,no preference,orange,no preference, +1387,Conpos_Dispos,no preference,no preference,no preference,no preference, +1371,Conpos_Dispos,blue,blue,blue,blue, +1419,Conpos_Dispos,orange,no preference,orange,no preference, +1445,Conpos_Dispos,blue,blue,blue,orange, +1363,Conpos_Dispos,no preference,no preference,orange,orange, +1391,Conpos_Dispos,orange,orange,orange,orange, +1411,Conpos_Dispos,orange,orange,orange,orange, +1373,Conpos_Dispos,orange,no preference,orange,no preference, +1367,Conpos_Dispos,no preference,no preference,orange,orange, +1398,Dispos_Conpos,no preference,no preference,blue,blue, +1396,Dispos_Conpos,no preference,orange,no preference,orange, +1406,Dispos_Conpos,orange,orange,orange,orange, +1394,Dispos_Conpos,blue,no preference,blue,blue, +1432,Dispos_Conpos,no preference,no preference,no preference,no preference, +1442,Dispos_Conpos,blue,orange,no preference,blue, +1434,Dispos_Conpos,no preference,orange,orange,orange, +1366,Dispos_Conpos,orange,orange,orange,orange, +1374,Dispos_Conpos,no preference,no preference,orange,orange, +1384,Dispos_Conpos,no preference,no preference,blue,blue, +1410,Dispos_Conpos,blue,blue,blue,blue, +1388,Dispos_Conpos,no preference,blue,orange,orange, +1380,Dispos_Conpos,no preference,no preference,blue,blue, +1368,Dispos_Conpos,blue,blue,blue,blue, +1399,Dispos_Conpos,no preference,no preference,orange,orange, +1370,Dispos_Conpos,blue,no preference,orange,orange, +1372,Dispos_Conpos,no preference,no preference,blue,blue, +1358,Dispos_Conpos,blue,blue,blue,orange, +1450,Dispos_Conpos,blue,blue,blue,blue, +1418,Dispos_Conpos,orange,orange,orange,orange, +1414,Dispos_Conpos,orange,orange,orange,orange, +1454,Dispos_Conpos,orange,orange,no preference,orange, +1408,Dispos_Conpos,orange,orange,orange,orange, +1360,Dispos_Conpos,orange,blue,orange,orange, +1428,Dispos_Conpos,no preference,orange,blue,no preference, +1386,Dispos_Conpos,orange,orange,orange,orange, +1402,Dispos_Conpos,blue,no preference,blue,orange, +1424,Dispos_Conpos,no preference,orange,no preference,orange, +1416,Dispos_Conpos,no preference,no preference,orange,orange, +1362,Dispos_Conpos,no preference,orange,no preference,orange, +1461,Dispos_Conpos,orange,orange,orange,orange, +1376,Dispos_Conpos,blue,no preference,blue,no preference, +1462,Dispos_Conpos,no preference,no preference,orange,orange, +1390,Dispos_Conpos,orange,orange,orange,orange, +1436,Dispos_Conpos,orange,orange,orange,orange, +1452,Dispos_Conpos,orange,orange,orange,orange, +1440,Dispos_Conpos,no preference,no preference,blue,orange, +1446,Dispos_Conpos,orange,no preference,orange,orange, +1392,Dispos_Conpos,blue,no preference,blue,no preference, +1422,Dispos_Conpos,blue,orange,blue,blue, +1364,Dispos_Conpos,blue,blue,orange,orange, +1456,Dispos_Conpos,no preference,orange,no preference,orange, +1438,Dispos_Conpos,no preference,no preference,no preference,blue, +1378,Dispos_Conpos,orange,orange,orange,orange, +1430,Dispos_Conpos,orange,blue,orange,orange, +1382,Dispos_Conpos,orange,orange,orange,orange, +1404,Dispos_Conpos,blue,orange,blue,blue, +1426,Dispos_Conpos,blue,blue,orange,orange, diff --git a/code/R/experiments/fixedint_neg.csv b/code/R/experiments/fixedint_neg.csv new file mode 100644 index 0000000..b8e32e6 --- /dev/null +++ b/code/R/experiments/fixedint_neg.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,17.17171717171717,42.42424242424242,40.4040404040404,20.2020202020202,66.66666666666666,13.131313131313133,negative,fixedint +Disjunctive,8.080808080808081,39.39393939393939,52.52525252525253,10.1010101010101,79.7979797979798,10.1010101010101,negative,fixedint diff --git a/code/R/experiments/fixedint_pos.csv b/code/R/experiments/fixedint_pos.csv new file mode 100644 index 0000000..827a1dc --- /dev/null +++ b/code/R/experiments/fixedint_pos.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,53.535353535353536,9.090909090909092,37.37373737373738,80.8080808080808,11.11111111111111,8.080808080808081,negative,fixedint +Disjunctive,27.27272727272727,18.181818181818183,54.54545454545454,65.65656565656566,12.121212121212121,22.22222222222222,negative,fixedint diff --git a/code/R/experiments/fixedintervention_negative-participants.csv b/code/R/experiments/fixedintervention_negative-participants.csv new file mode 100644 index 0000000..7819441 --- /dev/null +++ b/code/R/experiments/fixedintervention_negative-participants.csv @@ -0,0 +1,101 @@ +workerid,proliferate.condition,age,ethnicity,feedback,gender,race,error +2728,Condition_3,32,Non-Hispanic,The information I had influenced my response. i wanted to make sure that the statistics were lessened if they were high and lower the probability of losing,Female,White, +2658,Condition_3,21,Non-Hispanic,"The instructions were overly complicated, which I only realized at the end confused my answer. ",Female,White, +2717,Condition_3,49,Non-Hispanic,Pushing the blue button has the greater influence on the stated odds,Male,White, +2769,Condition_3,62,Non-Hispanic,I chose because I knew which switch was more likely to be turned on,Female,White, +2719,Condition_3,39,Non-Hispanic,"The percentages on the blue button were much more impactful at 80% of being on vs 20%, so i tried to limit that as much as possible by recommending the blue button be pressed to reduce to 10%. ",Male,White, +2713,Condition_3,51,Non-Hispanic,Blue seemed most likely to be on with 80% ,Female,White, +2748,Condition_3,34,Non-Hispanic,"The wording on the explanation of lowering the on chance % was a bit ambiguous. During the first explanation, I was under the impression pressing the button decreased the on chance BY 10% rather than TO 10%. Had I recognized that, I would have chosen blue so that blue would have 10% on chance and the orange a 20% on chance to optimally minimize the chances of losing a point. ",Male,Multiracial, +2690,Condition_3,31,Non-Hispanic,I decided based on what made the most logical sense to inform the other partner.,Female,White, +2672,Condition_3,62,Non-Hispanic,"The blue switch always has a higher probability of turning on, so if turning on causes point loss it would be best to choose to press blue button to lower probability of on. The orange always has a lower probability of turning on so no need to press the orange button",Female,Black/African American, +2740,Condition_3,33,Hispanic,The percentage of the probability each color would turn on. ,Male,Black/African American, +2675,Condition_3,27,Hispanic,I feel like the obvious answer would be to say because both turned on but I hovered towards blue since it was more likely to turn on,Male,other_race, +2772,Condition_3,29,Hispanic,Doing some math to find the odds,Male,Multiracial, +2757,Condition_3,40,Non-Hispanic,The blue switch needed to be manipulated the most in order to achieve the highest chance of both being off.,Male,White, +2738,Condition_3,51,Non-Hispanic,"I'm not sure I understand what it was about, and I feel quite stupid and pretty sure I messed it up.",Female,White, +2705,Condition_3,30,Non-Hispanic,,Male,White, +2685,Condition_3,67,Non-Hispanic,Just tried to use reasoning,Female,White, +2715,Condition_3,29,Non-Hispanic,What information I and my partner had access to. ,Female,White, +2720,Condition_3,26,Hispanic,Blue's probability of turning on being higher,Female,other_race, +2677,Condition_3,24,Non-Hispanic,I tried my best to be honest with the other participants without being as vague with the answers I was given.,Male,Black/African American, +2727,Condition_3,30,Non-Hispanic,My responses simply depended on if it was true or not. ,Male,White, +2694,Condition_3,59,Non-Hispanic,I mainly looked at the percentage it would take to turn each switch on.,Female,White, +2668,Condition_3,29,Non-Hispanic,factors - just reading and picking the best result and answering the questions. there is still a 50/50 chance of us having the switch on at the same time.,Female,Black/African American, +2733,Condition_3,54,Non-Hispanic,I think the higher percentage of the blue carried more weight in whether it would turn on or not. ,Female,White, +2711,Condition_3,23,Non-Hispanic,The number of switches that had to be on to lose a point changed the way I communicated with my team mate. ,Female,White, +2763,Condition_3,34,Non-Hispanic,"I tried to gt them to understand that having one of the on's could make us loose points,",Female,White, +2752,Condition_3,32,Non-Hispanic,I'd rather them know the full information.,Female,Black/African American, +2759,Condition_3,28,Non-Hispanic,Trying to decrease the probability of losing a point.,Female,White, +2673,Condition_3,21,Non-Hispanic,What I knew vs what the other participant knew,Female,White, +2725,Condition_3,29,Non-Hispanic,,Male,Asian, +2761,Condition_3,33,Non-Hispanic,,Male,White, +2767,Condition_3,34,Non-Hispanic,pressing blue button turned 70% of ON to OFF. pressing orange button turned 10% of ON to OFF.,Non-binary,White, +2735,Condition_3,52,Non-Hispanic,If either switch was on we lose a point point regardless. ,Male,Black/African American, +2660,Condition_3,73,Non-Hispanic,,Female,White, +2771,Condition_3,62,Non-Hispanic,that was fun,Female,White, +2688,Condition_3,35,Hispanic,,Male,other_race, +2755,Condition_3,26,Non-Hispanic,,Male,White, +2753,Condition_3,25,Non-Hispanic,,Female,Asian, +2666,Condition_3,29,Hispanic,"Even though all the explanations were technically correct, I chose the one that would most likely influence the teammate to press the button for the blue switch.",Female,White, +2696,Condition_3,38,Non-Hispanic,Odds of turning on,Male,White, +2681,Condition_3,55,Non-Hispanic,"Instruction +No",Female,Asian, +2662,Condition_3,54,Non-Hispanic,,Female,White, +2692,Condition_3,51,Non-Hispanic,I would guess based on the probablities and discover if my chance was correct.,Male,White, +2683,Condition_3,37,Hispanic,"Very confusing, but I told her it was bc of the blue button, but I don't recall if it was the blue or orange.",Female,White, +2765,Condition_3,66,Non-Hispanic,"If we can't press both buttons, pressing the blue button would more decrease the chances of turning on.",Female,White, +2723,Condition_3,30,Non-Hispanic,,Female,White, +2770,Condition_3,41,Non-Hispanic,"Mostly I'm trying to get my teammate to make the optimal decision by, in either case, depressing the blue button and creating the best odds of not losing points in future rounds.",Male,White, +2707,Condition_3,41,Non-Hispanic,I gave the answer that had the most probability to turn on so they would choose the other color.,Male,White, +2679,Condition_3,29,Non-Hispanic,Only one switch had to be on so it didnt matter.,Female,White, +2698,Condition_3,55,Non-Hispanic,I just tried to explain the results according to my instructions.,Female,White, +2746,Condition_3,24,Hispanic,n/a,Male,other_race, +2750,Condition_3,23,Non-Hispanic,,Female,White, +2742,Condition_3,34,Hispanic,Based on the rules of the game and the info the other player had. I tried to select answers that might give them a hint as to which buttons are more likely to turn on / which button to push next time.,Female,White, +2756,Condition_4,57,Non-Hispanic,I had to evaluate what color button I expected Alice and Zarah to press in the next round. ,Female,White, +2697,Condition_4,55,Non-Hispanic,The 80% chance of the blue switch being on,Female,White, +2731,Condition_4,22,Hispanic,The chances of each switch turning on was the most important factor. Interesting experiment.,Male,White, +2689,Condition_4,26,Non-Hispanic,I focused on the percentages of probability that the switches would turn on to determine my answer.s,Female,White, +2743,Condition_4,71,,the 80 vs 20 odds,Male,White, +2745,Condition_4,28,Non-Hispanic,The language was slightly confusing ,Female,White, +2661,Condition_4,65,Non-Hispanic,,Female,White, +2749,Condition_4,21,Non-Hispanic,I noticed the change in percentages between the two variables and tried to make my best judgment accordingly ,Male,White, +2710,Condition_4,29,Non-Hispanic,"placing emphasis on which switch has a higher likelyhood of turning on, so that pushing its button would have the most effect",Male,White, +2676,Condition_4,33,Non-Hispanic,no,Male,White, +2768,Condition_4,43,Non-Hispanic,what I learned from the game,Female,White, +2684,Condition_4,32,Hispanic,Had to pay close attention to the game instructions. ,Female,White, +2724,Condition_4,68,Non-Hispanic,not sure and no68,Female,White, +2712,Condition_4,21,Non-Hispanic,,Female,White, +2706,Condition_4,56,Non-Hispanic,no,Female,White, +2739,Condition_4,62,Non-Hispanic,"Pressing the blue switch greatly increased the probability that the blue switch would not turn on if pressed, but only increased the odds re the orange switch not turning on a comparatively small amount. ",Female,White, +2691,Condition_4,37,Non-Hispanic,"The factors that made the biggest difference was percentages of the switches turning on, and how helpful any given explanation to the other player would be.",Male,White, +2695,Condition_4,51,Non-Hispanic,I just tried to remember it was better if the blue button was on.,Female,White, +2703,Condition_4,32,Non-Hispanic,The math of it,Male,White, +2686,Condition_4,30,Non-Hispanic,My understanding on probability determined how I decided to respond.,Female,White, +2665,Condition_4,20,Hispanic,The percentages of turning off and on,Female,White, +2667,Condition_4,25,Non-Hispanic,"I want to influence the decision they make in order to avoid losing points. So I would want them to focus on the blue switch for the next round, so I would tell them it was the blue one no matter what",Female,White, +2659,Condition_4,22,Non-Hispanic,I'm not. sure if anything really influenced how I responded,Female,Black/African American, +2762,Condition_4,51,Non-Hispanic,I read the instructions carefully and took my time to answer the questions carefully. ,Male,White, +2751,Condition_4,38,Non-Hispanic,Because either answer would have worked. i have no questions.,Female,White, +2722,Condition_4,36,Non-Hispanic,"In both instances it still makes the most sense to lower the chance of the blue switch turning on, so that's what I chose. ",Female,White, +2716,Condition_4,22,Non-Hispanic,,Female,Asian, +2734,Condition_4,22,Non-Hispanic,,Female,Asian, +2760,Condition_4,39,Non-Hispanic,My undiagnosed ADHD brain was drowning in the word soup so I was just gambling.,Male,Multiracial, +2736,Condition_4,26,Non-Hispanic,i responded in a way that i thought would influence my partner to make the choice that would produce the best odds for us to win,Female,White, +2678,Condition_4,32,Hispanic,I am not really sure. I guess it just depended on my mood.,Female,other_race, +2680,Condition_4,66,Non-Hispanic,The percentages allowed me to somewhat predict the outcome of the game. My partners knew some of the information but not as much as I did. ,Female,White, +2708,Condition_4,27,Non-Hispanic,,Non-binary,White, +2754,Condition_4,31,Hispanic,I responded based on probability and which choices would give us the best chance to win in my eyes.,Male,other_race, +2766,Condition_4,28,Non-Hispanic,,Female,White, +2669,Condition_4,45,,The orange switch was the one I was counting on to stay off. I knew it was more likely that the blue switch would turn on and I was trying to prevent the orange switch from turning on,Female,White, +2729,Condition_4,27,Non-Hispanic,Just using inferences and the explanation of the game from the previous pages. ,Male,White, +2699,Condition_4,29,Non-Hispanic,,Male,White, +2657,Condition_4,25,Hispanic,repeatability,Male,White, +2663,Condition_4,23,Non-Hispanic,"nothing really influenced my answers except for what made sense in that moment. In the first section with ""Alice"" one of the questions mentions ""Zara"" before we knew of her ",Female,White, +2704,Condition_4,56,Non-Hispanic,I responded based on the instructions and the probability of each switch turning on.,Female,White, +2764,Condition_4,23,,"I chose blue even though it was either or both switches in hopes that she would associate losing a point with blue and hit the blue button, since in both rounds blue was the better option to reduce to 10%",Male,White, +2671,Condition_4,34,Non-Hispanic,,Male,White, +2732,Condition_4,59,Non-Hispanic,The fact that in the first round only one button needed to turn on to lose a point but in the next round two buttons must be turned on to lose a point.,Female,White, +2747,Condition_4,52,Non-Hispanic,,Female,White, +2693,Condition_4,29,Non-Hispanic,,Female,White, +2726,Condition_4,42,Non-Hispanic,I tried to factor in the percentages of turning on/off when making my decisions,Female,Multiracial, \ No newline at end of file diff --git a/code/R/experiments/fixedintervention_negative-responses.csv b/code/R/experiments/fixedintervention_negative-responses.csv new file mode 100644 index 0000000..b87bb9f --- /dev/null +++ b/code/R/experiments/fixedintervention_negative-responses.csv @@ -0,0 +1,100 @@ +workerid,proliferate.condition,explanation_response_1,explanation_response_2,intervention_response_1,intervention_response_2,error +2728,Condition_3,no preference,no preference,blue,no preference, +2658,Condition_3,no preference,blue,no preference,blue, +2717,Condition_3,blue,blue,blue,blue, +2769,Condition_3,blue,blue,blue,blue, +2719,Condition_3,blue,blue,blue,blue, +2713,Condition_3,no preference,no preference,blue,blue, +2748,Condition_3,no preference,no preference,orange,blue, +2690,Condition_3,orange,blue,orange,blue, +2672,Condition_3,blue,blue,no preference,blue, +2740,Condition_3,blue,blue,blue,blue, +2675,Condition_3,blue,blue,blue,blue, +2772,Condition_3,orange,orange,blue,blue, +2757,Condition_3,blue,blue,blue,blue, +2738,Condition_3,blue,blue,blue,blue, +2705,Condition_3,orange,no preference,no preference,blue, +2685,Condition_3,blue,blue,blue,blue, +2715,Condition_3,no preference,no preference,blue,blue, +2720,Condition_3,blue,blue,blue,blue, +2677,Condition_3,no preference,no preference,orange,blue, +2727,Condition_3,no preference,no preference,blue,blue, +2694,Condition_3,orange,orange,blue,blue, +2668,Condition_3,orange,orange,no preference,blue, +2733,Condition_3,orange,no preference,orange,blue, +2711,Condition_3,orange,blue,blue,blue, +2763,Condition_3,no preference,no preference,blue,blue, +2752,Condition_3,no preference,no preference,orange,blue, +2759,Condition_3,no preference,no preference,blue,blue, +2673,Condition_3,no preference,blue,orange,blue, +2725,Condition_3,no preference,no preference,blue,blue, +2761,Condition_3,blue,blue,blue,blue, +2767,Condition_3,blue,blue,blue,blue, +2735,Condition_3,blue,no preference,blue,blue, +2660,Condition_3,no preference,no preference,orange,no preference, +2771,Condition_3,no preference,no preference,orange,blue, +2688,Condition_3,orange,no preference,no preference,no preference, +2755,Condition_3,blue,blue,blue,blue, +2753,Condition_3,orange,no preference,blue,blue, +2666,Condition_3,blue,blue,blue,blue, +2696,Condition_3,no preference,blue,blue,blue, +2681,Condition_3,no preference,no preference,blue,no preference, +2662,Condition_3,blue,no preference,blue,blue, +2692,Condition_3,no preference,no preference,orange,blue, +2683,Condition_3,blue,blue,orange,orange, +2765,Condition_3,blue,blue,blue,blue, +2723,Condition_3,blue,no preference,blue,blue, +2770,Condition_3,blue,blue,blue,blue, +2707,Condition_3,blue,orange,orange,orange, +2679,Condition_3,blue,no preference,blue,blue, +2698,Condition_3,blue,no preference,blue,blue, +2746,Condition_3,blue,orange,orange,orange, +2750,Condition_3,no preference,no preference,orange,blue, +2742,Condition_3,blue,blue,blue,blue, +2756,Condition_4,no preference,orange,blue,blue, +2697,Condition_4,blue,blue,blue,blue, +2731,Condition_4,blue,blue,blue,blue, +2689,Condition_4,no preference,no preference,blue,blue, +2743,Condition_4,blue,blue,blue,blue, +2745,Condition_4,no preference,no preference,no preference,no preference, +2661,Condition_4,no preference,no preference,blue,blue, +2749,Condition_4,orange,blue,orange,blue, +2710,Condition_4,blue,blue,blue,blue, +2676,Condition_4,blue,no preference,blue,blue, +2768,Condition_4,no preference,no preference,blue,blue, +2684,Condition_4,no preference,no preference,no preference,blue, +2724,Condition_4,no preference,no preference,blue,blue, +2712,Condition_4,no preference,no preference,blue,blue, +2706,Condition_4,no preference,orange,blue,blue, +2739,Condition_4,blue,blue,blue,blue, +2691,Condition_4,no preference,no preference,blue,blue, +2695,Condition_4,orange,orange,blue,blue, +2703,Condition_4,no preference,orange,blue,no preference, +2686,Condition_4,no preference,no preference,orange,orange, +2665,Condition_4,blue,orange,blue,orange, +2667,Condition_4,blue,blue,blue,blue, +2659,Condition_4,blue,blue,blue,blue, +2762,Condition_4,no preference,no preference,blue,blue, +2751,Condition_4,no preference,no preference,blue,blue, +2722,Condition_4,blue,blue,blue,blue, +2716,Condition_4,no preference,no preference,blue,orange, +2734,Condition_4,blue,blue,blue,blue, +2760,Condition_4,no preference,no preference,no preference,no preference, +2736,Condition_4,blue,blue,blue,blue, +2678,Condition_4,blue,no preference,orange,blue, +2680,Condition_4,no preference,no preference,blue,orange, +2708,Condition_4,no preference,no preference,blue,blue, +2754,Condition_4,orange,no preference,blue,blue, +2766,Condition_4,blue,blue,blue,blue, +2669,Condition_4,no preference,orange,blue,orange, +2729,Condition_4,blue,blue,orange,orange, +2699,Condition_4,no preference,orange,orange,no preference, +2657,Condition_4,no preference,no preference,no preference,no preference, +2663,Condition_4,no preference,orange,orange,no preference, +2704,Condition_4,no preference,no preference,blue,blue, +2764,Condition_4,blue,blue,blue,blue, +2671,Condition_4,no preference,no preference,blue,blue, +2732,Condition_4,no preference,no preference,no preference,no preference, +2747,Condition_4,no preference,blue,no preference,no preference, +2693,Condition_4,no preference,blue,orange,blue, +2726,Condition_4,no preference,blue,blue,orange, \ No newline at end of file diff --git a/code/R/experiments/fixedintervention_positive-participants.csv b/code/R/experiments/fixedintervention_positive-participants.csv new file mode 100644 index 0000000..dc0fdd2 --- /dev/null +++ b/code/R/experiments/fixedintervention_positive-participants.csv @@ -0,0 +1,100 @@ +workerid,proliferate.condition,age,ethnicity,feedback,gender,race,error +2609,Condition1,30,Non-Hispanic,I just used the knowledge I was given from the instructions,Female,White, +2575,Condition1,45,Non-Hispanic,,Female,White, +2569,Condition1,61,Non-Hispanic,I picked the answers that logically made sense to me.,Female,White, +2595,Condition1,27,Non-Hispanic,I thought about what made most sense given the scenraio.,Male,Multiracial, +2537,Condition1,49,Non-Hispanic,I just made my responses based on how it would get the other partcipant to press the button that would increase our chances most.,Female,White, +2607,Condition1,26,Non-Hispanic,The aggregate probabilities of desirable outcomes.,Male,White, +2635,Condition1,26,Non-Hispanic,,Male,Black/African American, +2555,Condition1,33,Non-Hispanic,"The probability of both colors to be switched ""On"" was the driving factor behind the way I chose to respond. Because the blue already had a high probability to switch on, it was important to give the orange color the boost by pushing the button so that it too had a high probability to switch on. ",Female,White, +2626,Condition1,20,Non-Hispanic,None,Male,Multiracial, +2611,Condition1,27,Non-Hispanic,"I was trying to have the highest possibility of one or both of the lights turning on, depending on what was needed. ",Non-binary,White, +2543,Condition1,35,Non-Hispanic,I was trying to simplify my responses as easily as possible.,Non-binary,White, +2622,Condition1,48,Non-Hispanic,This was interesting!,Female,White, +2630,Condition1,30,Non-Hispanic,"Since both switches were on both times, it didn't matter what the probability was. Both switches being on gave us points, regardless of the color. ",Female,White, +2579,Condition1,25,Non-Hispanic,n/a,Female,White, +2620,Condition1,53,Non-Hispanic,I chose the third option because it was accurate.,Male,White, +2563,Condition1,28,Non-Hispanic,"I often pressed the orange button to increase the probability to 90% because I knew the blue switch would still have a high probability of 80%. No, I have no more questions nor comments. ",Female,White, +2571,Condition1,38,Non-Hispanic,"In the first one I said orange one turned on because it was more vital for the orange to turn on due to the low chance without the button pressed. The second one, just needed one to turn on so it was okay to say because either one turned on. ",Male,White, +2593,Condition1,22,Non-Hispanic,I tried to think logically about the probability and how it would or would not change with each scenario.,Female,White, +2632,Condition1,57,Non-Hispanic,I was influenced by the higher percentages. No additional comments.,Male,Black/African American, +2615,Condition1,42,Non-Hispanic,The best one to score points,Male,White, +2616,Condition1,25,Non-Hispanic,Depending on the rules to earn points is how i responded,Female,Black/African American, +2605,Condition1,50,Non-Hispanic,Tried to follow the instructions and make percentages better,Male,White, +2640,Condition1,65,Non-Hispanic,"In both cases, it improves chances of winning significantly if the orange switch probability goes from 20% to 90%. I'd answer the question ""because the orange switch..."" to signal my partner that she should press the orange button in the next round.",Male,White, +2591,Condition1,26,Non-Hispanic,I choose the most straight forward answer,Female,Asian, +2561,Condition1,32,Hispanic,,Male,White, +2547,Condition1,27,Hispanic,,Female,Asian, +2624,Condition1,31,Non-Hispanic,what was written in the descriptions influenced how I answered. ,Female,White, +2585,Condition1,24,Non-Hispanic,,Female,White, +2618,Condition1,34,Non-Hispanic,,Male,White, +2549,Condition1,24,Hispanic,,Female,White, +2603,Condition1,20,Non-Hispanic,,Female,Black/African American, +2581,Condition1,19,Non-Hispanic,,Male,White, +2599,Condition1,19,Non-Hispanic,My judgement,Male,White, +2634,Condition1,23,Non-Hispanic,"I was trying to choose the option that would lead to her being more likely to press the orange button. I considered that she might think that the orange switch doesn't need any extra manipulation if I told her that we won because of it. I decided to still go with that option though because I thought it would be more likely that she would want the orange switch to keep turning on, leading to her pressing the orange button instead of the blue one.",Female,White, +2573,Condition1,28,Non-Hispanic,I wanted to encourage them to click the orange button so they probability of both switches would be high,Female,White, +2557,Condition1,21,Non-Hispanic,I was influenced by the percentages for each lever and how much the other person knew,Female,White, +2559,Condition1,20,Non-Hispanic,I chose to explain that the orange one caused the win; I thought this would influence my teammate to increase winning chances further by pressing the orange button. Pressing it is always the best choice (both switches needed and one switch needed).,Male,Asian, +2551,Condition1,55,Non-Hispanic,The probability was always higher with the blue button.,Female,Black/African American, +2553,Condition1,34,Non-Hispanic,I responded based on my own judgements and on the information provided. I felt that the experiment was asymmetrically favored to make the player push the button that had the higher probability. ,Male,Asian, +2589,Condition1,41,Non-Hispanic,"I just went for the best odds, and if something had fewer odds of being turned ""on"", I tried to respond in a way which would encourage my teammate to push that button to increase it's odds.",Female,White, +2639,Condition1,39,Non-Hispanic,Depending on what the other person knew ,Female,White, +2583,Condition1,26,Non-Hispanic,"I responded based on what seemed like it was most likely to get the best outcome, which was usually pressing the orange button.",Male,White, +2587,Condition1,23,Non-Hispanic,,Female,White, +2613,Condition1,28,Non-Hispanic,The button was basically an easy chance to have both switches on no matter the round.,Male,White, +2539,Condition1,41,Non-Hispanic,,Male,White, +2545,Condition1,27,Non-Hispanic,I felt like the options were both technically right. No questions.,Female,White, +2577,Condition1,40,Hispanic,so i guess this was to see if the rules of the game were easy to understand.,Male,White, +2597,Condition1,22,Non-Hispanic,"I thought mentioning orange as the one that helped us gain a point would be better regardless of the situation, as it was the one with the lower percentage. If they thought we won because of the orange switch turning on, they'd be more likely to press the orange button next time.",Male,White, +2565,Condition1,30,Non-Hispanic,the overall probability of winning the game and how to tell my teammate how to win,Female,White, +2637,Condition1,22,Non-Hispanic,the probability of winning,Female,White, +2572,Condition2,24,Non-Hispanic,,Female,Black/African American, +2606,Condition2,27,Hispanic,,Male,Multiracial, +2552,Condition2,24,Non-Hispanic,,Male,White, +2592,Condition2,45,Non-Hispanic,We are better off pressing the orange switch.,Male,White, +2602,Condition2,30,Non-Hispanic,I chose the easiest explanation. It didn't matter if my teammate knew all the rules because the outcome wouldn't change.,Female,Black/African American, +2594,Condition2,33,Non-Hispanic,I answered based on probabilities. ,Female,White, +2612,Condition2,31,Non-Hispanic,It was less likely for the orange switch to turn on. ,Male,Black/African American, +2590,Condition2,25,Hispanic,I want to see which is optimal and which is the best explanation.,Male,Multiracial, +2548,Condition2,29,Non-Hispanic,The experiment is really educative,Male,White, +2614,Condition2,39,Non-Hispanic,Neither answer was true in the last round. Both had to be on,Male,White, +2584,Condition2,29,Non-Hispanic,I gave the switch color that had more impact on the outcome.,Female,Asian, +2617,Condition2,58,Non-Hispanic,the instructions provided. no questions,Male,White, +2542,Condition2,27,Non-Hispanic,Explaining that the we won because a certain switch was on was a true explanation to give. ,Female,White, +2568,Condition2,28,Non-Hispanic,,Male,White, +2574,Condition2,42,Non-Hispanic,I tried to go by the information that I read.,Female,Black/African American, +2604,Condition2,31,Non-Hispanic,The main factor for me was that the orange button definitely needs the button pressed to have a higher chance of winning.,Female,Multiracial, +2562,Condition2,37,Non-Hispanic,,Female,White, +2560,Condition2,51,Non-Hispanic,I would respond that the orange switch was more important to try to influence the other player to click the orange button even if they didn't understand why. ,Male,White, +2558,Condition2,21,Non-Hispanic,the likelihood of a switch turning on helped me decide my response.,Female,Asian, +2638,Condition2,32,Non-Hispanic,"Obviously in both instances you wanted to have the best probability that both switches could in fact turn on, so I wanted to maximize my chances of that. I do believe I misclicked on the last occasion that I was asked about that, I meant to say that I would click the button to turn the orange switch to on, that way there would be the highest probability of both switches turning on. Regardless, it was mainly important to achieve the highest percentage probability that both switches would turn on.",Male,White, +2619,Condition2,67,Non-Hispanic,that one was always 90% chance of winning and it didn't really matter which one,Female,White, +2610,Condition2,28,Hispanic,To quickly persuade the person to make the smarter choice. ,Male,White, +2629,Condition2,25,Non-Hispanic,I wanted to subtly imply to my teammate that the orange switch turning on is more critically important because it has a lower probability.,Female,Black/African American, +2546,Condition2,54,Non-Hispanic,I selected what I thought was the most significant fact,Female,Multiracial, +2582,Condition2,31,Non-Hispanic,,Female,White, +2550,Condition2,42,Non-Hispanic,,Male,White, +2564,Condition2,36,Non-Hispanic,chose the lower chance because I thought there would be more opportunity ,Male,Asian, +2598,Condition2,41,Non-Hispanic,Trying to maximize chance of positive outcome,Male,White, +2576,Condition2,38,Non-Hispanic,"Because the blue switch is more likely to be on, saying the orange switch needs to be on makes them more likely to press the orange button, thus improving the overall odds.",Male,White, +2608,Condition2,22,Non-Hispanic,The factors was mostly if both sides managed to go to the on side which would have gotten the win.,Male,White, +2631,Condition2,24,Non-Hispanic,,Female,Black/African American, +2556,Condition2,43,Non-Hispanic,"The only factors that influenced how I chose to respond were my own reasoning skills, whether that was good or bad. I do not have any questions or comments regarding this study.",Female,White, +2627,Condition2,21,Non-Hispanic,,Male,White, +2580,Condition2,,,the button pressing moving it up to 90%. if either of the people press the orange button it dramatically increases the chances,other_gender,other_race, +2621,Condition2,41,Non-Hispanic,I tried to think about what information my partner would need to press the correct button on a second turn.,Female,White, +2578,Condition2,33,Non-Hispanic,,Male,White, +2554,Condition2,39,Non-Hispanic,I was just thinking about emphasizing the orange switch so the teammate would be more likely to press the orange button,Non-binary,White, +2633,Condition2,35,Non-Hispanic,,Male,White, +2623,Condition2,24,Non-Hispanic,If the information I can provide would be helpful to my partner.,Male,Asian, +2570,Condition2,30,Non-Hispanic,I answered any way I could to try and get my teammate to press the button that turned the orange switch to a likelihood of 90% turning on since the blue switch was already highly likely to turn on. ,Female,White, +2566,Condition2,29,Hispanic,Both answers sounded fair since both options needed to be on it wouldn't make sense to say one color had the most impact,Male,other_race, +2536,Condition2,24,Non-Hispanic,"The blue switch already had an 80% chance of turning on which is pretty high, whereas the orange only had 20%. If I could increase the orange to 90%, then I would have an 80% and a 90% which significantly increases the likelihood of winning points. Each decision I made was to try and influence my partner to choose the button for the orange switch",Female,White, +2588,Condition2,27,Hispanic,"In other rounds it would be better for my teammate to select the blue switch, so it would be best to say that even if it's not the whole story.",Male,White, +2586,Condition2,26,Non-Hispanic,,Female,Multiracial, +2544,Condition2,32,Non-Hispanic,N/A - Just what I thought was acceptable.,Female,White, +2540,Condition2,57,Non-Hispanic,,Male,White, +2600,Condition2,49,Non-Hispanic,"Trying to play the odds. In the latter example, Zarah could be directed to choose the orange button if she thinks that was the reason we got a point even though both need to be ""on"" to get a point.",Male,White, +2596,Condition2,58,Non-Hispanic,read the directions,Female,White, +2636,Condition2,36,Non-Hispanic,I just determine what will give us the highest probability of winning and go by that. ,Female,White, diff --git a/code/R/experiments/fixedintervention_positive-responses.csv b/code/R/experiments/fixedintervention_positive-responses.csv new file mode 100644 index 0000000..2761e99 --- /dev/null +++ b/code/R/experiments/fixedintervention_positive-responses.csv @@ -0,0 +1,100 @@ +workerid,proliferate.condition,explanation_response_1,explanation_response_2,intervention_response_1,intervention_response_2,error +2609,Condition1,blue,no preference,blue,blue, +2575,Condition1,orange,no preference,orange,orange, +2569,Condition1,no preference,no preference,orange,no preference, +2595,Condition1,orange,no preference,orange,orange, +2537,Condition1,orange,no preference,orange,orange, +2607,Condition1,orange,orange,orange,no preference, +2635,Condition1,no preference,no preference,orange,no preference, +2555,Condition1,orange,orange,orange,blue, +2626,Condition1,orange,no preference,orange,orange, +2611,Condition1,orange,orange,orange,orange, +2543,Condition1,orange,orange,orange,orange, +2622,Condition1,no preference,no preference,orange,orange, +2630,Condition1,no preference,no preference,orange,no preference, +2579,Condition1,no preference,no preference,orange,orange, +2620,Condition1,no preference,no preference,orange,orange, +2563,Condition1,no preference,no preference,orange,orange, +2571,Condition1,orange,no preference,orange,orange, +2593,Condition1,orange,orange,orange,orange, +2632,Condition1,no preference,blue,blue,blue, +2615,Condition1,blue,blue,blue,blue, +2616,Condition1,orange,no preference,orange,orange, +2605,Condition1,orange,no preference,orange,orange, +2640,Condition1,orange,orange,orange,orange, +2591,Condition1,blue,blue,blue,blue, +2561,Condition1,no preference,no preference,no preference,orange, +2547,Condition1,blue,no preference,orange,no preference, +2624,Condition1,no preference,no preference,no preference,no preference, +2585,Condition1,orange,no preference,orange,no preference, +2618,Condition1,no preference,no preference,orange,no preference, +2549,Condition1,orange,no preference,orange,orange, +2603,Condition1,orange,no preference,orange,no preference, +2581,Condition1,no preference,no preference,no preference,no preference, +2599,Condition1,orange,no preference,orange,orange, +2634,Condition1,orange,orange,orange,orange, +2573,Condition1,orange,orange,orange,orange, +2557,Condition1,orange,orange,orange,no preference, +2559,Condition1,orange,orange,orange,orange, +2551,Condition1,no preference,blue,blue,blue, +2553,Condition1,orange,no preference,orange,orange, +2589,Condition1,orange,no preference,orange,no preference, +2639,Condition1,no preference,no preference,orange,orange, +2583,Condition1,orange,orange,orange,orange, +2587,Condition1,no preference,no preference,blue,blue, +2613,Condition1,orange,no preference,orange,orange, +2539,Condition1,orange,no preference,orange,no preference, +2545,Condition1,no preference,no preference,orange,orange, +2577,Condition1,no preference,no preference,no preference,no preference, +2597,Condition1,orange,orange,orange,orange, +2565,Condition1,orange,no preference,orange,orange, +2637,Condition1,orange,blue,orange,blue, +2572,Condition2,no preference,no preference,orange,orange, +2606,Condition2,blue,orange,orange,orange, +2552,Condition2,blue,no preference,orange,orange, +2592,Condition2,orange,orange,orange,orange, +2602,Condition2,no preference,no preference,no preference,no preference, +2594,Condition2,no preference,no preference,orange,orange, +2612,Condition2,no preference,orange,orange,orange, +2590,Condition2,no preference,no preference,orange,orange, +2548,Condition2,blue,no preference,no preference,blue, +2614,Condition2,no preference,no preference,orange,orange, +2584,Condition2,blue,orange,orange,orange, +2617,Condition2,no preference,no preference,orange,orange, +2542,Condition2,no preference,no preference,orange,orange, +2568,Condition2,blue,orange,no preference,orange, +2574,Condition2,no preference,blue,no preference,blue, +2604,Condition2,orange,orange,orange,orange, +2562,Condition2,orange,orange,orange,orange, +2560,Condition2,orange,orange,orange,orange, +2558,Condition2,no preference,no preference,blue,blue, +2638,Condition2,blue,no preference,orange,blue, +2619,Condition2,no preference,no preference,no preference,orange, +2610,Condition2,blue,orange,blue,orange, +2629,Condition2,orange,orange,orange,orange, +2546,Condition2,blue,orange,no preference,orange, +2582,Condition2,orange,orange,orange,orange, +2550,Condition2,no preference,no preference,orange,orange, +2564,Condition2,orange,orange,orange,orange, +2598,Condition2,orange,orange,orange,orange, +2576,Condition2,orange,orange,orange,orange, +2608,Condition2,no preference,no preference,orange,orange, +2631,Condition2,blue,blue,blue,blue, +2556,Condition2,orange,orange,orange,orange, +2627,Condition2,no preference,no preference,orange,orange, +2580,Condition2,orange,orange,orange,orange, +2621,Condition2,orange,orange,orange,orange, +2578,Condition2,blue,orange,orange,orange, +2554,Condition2,orange,orange,orange,orange, +2633,Condition2,blue,orange,orange,orange, +2623,Condition2,no preference,no preference,orange,orange, +2570,Condition2,blue,blue,orange,orange, +2566,Condition2,no preference,no preference,orange,orange, +2536,Condition2,orange,orange,orange,orange, +2588,Condition2,blue,blue,no preference,no preference, +2586,Condition2,no preference,blue,orange,orange, +2544,Condition2,no preference,no preference,blue,no preference, +2540,Condition2,orange,orange,orange,orange, +2600,Condition2,no preference,orange,orange,orange, +2596,Condition2,no preference,no preference,no preference,no preference, +2636,Condition2,no preference,no preference,orange,orange, diff --git a/code/R/experiments/grateful-refs.bib b/code/R/experiments/grateful-refs.bib new file mode 100644 index 0000000..f1f3e55 --- /dev/null +++ b/code/R/experiments/grateful-refs.bib @@ -0,0 +1,118 @@ +@Manual{base, +title = {{R}: A Language and Environment for Statistical Computing}, + author = {{R Core Team}}, + organization = {R Foundation for Statistical Computing}, + address = {Vienna, Austria}, + year = {2023}, + url = {https://www.R-project.org/}, +} +@Manual{bookdown2023, +title = {{bookdown}: Authoring Books and Technical Documents with R Markdown}, + author = {Yihui Xie}, + year = {2023}, + note = {R package version 0.37}, + url = {https://github.com/rstudio/bookdown}, +} + +@Book{bookdown2016, +title = {{bookdown}: Authoring Books and Technical Documents with {R} Markdown}, + author = {Yihui Xie}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2016}, + isbn = {978-1138700109}, + url = {https://bookdown.org/yihui/bookdown}, +} +@Manual{janitor, +title = {{janitor}: Simple Tools for Examining and Cleaning Dirty Data}, + author = {Sam Firke}, + year = {2023}, + note = {R package version 2.2.0}, + url = {https://CRAN.R-project.org/package=janitor}, +} +@Manual{knitr2023, +title = {{knitr}: A General-Purpose Package for Dynamic Report Generation in R}, + author = {Yihui Xie}, + year = {2023}, + note = {R package version 1.45}, + url = {https://yihui.org/knitr/}, +} + +@Book{knitr2015, + title = {Dynamic Documents with {R} and knitr}, + author = {Yihui Xie}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2015}, + edition = {2nd}, + note = {ISBN 978-1498716963}, + url = {https://yihui.org/knitr/}, +} + +@InCollection{knitr2014, + booktitle = {Implementing Reproducible Computational Research}, + editor = {Victoria Stodden and Friedrich Leisch and Roger D. Peng}, +title = {{knitr}: A Comprehensive Tool for Reproducible Research in {R}}, + author = {Yihui Xie}, + publisher = {Chapman and Hall/CRC}, + year = {2014}, + note = {ISBN 978-1466561595}, +} +@Manual{Metrics, +title = {{Metrics}: Evaluation Metrics for Machine Learning}, + author = {Ben Hamner and Michael Frasco}, + year = {2018}, + note = {R package version 0.1.4}, + url = {https://CRAN.R-project.org/package=Metrics}, +} +@Manual{patchwork, +title = {{patchwork}: The Composer of Plots}, + author = {Thomas Lin Pedersen}, + year = {2024}, + note = {R package version 1.2.0}, + url = {https://CRAN.R-project.org/package=patchwork}, +} +@Manual{rmarkdown2023, +title = {{rmarkdown}: Dynamic Documents for R}, + author = {JJ Allaire and Yihui Xie and Christophe Dervieux and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang and Richard Iannone}, + year = {2023}, + note = {R package version 2.25}, + url = {https://github.com/rstudio/rmarkdown}, +} + +@Book{rmarkdown2018, + title = {R Markdown: The Definitive Guide}, + author = {Yihui Xie and J.J. Allaire and Garrett Grolemund}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2018}, + isbn = {9781138359338}, + url = {https://bookdown.org/yihui/rmarkdown}, +} + +@Book{rmarkdown2020, + title = {R Markdown Cookbook}, + author = {Yihui Xie and Christophe Dervieux and Emily Riederer}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2020}, + isbn = {9780367563837}, + url = {https://bookdown.org/yihui/rmarkdown-cookbook}, +} +@Manual{scales, +title = {{scales}: Scale Functions for Visualization}, + author = {Hadley Wickham and Thomas Lin Pedersen and Dana Seidel}, + year = {2023}, + note = {R package version 1.3.0}, + url = {https://CRAN.R-project.org/package=scales}, +} +@Article{tidyverse, + title = {Welcome to the {tidyverse}}, + author = {Hadley Wickham and Mara Averick and Jennifer Bryan and Winston Chang and Lucy D'Agostino McGowan and Romain François and Garrett Grolemund and Alex Hayes and Lionel Henry and Jim Hester and Max Kuhn and Thomas Lin Pedersen and Evan Miller and Stephan Milton Bache and Kirill Müller and Jeroen Ooms and David Robinson and Dana Paige Seidel and Vitalie Spinu and Kohske Takahashi and Davis Vaughan and Claus Wilke and Kara Woo and Hiroaki Yutani}, + year = {2019}, + journal = {Journal of Open Source Software}, + volume = {4}, + number = {43}, + pages = {1686}, + doi = {10.21105/joss.01686}, +} diff --git a/code/R/experiments/hardint_neg.csv b/code/R/experiments/hardint_neg.csv new file mode 100644 index 0000000..0ba2d44 --- /dev/null +++ b/code/R/experiments/hardint_neg.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,17.17171717171717,37.37373737373738,45.45454545454545,19.19191919191919,64.64646464646465,16.161616161616163,negative,hardint +Disjunctive,8.080808080808081,48.484848484848484,43.43434343434344,13.131313131313133,81.81818181818183,5.05050505050505,negative,hardint diff --git a/code/R/experiments/hardint_pos.csv b/code/R/experiments/hardint_pos.csv new file mode 100644 index 0000000..d0896b6 --- /dev/null +++ b/code/R/experiments/hardint_pos.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,49.48453608247423,16.49484536082474,34.02061855670103,65.97938144329896,28.865979381443296,5.154639175257731,positive,hardint +Disjunctive,26.804123711340207,19.587628865979383,53.608247422680414,43.29896907216495,27.835051546391753,28.865979381443296,positive,hardint diff --git a/code/R/experiments/intervention_predictions.csv b/code/R/experiments/intervention_predictions.csv new file mode 100644 index 0000000..09f60ab --- /dev/null +++ b/code/R/experiments/intervention_predictions.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","prediction","probability" +"fixed","conjunctive","positive","abnormal",0.72,0.994041787821888,0.808080808080808 +"fixed","conjunctive","positive","normal",0.18,3.52912649879559e-05,0.111111111111111 +"fixed","conjunctive","positive","nopreference",0.45,0.00592292091312418,0.0808080808080808 +"fixed","conjunctive","negative","abnormal",0.92,0.16981516371875,0.202020202020202 +"fixed","conjunctive","negative","normal",0.98,0.530141419509461,0.666666666666667 +"fixed","conjunctive","negative","nopreference",0.95,0.300043416771789,0.131313131313131 +"fixed","disjunctive","positive","abnormal",0.98,0.530141419509461,0.656565656565657 +"fixed","disjunctive","positive","normal",0.92,0.16981516371875,0.121212121212121 +"fixed","disjunctive","positive","nopreference",0.95,0.300043416771789,0.222222222222222 +"fixed","disjunctive","negative","abnormal",0.18,3.52912649879559e-05,0.101010101010101 +"fixed","disjunctive","negative","normal",0.72,0.994041787821888,0.797979797979798 +"fixed","disjunctive","negative","nopreference",0.45,0.00592292091312416,0.101010101010101 +"hard","conjunctive","positive","abnormal",0.8,0.99662775798199,0.65979381443299 +"hard","conjunctive","positive","normal",0.2,1.1333923951288e-05,0.288659793814433 +"hard","conjunctive","positive","nopreference",0.5,0.00336090809405889,0.0515463917525773 +"hard","conjunctive","negative","abnormal",1,0.333333333333333,0.191919191919192 +"hard","conjunctive","negative","normal",1,0.333333333333333,0.646464646464647 +"hard","conjunctive","negative","nopreference",1,0.333333333333333,0.161616161616162 +"hard","disjunctive","positive","abnormal",1,0.333333333333333,0.43298969072165 +"hard","disjunctive","positive","normal",1,0.333333333333333,0.278350515463918 +"hard","disjunctive","positive","nopreference",1,0.333333333333333,0.288659793814433 +"hard","disjunctive","negative","abnormal",0.2,1.1333923951288e-05,0.131313131313131 +"hard","disjunctive","negative","normal",0.8,0.99662775798199,0.818181818181818 +"hard","disjunctive","negative","nopreference",0.5,0.00336090809405889,0.0505050505050505 +"soft","conjunctive","positive","abnormal",0.32,0.702777373322948,0.653061224489796 +"soft","conjunctive","positive","normal",0.2,0.0721086281913351,0.306122448979592 +"soft","conjunctive","positive","nopreference",0.26,0.225113998485717,0.0408163265306122 +"soft","conjunctive","negative","abnormal",1,0.702777373322948,0.676767676767677 +"soft","conjunctive","negative","normal",0.88,0.0721086281913351,0.222222222222222 +"soft","conjunctive","negative","nopreference",0.94,0.225113998485717,0.101010101010101 +"soft","disjunctive","positive","abnormal",0.88,0.0721086281913351,0.122448979591837 +"soft","disjunctive","positive","normal",1,0.702777373322948,0.795918367346939 +"soft","disjunctive","positive","nopreference",0.94,0.225113998485717,0.0816326530612245 +"soft","disjunctive","negative","abnormal",0.2,0.0721086281913352,0.353535353535354 +"soft","disjunctive","negative","normal",0.32,0.702777373322947,0.555555555555556 +"soft","disjunctive","negative","nopreference",0.26,0.225113998485717,0.0909090909090909 diff --git a/code/R/experiments/pressbutton_negativecondition-participants.csv b/code/R/experiments/pressbutton_negativecondition-participants.csv new file mode 100644 index 0000000..c023a0c --- /dev/null +++ b/code/R/experiments/pressbutton_negativecondition-participants.csv @@ -0,0 +1,102 @@ +workerid,proliferate.condition,age,ethnicity,feedback,gender,race,error +2427,Condition_4,31,Non-Hispanic,,Female,Multiracial, +2531,Condition_4,43,Non-Hispanic,"Even though all the choices were technically correct, I just felt picking one as an explanation to my teammate might be unintentionally misleading, which is why I kept deferring to the ""either explanation"" being ok option.",Female,White, +2504,Condition_4,23,Non-Hispanic,,Female,Asian, +2453,Condition_4,64,Non-Hispanic,I tried to respond based on the information given to me. I do not have any additional comments or questions.,Male,White, +2514,Condition_4,42,Non-Hispanic,none,Female,Black/African American, +2529,Condition_4,40,Non-Hispanic,"I was honestly a little confused about what was different, so I went with instinct.",Female,White, +2471,Condition_4,37,Hispanic,I took the facts that I was presented to make my choice. Which ever decision that would give me the lowest percentage chance possible of losing a point.,Female,other_race, +2457,Condition_4,66,Non-Hispanic,I want to influence her to push the button for the orange switch so it has zero chance of turning on.,Female,White, +2458,Condition_4,56,Non-Hispanic,Going over the information on how the game works.,Female,White, +2467,Condition_4,31,Non-Hispanic,I think zarah should press the orange button,Male,White, +2508,Condition_4,21,Non-Hispanic,"In the second scenario with Zarah, we can easily reduce the orange's probability to zero and therefore guarantee that we do not lose a point. In the first, I thought pressing the blue button would be better so that it is less certain that the blue button turns on",Female,White, +2455,Condition_4,53,Non-Hispanic,,Female,White, +2475,Condition_4,54,Non-Hispanic,"I told Zarah that we lost a point because Orange turned on in the hopes that she would turn it off in future rounds to reduce the chance of happening again to 0%, so we wouldn't lose any more points. Interesting, different study.",Male,White, +2425,Condition_4,36,Non-Hispanic,,Female,White, +2492,Condition_4,60,Non-Hispanic,"I just decided how to respond based on a which felt right. Pressing the button would lower the chance 20% on either color so during the round with Alice it didn't make much of a difference. During the 2nd round with Zhara, I might have been confused, on what knowledge she had of the probability/teammate's knowledge.",Female,White, +2510,Condition_4,38,Non-Hispanic,"No, I did make a mistake though. In the slightly different version of the game I should have selected the switch for the orange one to make it impossible to turn on. that was a lapse in judgement on my part but I couldn't go back to fix it. When answering about which explanation to use, I chose the one that had the color name in it that needed to have the switch pressed in the hope that they would take that as a hint to just press that colors switch.",Male,White, +2447,Condition_4,50,Non-Hispanic,,Female,White, +2437,Condition_4,46,Non-Hispanic,Trying to remember these rules precisely was extremely frustrating. It seemed as if the study or the game demanded a level of precision of thinking I am not used to.,Male,White, +2464,Condition_4,31,,I responded with my best understanding of the prompt.,Female,White, +2461,Condition_4,73,Non-Hispanic,I went with the odds...blue is a better risk,Female,White, +2485,Condition_4,49,Non-Hispanic,n/a,Male,White, +2445,Condition_4,43,Non-Hispanic,first one I took a chance in the secondone I took away the orange abilit to turn on.,Male,White, +2443,Condition_4,31,Non-Hispanic,I responded based solely on the information given to me,Female,White, +2499,Condition_4,24,Non-Hispanic,How much the percentage would actually affect our chance to win the game.,Male,White, +2473,Condition_4,38,Non-Hispanic,I replied based on what the rules and instructions told me to.,Male,White, +2423,Condition_4,25,Non-Hispanic,Just what I thought would be best to maximize points.,Male,Multiracial, +2494,Condition_4,27,,The odds of the buttons being switched and trying to lower the odds of the less favorable outcome. ,Male,Multiracial, +2469,Condition_4,25,Non-Hispanic,The slightly different rules of each round influenced my responses,Female,White, +2483,Condition_4,48,Non-Hispanic,none,Male,White, +2520,Condition_4,68,Non-Hispanic,I was trying to figure out the odds. I'm not sure if I made the right choice in the first round. ,Female,White, +2516,Condition_4,35,Non-Hispanic,My reasoning is that my partner would be more inclined to press the blue button if I blamed that button for losing points. This would lead to better odds of the blue switch staying off.,Male,White, +2479,Condition_4,40,Non-Hispanic,Because either of the responses being on contributed to losing a point.,Female,White, +2435,Condition_4,30,Non-Hispanic,"the first game it didn't really matter which button was pressed, just that the overall chance of a switch being on was lower. However the second game, getting the partner to lower the orange chance of being on was the main priority because if that button was pressed it would be an automatic win",Male,White, +2500,Condition_4,57,Non-Hispanic,I was trying to make the odds better and easier for the person who did not have the full information,Male,White, +2421,Condition_4,24,Non-Hispanic,,Female,Multiracial, +2502,Condition_4,54,Hispanic,,Male,White, +2481,Condition_4,35,Hispanic,sicne the orange one I can eliminate to 0% chance of turning on I always chose that one.,Male,other_race, +2433,Condition_4,62,Non-Hispanic,I picked the blue one because it reduced it to 60%,Male,White, +2497,Condition_4,29,Non-Hispanic,"I didn't want to take a chance at all on the blue switch at first because if a switch was on then no matter what we would lose. But then when the rules switched, I was fine with chancing the blue. ",Female,White, +2431,Condition_4,24,Non-Hispanic,,Female,White, +2451,Condition_4,24,Non-Hispanic,The percentages of each button and what result was needed to win,Male,White, +2487,Condition_4,67,Non-Hispanic,I was always trying to make the orange switch tun off with the orange button.,Female,White, +2521,Condition_4,38,Non-Hispanic,Reducing the chances of losing points.,Female,White, +2490,Condition_4,22,Non-Hispanic,Knowing that at least one of the switches would turn completely off was a major factor in deciding when to press the button that would turn down the probability.,Female,White, +2429,Condition_4,28,Non-Hispanic,,Male,White, +2528,Condition_4,26,Non-Hispanic,The probability of the blue switch turning on mainly influenced my decision.,Male,White, +2448,Condition_4,39,Non-Hispanic,IT would be hard to do in any scenario I think and very hard to predict.,Male,White, +2530,Condition_4,29,Non-Hispanic,depending on the new rules given to me I would decide whether which percentage was more likely to be the cause of the point loss or not,Female,White, +2462,Condition_4,30,Non-Hispanic,I realized I got the 2nd part wrong after I answered it,Male,White, +2501,Condition_3,30,Non-Hispanic,I tried to maximize our changes of not losing points. ,Female,White, +2476,Condition_3,30,Non-Hispanic,Thinking about how to influence the team partner in their own decision based on the parameters I was given on how to explain what happened.,Female,Asian, +2532,Condition_3,40,Non-Hispanic,"I responded that the blue switch being turned on caused the team to lose a point the first time because the blue switch had an 80% chance of being turned on and both switches needed to be on to lose the point. It was less likely the orange switch would be turned on. + +For the second answer, I said both blue or orange turned on equally caused the point to be lost as either switch turned on would lose a point.",Male,White, +2524,Condition_3,32,Non-Hispanic,"The explanations seemed a bit awkward. Unless it was part of the study, why not just state that we needed both switches to be ""off"" in order to not lose a point?",Male,other_race, +2511,Condition_3,52,Non-Hispanic,I just responded accordingly based on the instructions presented.,Male,Multiracial, +2486,Condition_3,24,Non-Hispanic,,Female,White, +2426,Condition_3,53,Non-Hispanic,I was trying to be clear while using few words.,Female,Black/African American, +2440,Condition_3,21,Non-Hispanic,,Female,Asian, +2466,Condition_3,28,Non-Hispanic,The correct approach was to carefully consider the instructions and proceed accordingly.,Female,White, +2482,Condition_3,28,Non-Hispanic,The probability of each switch mostly influenced my decisions.,Male,Asian, +2463,Condition_3,24,Non-Hispanic,no i just answered normally how i would,Male,White, +2460,Condition_3,33,Non-Hispanic,I would respond in a way to influence my partner to press the related button,Male,White, +2454,Condition_3,39,Non-Hispanic,I said what made the most sense. ,Female,Black/African American, +2428,Condition_3,32,Non-Hispanic,The chance of it turning on,Female,White, +2493,Condition_3,33,Non-Hispanic,I wanted to push them towards hitting the button that would help us the most ,Male,White, +2503,Condition_3,32,Non-Hispanic,,Male,White, +2525,Condition_3,46,Non-Hispanic,I felt that either choice would be fine,Male,White, +2420,Condition_3,22,Non-Hispanic,"Each scenario influenced how I responded, I did so based on what made sense to me.",Female,Multiracial, +2468,Condition_3,65,,Ut was the best answer.,Male,White, +2434,Condition_3,45,Hispanic,"If I could make the orange switch have a probability of 0% turning on, then the only reason why there was a loss was that the blue switch turned on.",Male,Multiracial, +2522,Condition_3,52,Non-Hispanic,I would want to let my teammate know that it would be more important to press the button on the switch that I mentioned in my response. This is a hint at which button to press if we have a next round.,Male,Black/African American, +2526,Condition_3,26,Non-Hispanic,"I considered the rules of the game before responding. Since in both cases both switches turned on, all instances of switches turning to on contributed to why we lost a point.",Male,White, +2472,Condition_3,26,Non-Hispanic,"I considered the rules and the probability of the switches turning on. I'm not sure if I did it correctly because it was a lot to remember for me, but I tried my best.",Female,other_race, +2446,Condition_3,27,Hispanic,,Female,White, +2498,Condition_3,21,Non-Hispanic,"The biggest influence on the outcome of the round, IE which switch was more important to influence.",Non-binary,White, +2456,Condition_3,56,Non-Hispanic,"I want a do-over. I think I got my answers backwards. In the first section I should have said to reduce orange to zero since that prevented 2 from being on. I think I made a similar mistake in part 2 when only one being on could lose a point. I don't remember my answer but, in that case, it should have been orange also. I was trying to make up for my previous misunderstanding of the game. Ugh. I probably got them all wrong. I want another chance!",Female,White, +2474,Condition_3,24,Non-Hispanic,i have no idea,Non-binary,White, +2498,Condition_3,38,Non-Hispanic,The probability of each switch turning on and off affected my decisions.,Female,other_race, +2507,Condition_3,21,Non-Hispanic,The rules of the game were the only factors that influenced how I responded.,Female,White, +2424,Condition_3,41,Non-Hispanic,The instructions. ,Female,White, +2509,Condition_3,63,Non-Hispanic,"Oops - I made a mistake. I meant to tell Alice that we lost because the blue switch turned on, hoping this would cause her to press the button attached to the blue switch, making it less likely we would lose another point.",Male,White, +2505,Condition_3,32,Non-Hispanic,I tried to think about the instructions and how best to translate them to another person.,Female,White, +2444,Condition_3,49,Non-Hispanic,,Male,White, +2459,Condition_3,21,Hispanic,I mainly made my decisions based on the explanation of the game.,Male,White, +2523,Condition_3,40,Non-Hispanic,I responded based on whatever the instructions told me. Perhaps I don't understand this question?,Male,White, +2513,Condition_3,36,Non-Hispanic,I just answered based on what I read,Female,White, +2495,Condition_3,39,Non-Hispanic,"I blamed the color switch that she should push the button. In the first round, there would be a 0% chance of losing. In the second round, there would still only be 20% chance of the orange one, but the blue one would drop from 80% to 60%",Male,other_race, +2449,Condition_3,39,Non-Hispanic,,Male,White, +2430,Condition_3,49,Non-Hispanic,"Its a game of chance. Additionally, the instructions gave a clue. ",Female,White, +2452,Condition_3,29,Non-Hispanic,"Confusing the participant so I could win, but I felt like I barely understood it myself.",Female,White, +2470,Condition_3,40,Non-Hispanic,Mainly just which one has the higher percentage,Male,White, +2527,Condition_3,23,Non-Hispanic,I have no comments.,Non-binary,White, +2439,Condition_3,33,Non-Hispanic,"I kind of guessed at how the statistics work on the second game. I thought I would try to lower the chance on the switch that already had the greatest chance of turning on, but very unsure if that's the right move or not. Then in terms of how to communicate that, I tried to place the ""blame"" on the switch that I wanted the other player to press the button for. ",Male,White, +2436,Condition_3,58,Non-Hispanic,probability of switches being on influenced me. I have no other comments,Female,White, +2484,Condition_3,31,Hispanic,"The rules of the game factored how I decided, on the first round both switches needed to be on so I chose to give out the information that the orange switch with a lower percentage was turned on. I have no questions or comments, thank you for the study.",Male,White, +2491,Condition_3,27,Non-Hispanic,"I used intuition to decide how to respond, not any statistical analysis.",Male,Asian, +2422,Condition_3,32,Non-Hispanic,I did my best to explain to someone in the simplest way in order to get points.,Female,White, +2480,Condition_3,24,Non-Hispanic,My responses were influenced by the likelihood of the switches being on,Female,White, +2432,Condition_3,35,Non-Hispanic,The probabillity being lowered was my first and foremost reason for my answers.,Female,White, +2517,Condition_3,49,,Common sense,Female,Asian, diff --git a/code/R/experiments/pressbutton_negativecondition-responses.csv b/code/R/experiments/pressbutton_negativecondition-responses.csv new file mode 100644 index 0000000..2b185b2 --- /dev/null +++ b/code/R/experiments/pressbutton_negativecondition-responses.csv @@ -0,0 +1,100 @@ +workerid,proliferate.condition,explanation_response_1,explanation_response_2,intervention_response_1,intervention_response_2,error +2427,Condition_4,no preference,no preference,blue,blue, +2531,Condition_4,no preference,no preference,orange,orange, +2504,Condition_4,no preference,no preference,blue,orange, +2453,Condition_4,no preference,no preference,orange,orange, +2514,Condition_4,blue,no preference,blue,no preference, +2529,Condition_4,no preference,no preference,blue,blue, +2471,Condition_4,no preference,no preference,blue,orange, +2457,Condition_4,blue,orange,blue,orange, +2458,Condition_4,blue,blue,no preference,blue, +2467,Condition_4,no preference,orange,no preference,orange, +2508,Condition_4,no preference,orange,blue,orange, +2455,Condition_4,no preference,no preference,no preference,no preference, +2475,Condition_4,no preference,orange,blue,orange, +2425,Condition_4,blue,orange,blue,orange, +2492,Condition_4,blue,orange,blue,blue, +2510,Condition_4,blue,orange,blue,blue, +2447,Condition_4,blue,orange,orange,orange, +2437,Condition_4,no preference,no preference,orange,blue, +2464,Condition_4,no preference,no preference,orange,orange, +2461,Condition_4,orange,orange,blue,blue, +2485,Condition_4,no preference,orange,blue,no preference, +2445,Condition_4,no preference,no preference,orange,orange, +2443,Condition_4,no preference,no preference,blue,blue, +2499,Condition_4,no preference,orange,orange,orange, +2473,Condition_4,no preference,no preference,orange,blue, +2423,Condition_4,no preference,orange,orange,orange, +2494,Condition_4,blue,no preference,blue,orange, +2469,Condition_4,no preference,no preference,blue,no preference, +2483,Condition_4,no preference,no preference,no preference,no preference, +2520,Condition_4,blue,blue,orange,orange, +2516,Condition_4,blue,blue,blue,blue, +2479,Condition_4,no preference,no preference,blue,blue, +2435,Condition_4,no preference,orange,no preference,orange, +2500,Condition_4,no preference,blue,orange,orange, +2421,Condition_4,no preference,orange,blue,orange, +2502,Condition_4,no preference,no preference,orange,orange, +2481,Condition_4,orange,orange,orange,orange, +2433,Condition_4,blue,blue,blue,blue, +2497,Condition_4,blue,orange,orange,blue, +2431,Condition_4,blue,blue,blue,blue, +2451,Condition_4,no preference,no preference,orange,orange, +2487,Condition_4,orange,orange,orange,orange, +2521,Condition_4,blue,orange,blue,orange, +2490,Condition_4,orange,orange,no preference,orange, +2429,Condition_4,orange,orange,orange,orange, +2528,Condition_4,no preference,no preference,orange,no preference, +2448,Condition_4,no preference,no preference,orange,orange, +2530,Condition_4,no preference,blue,orange,blue, +2462,Condition_4,blue,orange,blue,blue, +2501,Condition_3,orange,orange,orange,orange, +2476,Condition_3,orange,blue,orange,blue, +2532,Condition_3,blue,no preference,orange,blue, +2524,Condition_3,orange,blue,orange,blue, +2511,Condition_3,no preference,no preference,no preference,no preference, +2486,Condition_3,no preference,no preference,blue,blue, +2426,Condition_3,orange,no preference,orange,blue, +2440,Condition_3,orange,blue,orange,blue, +2466,Condition_3,blue,orange,orange,orange, +2482,Condition_3,orange,no preference,orange,orange, +2463,Condition_3,orange,no preference,orange,blue, +2460,Condition_3,orange,blue,orange,blue, +2454,Condition_3,no preference,no preference,blue,blue, +2428,Condition_3,blue,blue,blue,blue, +2493,Condition_3,orange,blue,orange,blue, +2503,Condition_3,blue,no preference,orange,blue, +2525,Condition_3,no preference,no preference,orange,orange, +2420,Condition_3,blue,no preference,orange,blue, +2468,Condition_3,no preference,no preference,orange,orange, +2434,Condition_3,no preference,blue,orange,orange, +2522,Condition_3,orange,blue,orange,blue, +2526,Condition_3,no preference,no preference,orange,blue, +2472,Condition_3,blue,blue,orange,blue, +2446,Condition_3,no preference,no preference,orange,orange, +2498,Condition_3,orange,blue,orange,blue, +2456,Condition_3,orange,blue,blue,orange, +2474,Condition_3,no preference,no preference,blue,blue, +2498,Condition_3,no preference,no preference,orange,orange, +2507,Condition_3,orange,orange,orange,orange, +2424,Condition_3,orange,orange,blue,orange, +2509,Condition_3,orange,orange,orange,blue, +2505,Condition_3,no preference,no preference,orange,blue, +2444,Condition_3,no preference,no preference,orange,orange, +2459,Condition_3,no preference,blue,orange,orange, +2523,Condition_3,no preference,no preference,orange,blue, +2513,Condition_3,no preference,no preference,no preference,no preference, +2495,Condition_3,orange,blue,orange,blue, +2449,Condition_3,orange,blue,orange,blue, +2430,Condition_3,no preference,no preference,no preference,orange, +2452,Condition_3,no preference,no preference,no preference,orange, +2470,Condition_3,orange,blue,orange,blue, +2527,Condition_3,blue,orange,orange,orange, +2439,Condition_3,orange,blue,orange,blue, +2436,Condition_3,no preference,no preference,orange,blue, +2484,Condition_3,orange,no preference,orange,blue, +2491,Condition_3,orange,no preference,orange,no preference, +2422,Condition_3,orange,blue,orange,blue, +2480,Condition_3,orange,blue,orange,blue, +2432,Condition_3,no preference,blue,orange,blue, +2517,Condition_3,no preference,no preference,orange,blue, diff --git a/code/R/experiments/pressbutton_positivecondition-participants.csv b/code/R/experiments/pressbutton_positivecondition-participants.csv new file mode 100644 index 0000000..252dac7 --- /dev/null +++ b/code/R/experiments/pressbutton_positivecondition-participants.csv @@ -0,0 +1,107 @@ +workerid,proliferate.condition,age,ethnicity,feedback,gender,race,error +2317,Condition_2,51,Non-Hispanic,You want to increase chances of orange turned on because blue probability is already 80%. ,Female,Asian, +2353,Condition_2,20,Hispanic,"The blue switch had a higher chance of switching on, therefore i always answered that the blue switch was the reason we won the point. The association between the blue switch and winning is created to my teammate through that response. I don't have any questions or comments.",Female,White, +2321,Condition_2,23,Non-Hispanic,i went with the option i thought would increase the likely hood of winning.,Female,White, +2307,Condition_2,21,Non-Hispanic,,Female,White, +2389,Condition_2,37,Non-Hispanic,"By telling the teammate that we got a point because the Blue switch was on, they are more likely to choose the Blue button to up the percentage to 100%, thus guaranteeing that the Blue switch is always on.",Female,Multiracial, +2357,Condition_2,50,Non-Hispanic,just following the guidelines,Male,Asian, +2314,Condition_2,55,Non-Hispanic,just used logic,Female,White, +2337,Condition_2,65,Non-Hispanic,no,Female,White, +2381,Condition_2,36,Non-Hispanic,I gave the explanation that I thought would make them keep pressing the button that they needed to to maximise the points. Blue for the first contestant and orange for the second.,Male,White, +2345,Condition_2,55,Non-Hispanic,no,Female,White, +2339,Condition_2,31,Non-Hispanic,whether one or both needed to be on.,Male,White, +2325,Condition_2,25,Hispanic,probability theory,Male,other_race, +2319,Condition_2,22,Non-Hispanic,,Female,White, +2409,Condition_2,24,Non-Hispanic,The chance of each switch turning on and what the other contestant knew is what influenced my decision.,Male,White, +2393,Condition_2,64,Non-Hispanic,none,Female,White, +2400,Condition_2,26,Non-Hispanic,"If I could, I would choose to explain the reasons for us winning differently to my partner. The selections one could choose from could either make the partner choose the right one, the wrong one, or have no effect. ",Male,White, +2398,Condition_2,68,,I would want my team mate to feel that the blue button will create a better outcome,Female,White, +2343,Condition_2,47,Non-Hispanic,"I just thought that with Zarah the fact that I told her we got the point was because the orange switch turned on, that would help her realize that the orange switch probably has a lower probability and she should press the orange button. + +With Alice since only one switch needed to be on, and orange had the lesser odds, I wanted her to think that the orange switch was good, and have her press the blue button so it would be 100%",Female,White, +2331,Condition_2,22,Non-Hispanic,,Female,White, +2341,Condition_2,29,Non-Hispanic,The lack of my partner's knowledge mainly gave me reasons to respond the way I did. ,Male,White, +2311,Condition_2,35,Non-Hispanic,I was choosing the answer with the highest probability.,Male,White, +2333,Condition_2,37,Non-Hispanic,"I just chose what made the most sense, though with the last scenario, I would have said that we scored a point because both were on.",Female,White, +2379,Condition_2,59,Non-Hispanic,I chose the switch with the most likely percentage to turn on,Female,White, +2355,Condition_2,38,Non-Hispanic,"I thought about choosing the explanation that would make sense to my partner so if we played another round they would be more informed on which choice would be better. Now that I think about it, it would have been better if I press the 20% button on the blue switch.",Male,Asian, +2361,Condition_2,26,Non-Hispanic,Percentage of switch being turned on,Female,White, +2367,Condition_2,44,Non-Hispanic,,Male,White, +2373,Condition_2,24,Non-Hispanic,I was trying to influence them to pick to increase the button I wanted.,Female,White, +2335,Condition_2,71,,"I believe there is an error in instructions with Alice. ever, Alice does not know whether the blue switch is more likely to turn ON or whether the BLUE switch is more likely to turn ON. + +BLUE indicated twice insead of BLUE or ORANGE",Female,White, +2391,Condition_2,35,Non-Hispanic,"The probability at which they would turn on, and whether both or one had to be on.",Female,Black/African American, +2385,Condition_2,29,Non-Hispanic,The percentage chances dictated how I made decisions .,Male,Black/African American, +2412,Condition_2,40,Non-Hispanic,I would want her to push the orange button to increase our odds of getting a point.,Male,White, +2363,Condition_2,35,Non-Hispanic,I thought about what would be the most precise answer even if it was concise and not the full explanation,Male,Asian, +2359,Condition_2,21,Non-Hispanic,"My response varied based on which switch having an increased chance of turning on would be better for the scenario. For example, changing the blue switch to have an 100% chance of turning on is the best thing to do in the first scenario in order to get the largest number of points, so I told my partner that we won because the blue switch turned on. This way, they are more likely to press the blue button and we are more likely to win more points.",Female,White, +2323,Condition_2,27,Non-Hispanic,It was confusing to make the last call because neither explanation really sufficed.,Female,White, +2395,Condition_2,28,Non-Hispanic,I decided to tell my partner which every switch went on that would be the most helpful for winning,Female,Multiracial, +2375,Condition_2,37,Non-Hispanic,I decided to respond with the best answer that'll help score a point.,Male,White, +2411,Condition_2,23,Non-Hispanic,,Male,Asian, +2404,Condition_2,19,Non-Hispanic,None,Female,White, +2347,Condition_2,24,Non-Hispanic,N/A,Male,Asian, +2397,Condition_2,63,Non-Hispanic,no,Male,White, +2406,Condition_2,29,Non-Hispanic,,Female,Multiracial, +2371,Condition_2,31,Non-Hispanic,I said we won because the orange one was on because in future rounds I wanted them to boost the orange light because it had lower chances,Male,White, +2327,Condition_2,38,Non-Hispanic,Just trying to maximize the chances of winning,Male,White, +2402,Condition_2,53,Non-Hispanic,I tried to make a decision which would cause the blue light to turn on at 100% probability so that only the chance of the other one being on would be a factor.,Female,White, +2387,Condition_2,57,Non-Hispanic,My responses were based on the probabilities of winning and communicating the correct button choice to my partner.,Male,White, +2351,Condition_2,24,Non-Hispanic,"I thought it would be best in each situation to emphasize the switch that, when its button is pressed, would increase the odds of gaining a point more.",Female,White, +2417,Condition_2,35,Non-Hispanic,the percentages of the buttons ,Male,White, +2377,Condition_2,58,Non-Hispanic,"Guiding factor was always which option could result in the best chance of receiving points. For the second game that meant increasing the chance that the Orange stick would switch to on. + +Very interesting study. Thank you for the opportunity to participate in your research.",Female,other_race, +2410,Condition_2,30,Non-Hispanic,Reading all the directions and images.,Female,Asian, +2386,Condition_1,69,Non-Hispanic,The rules of the game.,Male,White, +2374,Condition_1,23,Non-Hispanic,,Male,White, +2396,Condition_1,23,Non-Hispanic,I tried to respond in terms of my intuition and instructions for how the switches would behave,Male,White, +2342,Condition_1,41,Non-Hispanic,I tried to give my teammate an explanation that would make them more likely to choose the optimal button to press. ,Male,White, +2306,Condition_1,58,Non-Hispanic,,Male,White, +2354,Condition_1,27,Non-Hispanic,I wanted Alice to pick the blue switch to make it a 100% chance of turning on so I emphasized the importantance of the blue switch ,Female,White, +2378,Condition_1,30,Hispanic,just my first impression and the information provided,Male,White, +2312,Condition_1,20,Non-Hispanic,,Female,White, +2358,Condition_1,21,Non-Hispanic,I tried to figure out what option would make getting a point statistically the most likely. ,Female,White, +2364,Condition_1,39,Non-Hispanic,I chose to answer in a way that I thought was most likely to get the other team member to boost the chances of the orange switch turning on.,Female,White, +2338,Condition_1,38,Non-Hispanic,"A point is a point, I don't have to choose one switch color or the other. But in the one choice, I would rather a 100% chance",Male,White, +2403,Condition_1,44,Non-Hispanic,"I think that my answers hopefully conveyed that it was important to adjust the orange one in the first set, and the blue one in the second.",Female,White, +2413,Condition_1,32,Non-Hispanic,Great study.,Male,White, +2313,Condition_1,20,Non-Hispanic,"Saying that we only won because the orange switch turned on, in my opinion, implies that the orange switch is the more troublesome one to fix.",Female,Multiracial, +2401,Condition_1,44,Non-Hispanic,,Female,White, +2416,Condition_1,29,Non-Hispanic,Percentages the orange button needed the switch more ,Male,Black/African American, +2376,Condition_1,33,Non-Hispanic,,other_gender,White, +2334,Condition_1,29,Non-Hispanic,Understanding and comprehending the rules.,Male,Black/African American, +2382,Condition_1,27,Non-Hispanic,Which explanation would have the best chance of the other person having the desirable outcome,Male,White, +2370,Condition_1,31,Non-Hispanic,What the person knew who I was guiding.,Male,White, +2326,Condition_1,33,Non-Hispanic,In the first round the orange witch was the deciding factor. In the second round either one could decide and the blue would guarantee a win if the button was pressed.,Male,White, +2384,Condition_1,19,Non-Hispanic,,Male,White, +2388,Condition_1,41,Non-Hispanic,Whatever explanation I could give that was truthful and helped best explain the rules was what I chose. Thank you for all your hard work!,Male,White, +2380,Condition_1,26,Non-Hispanic,no,Female,White, +2372,Condition_1,35,Non-Hispanic,I decided based on the odds of scoring a point and the information that the other participant had to be able to make a choice.,Female,White, +2366,Condition_1,35,Non-Hispanic,"The probability of the lower % switch turning on. Orange only had a 20% success rate of being turned on, so increasing it would increase the probability of winning a point more than the blue.",Male,White, +2352,Condition_1,53,Non-Hispanic,The factors that influenced my response were just the facts of the situation. Whatever was most likely to get the team to score a point. ,Female,White, +2392,Condition_1,25,Non-Hispanic,how i would need to understand it,Female,Asian, +2348,Condition_1,31,Non-Hispanic,none,Male,White, +2346,Condition_1,30,Non-Hispanic,not really,Male,Black/African American, +2407,Condition_1,30,Non-Hispanic,I wanted to try to explain the game to the other player,Female,White, +2320,Condition_1,24,Non-Hispanic,I didn't overthink about how to respond to the other players because I don't think hinting at one colored button or the other would have really helped them know that much more about the percentages on the buttons.,Female,White, +2322,Condition_1,24,Hispanic,,Female,White, +2330,Condition_1,40,Non-Hispanic,"When we got points for either switch being on, the explanation didn't seem to matter as much.",Female,White, +2340,Condition_1,48,Non-Hispanic,The chances of getting the point and ON played the factor. No comments on experiment.,Female,White, +2390,Condition_1,25,Hispanic,honestly just reading the text. i may be simple minded or just bad at math but i had to read it a few times to decide my response,Non-binary,Multiracial, +2399,Condition_1,18,Non-Hispanic,,Female,Black/African American, +2336,Condition_1,30,Hispanic,I tried to make both explanations straightforward with the limited options I had,Male,American Indian/Alaska Native, +2308,Condition_1,23,Hispanic,,Female,White, +2414,Condition_1,42,Non-Hispanic,I chose the answer that was most likely to direct the other player to the correct choice.,Female,White, +2362,Condition_1,39,Non-Hispanic,,Female,Multiracial, +2360,Condition_1,48,Non-Hispanic,"Knowing that only one switch needed to be on, I made sure my partner knew that was the reason so they would continue to select it.",Male,White, +2318,Condition_1,52,Hispanic,i tried following directions,Male,White, +2356,Condition_1,29,Non-Hispanic,Just the rules of the game.,Male,White, +2332,Condition_1,74,Non-Hispanic,because only one switch needs to be turned on,Male,White, +2316,Condition_1,75,,probability,Female,White, +2324,Condition_1,66,Non-Hispanic,The greatest chance of turning on is what I pick because I know the chances.,Female,White, +2328,Condition_1,29,Hispanic,everything blue was better,Female,Multiracial, +2344,Condition_1,35,Non-Hispanic,"If both switches need to be own, it is better to increase the likelihood of the 20% switch to 40%. If only one switch needs to be on, then you should just bring the 80% switch to 100%. I gave answer that I thought would cause my partner to choose the switch I wanted. + +Other than that, I think having a new page and illustration for every sentence was unnecessary.",Male,Black/African American, \ No newline at end of file diff --git a/code/R/experiments/pressbutton_positivecondition-responses.csv b/code/R/experiments/pressbutton_positivecondition-responses.csv new file mode 100644 index 0000000..9870fb2 --- /dev/null +++ b/code/R/experiments/pressbutton_positivecondition-responses.csv @@ -0,0 +1,99 @@ +workerid,proliferate.condition,explanation_response_1,explanation_response_2,intervention_response_1,intervention_response_2,error +2317,Condition_2,no preference,orange,blue,orange, +2353,Condition_2,blue,blue,no preference,no preference, +2321,Condition_2,blue,orange,blue,orange, +2307,Condition_2,no preference,orange,blue,orange, +2389,Condition_2,blue,blue,blue,blue, +2357,Condition_2,no preference,orange,blue,blue, +2314,Condition_2,no preference,no preference,blue,orange, +2337,Condition_2,orange,orange,blue,blue, +2381,Condition_2,blue,orange,blue,orange, +2345,Condition_2,blue,orange,blue,orange, +2339,Condition_2,blue,orange,blue,orange, +2325,Condition_2,blue,orange,blue,blue, +2319,Condition_2,blue,orange,blue,orange, +2409,Condition_2,blue,orange,blue,orange, +2393,Condition_2,no preference,no preference,blue,blue, +2400,Condition_2,blue,orange,blue,orange, +2398,Condition_2,no preference,blue,blue,blue, +2343,Condition_2,orange,orange,blue,orange, +2331,Condition_2,no preference,no preference,blue,blue, +2341,Condition_2,blue,orange,blue,orange, +2311,Condition_2,blue,no preference,blue,blue, +2333,Condition_2,no preference,no preference,blue,orange, +2379,Condition_2,blue,blue,blue,blue, +2355,Condition_2,blue,no preference,orange,orange, +2361,Condition_2,no preference,no preference,blue,blue, +2367,Condition_2,blue,orange,blue,orange, +2373,Condition_2,blue,orange,blue,orange, +2335,Condition_2,blue,orange,blue,blue, +2391,Condition_2,no preference,no preference,blue,orange, +2385,Condition_2,no preference,orange,blue,orange, +2412,Condition_2,no preference,orange,blue,orange, +2363,Condition_2,blue,orange,blue,orange, +2359,Condition_2,blue,orange,blue,orange, +2323,Condition_2,no preference,no preference,blue,orange, +2395,Condition_2,blue,orange,blue,orange, +2375,Condition_2,blue,no preference,blue,orange, +2411,Condition_2,blue,orange,blue,orange, +2404,Condition_2,no preference,no preference,blue,blue, +2347,Condition_2,blue,orange,blue,orange, +2397,Condition_2,blue,blue,blue,blue, +2406,Condition_2,no preference,no preference,no preference,no preference, +2371,Condition_2,orange,orange,orange,orange, +2327,Condition_2,blue,orange,blue,orange, +2402,Condition_2,blue,no preference,blue,blue, +2387,Condition_2,blue,orange,blue,orange, +2351,Condition_2,blue,orange,blue,orange, +2417,Condition_2,blue,no preference,blue,orange, +2377,Condition_2,blue,orange,blue,blue, +2410,Condition_2,blue,blue,blue,blue, +2386,Condition_1,no preference,no preference,blue,orange, +2374,Condition_1,no preference,blue,orange,blue, +2396,Condition_1,no preference,blue,blue,no preference, +2342,Condition_1,orange,blue,orange,blue, +2306,Condition_1,orange,blue,blue,blue, +2354,Condition_1,no preference,blue,orange,blue, +2378,Condition_1,no preference,no preference,orange,orange, +2312,Condition_1,orange,blue,orange,blue, +2358,Condition_1,orange,blue,orange,blue, +2364,Condition_1,orange,no preference,orange,blue, +2338,Condition_1,no preference,no preference,orange,blue, +2403,Condition_1,orange,blue,orange,blue, +2413,Condition_1,blue,blue,orange,orange, +2313,Condition_1,orange,orange,orange,orange, +2401,Condition_1,orange,blue,orange,blue, +2416,Condition_1,orange,orange,orange,orange, +2376,Condition_1,no preference,no preference,blue,blue, +2334,Condition_1,no preference,no preference,blue,no preference, +2382,Condition_1,orange,blue,orange,blue, +2370,Condition_1,blue,blue,blue,orange, +2326,Condition_1,orange,blue,blue,blue, +2384,Condition_1,no preference,blue,no preference,blue, +2388,Condition_1,no preference,no preference,orange,blue, +2380,Condition_1,no preference,no preference,blue,no preference, +2372,Condition_1,no preference,no preference,blue,blue, +2366,Condition_1,no preference,orange,orange,orange, +2352,Condition_1,orange,blue,orange,blue, +2392,Condition_1,orange,blue,orange,blue, +2348,Condition_1,no preference,blue,orange,blue, +2346,Condition_1,no preference,blue,orange,blue, +2407,Condition_1,orange,no preference,blue,blue, +2320,Condition_1,no preference,no preference,orange,blue, +2322,Condition_1,no preference,no preference,orange,orange, +2330,Condition_1,orange,no preference,orange,blue, +2340,Condition_1,orange,blue,orange,blue, +2390,Condition_1,orange,no preference,orange,no preference, +2399,Condition_1,no preference,no preference,orange,blue, +2336,Condition_1,orange,no preference,orange,blue, +2308,Condition_1,no preference,no preference,blue,orange, +2414,Condition_1,orange,blue,orange,blue, +2362,Condition_1,orange,blue,orange,blue, +2360,Condition_1,no preference,blue,orange,blue, +2318,Condition_1,no preference,blue,no preference,no preference, +2356,Condition_1,no preference,no preference,blue,blue, +2332,Condition_1,blue,no preference,orange,blue, +2316,Condition_1,no preference,no preference,blue,no preference, +2324,Condition_1,blue,blue,orange,orange, +2328,Condition_1,blue,blue,blue,blue, +2344,Condition_1,orange,blue,orange,blue, diff --git a/code/R/experiments/softint_neg.csv b/code/R/experiments/softint_neg.csv new file mode 100644 index 0000000..a13a879 --- /dev/null +++ b/code/R/experiments/softint_neg.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,45.45454545454545,14.14141414141414,40.4040404040404,67.67676767676768,22.22222222222222,10.1010101010101,negative,softint +Disjunctive,11.11111111111111,35.35353535353536,53.535353535353536,35.35353535353536,55.55555555555556,9.090909090909092,negative,softint diff --git a/code/R/experiments/softint_pos.csv b/code/R/experiments/softint_pos.csv new file mode 100644 index 0000000..67992ef --- /dev/null +++ b/code/R/experiments/softint_pos.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,51.02040816326531,11.224489795918368,37.755102040816325,65.3061224489796,30.612244897959183,4.081632653061225,positive,softint +Disjunctive,6.122448979591836,58.16326530612245,35.714285714285715,12.244897959183673,79.59183673469387,8.16326530612245,positive,softint diff --git a/code/R/optimal_intervention_model/.Rapp.history b/code/R/optimal_intervention_model/.Rapp.history new file mode 100644 index 0000000..e69de29 diff --git a/code/R/optimal_intervention_model/data.csv b/code/R/optimal_intervention_model/data.csv new file mode 100644 index 0000000..c3835d7 --- /dev/null +++ b/code/R/optimal_intervention_model/data.csv @@ -0,0 +1,73 @@ +causal_structure,outcome,experiment,choice,type,probability +conjunctive,positive,hard,abnormal,explanation,0.4948453608247423 +conjunctive,positive,hard,normal,explanation,0.1649484536082474 +conjunctive,positive,hard,nopreference,explanation,0.3402061855670103 +conjunctive,positive,hard,abnormal,intervention,0.6597938144329896 +conjunctive,positive,hard,normal,intervention,0.28865979381443296 +conjunctive,positive,hard,nopreference,intervention,0.05154639175257732 +disjunctive,positive,hard,abnormal,explanation,0.26804123711340205 +disjunctive,positive,hard,normal,explanation,0.19587628865979384 +disjunctive,positive,hard,nopreference,explanation,0.5360824742268041 +disjunctive,positive,hard,abnormal,intervention,0.4329896907216495 +disjunctive,positive,hard,normal,intervention,0.27835051546391754 +disjunctive,positive,hard,nopreference,intervention,0.28865979381443296 +conjunctive,negative,hard,abnormal,explanation,0.17171717171717168 +conjunctive,negative,hard,normal,explanation,0.37373737373737376 +conjunctive,negative,hard,nopreference,explanation,0.45454545454545453 +conjunctive,negative,hard,abnormal,intervention,0.1919191919191919 +conjunctive,negative,hard,normal,intervention,0.6464646464646465 +conjunctive,negative,hard,nopreference,intervention,0.16161616161616163 +disjunctive,negative,hard,abnormal,explanation,0.08080808080808081 +disjunctive,negative,hard,normal,explanation,0.48484848484848475 +disjunctive,negative,hard,nopreference,explanation,0.4343434343434344 +disjunctive,negative,hard,abnormal,intervention,0.13131313131313133 +disjunctive,negative,hard,normal,intervention,0.8181818181818182 +disjunctive,negative,hard,nopreference,intervention,0.050505050505050504 +conjunctive,positive,soft,abnormal,explanation,0.5102040816326531 +conjunctive,positive,soft,normal,explanation,0.11224489795918367 +conjunctive,positive,soft,nopreference,explanation,0.37755102040816324 +conjunctive,positive,soft,abnormal,intervention,0.653061224489796 +conjunctive,positive,soft,normal,intervention,0.30612244897959184 +conjunctive,positive,soft,nopreference,intervention,0.04081632653061225 +disjunctive,positive,soft,abnormal,explanation,0.061224489795918366 +disjunctive,positive,soft,normal,explanation,0.5816326530612245 +disjunctive,positive,soft,nopreference,explanation,0.35714285714285715 +disjunctive,positive,soft,abnormal,intervention,0.12244897959183673 +disjunctive,positive,soft,normal,intervention,0.7959183673469387 +disjunctive,positive,soft,nopreference,intervention,0.0816326530612245 +conjunctive,negative,soft,abnormal,explanation,0.45454545454545453 +conjunctive,negative,soft,normal,explanation,0.1414141414141414 +conjunctive,negative,soft,nopreference,explanation,0.40404040404040403 +conjunctive,negative,soft,abnormal,intervention,0.6767676767676768 +conjunctive,negative,soft,normal,intervention,0.2222222222222222 +conjunctive,negative,soft,nopreference,intervention,0.10101010101010101 +disjunctive,negative,soft,abnormal,explanation,0.1111111111111111 +disjunctive,negative,soft,normal,explanation,0.3535353535353536 +disjunctive,negative,soft,nopreference,explanation,0.5353535353535354 +disjunctive,negative,soft,abnormal,intervention,0.3535353535353536 +disjunctive,negative,soft,normal,intervention,0.5555555555555556 +disjunctive,negative,soft,nopreference,intervention,0.09090909090909091 +conjunctive,positive,fixed,abnormal,explanation,0.5353535353535354 +conjunctive,positive,fixed,normal,explanation,0.09090909090909091 +conjunctive,positive,fixed,nopreference,explanation,0.37373737373737376 +conjunctive,positive,fixed,abnormal,intervention,0.8080808080808081 +conjunctive,positive,fixed,normal,intervention,0.1111111111111111 +conjunctive,positive,fixed,nopreference,intervention,0.08080808080808081 +disjunctive,positive,fixed,abnormal,explanation,0.2727272727272727 +disjunctive,positive,fixed,normal,explanation,0.18181818181818182 +disjunctive,positive,fixed,nopreference,explanation,0.5454545454545454 +disjunctive,positive,fixed,abnormal,intervention,0.6565656565656566 +disjunctive,positive,fixed,normal,intervention,0.12121212121212119 +disjunctive,positive,fixed,nopreference,intervention,0.2222222222222222 +conjunctive,negative,fixed,abnormal,explanation,0.17171717171717168 +conjunctive,negative,fixed,normal,explanation,0.4242424242424242 +conjunctive,negative,fixed,nopreference,explanation,0.40404040404040403 +conjunctive,negative,fixed,abnormal,intervention,0.20202020202020202 +conjunctive,negative,fixed,normal,intervention,0.6666666666666665 +conjunctive,negative,fixed,nopreference,intervention,0.13131313131313133 +disjunctive,negative,fixed,abnormal,explanation,0.08080808080808081 +disjunctive,negative,fixed,normal,explanation,0.3939393939393939 +disjunctive,negative,fixed,nopreference,explanation,0.5252525252525253 +disjunctive,negative,fixed,abnormal,intervention,0.10101010101010101 +disjunctive,negative,fixed,normal,intervention,0.797979797979798 +disjunctive,negative,fixed,nopreference,intervention,0.10101010101010101 diff --git a/code/R/optimal_intervention_model/explanation_predictions.csv b/code/R/optimal_intervention_model/explanation_predictions.csv new file mode 100644 index 0000000..6201642 --- /dev/null +++ b/code/R/optimal_intervention_model/explanation_predictions.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","truth","probability","prediction" +"fixed","conjunctive","positive","abnormal",0.72,0,0.535353535353535,0.503204613224107 +"fixed","conjunctive","positive","normal",0.18,0,0.0909090909090909,0.10223260456092 +"fixed","conjunctive","positive","nopreference",0.45,1,0.373737373737374,0.394562782214973 +"fixed","conjunctive","negative","abnormal",0.92,0,0.171717171717172,0.244237215269784 +"fixed","conjunctive","negative","normal",0.98,0,0.424242424242424,0.291553306873677 +"fixed","conjunctive","negative","nopreference",0.95,1,0.404040404040404,0.464209477856539 +"fixed","disjunctive","positive","abnormal",0.98,0,0.272727272727273,0.291553306873677 +"fixed","disjunctive","positive","normal",0.92,0,0.181818181818182,0.244237215269784 +"fixed","disjunctive","positive","nopreference",0.95,1,0.545454545454545,0.464209477856539 +"fixed","disjunctive","negative","abnormal",0.18,0,0.0808080808080808,0.10223260456092 +"fixed","disjunctive","negative","normal",0.72,0,0.393939393939394,0.503204613224107 +"fixed","disjunctive","negative","nopreference",0.45,1,0.525252525252525,0.394562782214973 +"hard","conjunctive","positive","abnormal",0.8,0,0.494845360824742,0.52970273178351 +"hard","conjunctive","positive","normal",0.2,0,0.164948453608247,0.0901510713180658 +"hard","conjunctive","positive","nopreference",0.5,1,0.34020618556701,0.380146196898424 +"hard","conjunctive","negative","abnormal",1,0,0.171717171717172,0.267408365272975 +"hard","conjunctive","negative","normal",1,0,0.373737373737374,0.267408365272975 +"hard","conjunctive","negative","nopreference",1,1,0.454545454545455,0.465183269454051 +"hard","disjunctive","positive","abnormal",1,0,0.268041237113402,0.267408365272975 +"hard","disjunctive","positive","normal",1,0,0.195876288659794,0.267408365272975 +"hard","disjunctive","positive","nopreference",1,1,0.536082474226804,0.465183269454051 +"hard","disjunctive","negative","abnormal",0.2,0,0.0808080808080808,0.0901510713180658 +"hard","disjunctive","negative","normal",0.8,0,0.484848484848485,0.52970273178351 +"hard","disjunctive","negative","nopreference",0.5,1,0.434343434343434,0.380146196898424 +"soft","conjunctive","positive","abnormal",0.32,0,0.510204081632653,0.316552018509574 +"soft","conjunctive","positive","normal",0.2,0,0.112244897959184,0.222143097392742 +"soft","conjunctive","positive","nopreference",0.26,1,0.377551020408163,0.461304884097683 +"soft","conjunctive","negative","abnormal",1,0,0.454545454545455,0.316552018509574 +"soft","conjunctive","negative","normal",0.88,0,0.141414141414141,0.222143097392742 +"soft","conjunctive","negative","nopreference",0.94,1,0.404040404040404,0.461304884097683 +"soft","disjunctive","positive","abnormal",0.88,0,0.0612244897959184,0.222143097392742 +"soft","disjunctive","positive","normal",1,0,0.581632653061224,0.316552018509574 +"soft","disjunctive","positive","nopreference",0.94,1,0.357142857142857,0.461304884097683 +"soft","disjunctive","negative","abnormal",0.2,0,0.111111111111111,0.222143097392742 +"soft","disjunctive","negative","normal",0.32,0,0.353535353535354,0.316552018509574 +"soft","disjunctive","negative","nopreference",0.26,1,0.535353535353535,0.461304884097683 diff --git a/code/R/optimal_intervention_model/explanation_predictions_intervention_only.csv b/code/R/optimal_intervention_model/explanation_predictions_intervention_only.csv new file mode 100644 index 0000000..d301388 --- /dev/null +++ b/code/R/optimal_intervention_model/explanation_predictions_intervention_only.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","truth","probability","prediction" +"fixed","conjunctive","positive","abnormal",0.72,0,0.535353535353535,0.52914972657798 +"fixed","conjunctive","positive","normal",0.18,0,0.0909090909090909,0.170491378005782 +"fixed","conjunctive","positive","nopreference",0.45,1,0.373737373737374,0.300358895416238 +"fixed","conjunctive","negative","abnormal",0.92,0,0.171717171717172,0.312593066503803 +"fixed","conjunctive","negative","normal",0.98,0,0.424242424242424,0.354513066613228 +"fixed","conjunctive","negative","nopreference",0.95,1,0.404040404040404,0.332893866882969 +"fixed","disjunctive","positive","abnormal",0.98,0,0.272727272727273,0.354513066613228 +"fixed","disjunctive","positive","normal",0.92,0,0.181818181818182,0.312593066503803 +"fixed","disjunctive","positive","nopreference",0.95,1,0.545454545454545,0.332893866882969 +"fixed","disjunctive","negative","abnormal",0.18,0,0.0808080808080808,0.170491378005782 +"fixed","disjunctive","negative","normal",0.72,0,0.393939393939394,0.52914972657798 +"fixed","disjunctive","negative","nopreference",0.45,1,0.525252525252525,0.300358895416238 +"hard","conjunctive","positive","abnormal",0.8,0,0.494845360824742,0.550324432912584 +"hard","conjunctive","positive","normal",0.2,0,0.164948453608247,0.156347065222673 +"hard","conjunctive","positive","nopreference",0.5,1,0.34020618556701,0.293328501864743 +"hard","conjunctive","negative","abnormal",1,0,0.171717171717172,0.333333333333333 +"hard","conjunctive","negative","normal",1,0,0.373737373737374,0.333333333333333 +"hard","conjunctive","negative","nopreference",1,1,0.454545454545455,0.333333333333333 +"hard","disjunctive","positive","abnormal",1,0,0.268041237113402,0.333333333333333 +"hard","disjunctive","positive","normal",1,0,0.195876288659794,0.333333333333333 +"hard","disjunctive","positive","nopreference",1,1,0.536082474226804,0.333333333333333 +"hard","disjunctive","negative","abnormal",0.2,0,0.0808080808080808,0.156347065222673 +"hard","disjunctive","negative","normal",0.8,0,0.484848484848485,0.550324432912584 +"hard","disjunctive","negative","nopreference",0.5,1,0.434343434343434,0.293328501864743 +"soft","conjunctive","positive","abnormal",0.32,0,0.510204081632653,0.376046983001805 +"soft","conjunctive","positive","normal",0.2,0,0.112244897959184,0.29237234864928 +"soft","conjunctive","positive","nopreference",0.26,1,0.377551020408163,0.331580668348915 +"soft","conjunctive","negative","abnormal",1,0,0.454545454545455,0.376046983001805 +"soft","conjunctive","negative","normal",0.88,0,0.141414141414141,0.29237234864928 +"soft","conjunctive","negative","nopreference",0.94,1,0.404040404040404,0.331580668348915 +"soft","disjunctive","positive","abnormal",0.88,0,0.0612244897959184,0.29237234864928 +"soft","disjunctive","positive","normal",1,0,0.581632653061224,0.376046983001805 +"soft","disjunctive","positive","nopreference",0.94,1,0.357142857142857,0.331580668348915 +"soft","disjunctive","negative","abnormal",0.2,0,0.111111111111111,0.29237234864928 +"soft","disjunctive","negative","normal",0.32,0,0.353535353535354,0.376046983001804 +"soft","disjunctive","negative","nopreference",0.26,1,0.535353535353535,0.331580668348915 diff --git a/code/R/optimal_intervention_model/explanation_predictions_truth_only.csv b/code/R/optimal_intervention_model/explanation_predictions_truth_only.csv new file mode 100644 index 0000000..544f6b9 --- /dev/null +++ b/code/R/optimal_intervention_model/explanation_predictions_truth_only.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","truth","probability","prediction" +"fixed","conjunctive","positive","abnormal",0.72,0,0.535353535353535,0.279677081797961 +"fixed","conjunctive","positive","normal",0.18,0,0.0909090909090909,0.279677081797961 +"fixed","conjunctive","positive","nopreference",0.45,1,0.373737373737374,0.440645836404079 +"fixed","conjunctive","negative","abnormal",0.92,0,0.171717171717172,0.279677081797961 +"fixed","conjunctive","negative","normal",0.98,0,0.424242424242424,0.279677081797961 +"fixed","conjunctive","negative","nopreference",0.95,1,0.404040404040404,0.440645836404079 +"fixed","disjunctive","positive","abnormal",0.98,0,0.272727272727273,0.279677081797961 +"fixed","disjunctive","positive","normal",0.92,0,0.181818181818182,0.279677081797961 +"fixed","disjunctive","positive","nopreference",0.95,1,0.545454545454545,0.440645836404079 +"fixed","disjunctive","negative","abnormal",0.18,0,0.0808080808080808,0.279677081797961 +"fixed","disjunctive","negative","normal",0.72,0,0.393939393939394,0.279677081797961 +"fixed","disjunctive","negative","nopreference",0.45,1,0.525252525252525,0.440645836404079 +"hard","conjunctive","positive","abnormal",0.8,0,0.494845360824742,0.279677081797961 +"hard","conjunctive","positive","normal",0.2,0,0.164948453608247,0.279677081797961 +"hard","conjunctive","positive","nopreference",0.5,1,0.34020618556701,0.440645836404079 +"hard","conjunctive","negative","abnormal",1,0,0.171717171717172,0.279677081797961 +"hard","conjunctive","negative","normal",1,0,0.373737373737374,0.279677081797961 +"hard","conjunctive","negative","nopreference",1,1,0.454545454545455,0.440645836404079 +"hard","disjunctive","positive","abnormal",1,0,0.268041237113402,0.279677081797961 +"hard","disjunctive","positive","normal",1,0,0.195876288659794,0.279677081797961 +"hard","disjunctive","positive","nopreference",1,1,0.536082474226804,0.440645836404079 +"hard","disjunctive","negative","abnormal",0.2,0,0.0808080808080808,0.279677081797961 +"hard","disjunctive","negative","normal",0.8,0,0.484848484848485,0.279677081797961 +"hard","disjunctive","negative","nopreference",0.5,1,0.434343434343434,0.440645836404079 +"soft","conjunctive","positive","abnormal",0.32,0,0.510204081632653,0.279677081797961 +"soft","conjunctive","positive","normal",0.2,0,0.112244897959184,0.279677081797961 +"soft","conjunctive","positive","nopreference",0.26,1,0.377551020408163,0.440645836404079 +"soft","conjunctive","negative","abnormal",1,0,0.454545454545455,0.279677081797961 +"soft","conjunctive","negative","normal",0.88,0,0.141414141414141,0.279677081797961 +"soft","conjunctive","negative","nopreference",0.94,1,0.404040404040404,0.440645836404079 +"soft","disjunctive","positive","abnormal",0.88,0,0.0612244897959184,0.279677081797961 +"soft","disjunctive","positive","normal",1,0,0.581632653061224,0.279677081797961 +"soft","disjunctive","positive","nopreference",0.94,1,0.357142857142857,0.440645836404079 +"soft","disjunctive","negative","abnormal",0.2,0,0.111111111111111,0.279677081797961 +"soft","disjunctive","negative","normal",0.32,0,0.353535353535354,0.279677081797961 +"soft","disjunctive","negative","nopreference",0.26,1,0.535353535353535,0.440645836404079 diff --git a/code/R/optimal_intervention_model/grateful-refs.bib b/code/R/optimal_intervention_model/grateful-refs.bib new file mode 100644 index 0000000..f1f3e55 --- /dev/null +++ b/code/R/optimal_intervention_model/grateful-refs.bib @@ -0,0 +1,118 @@ +@Manual{base, +title = {{R}: A Language and Environment for Statistical Computing}, + author = {{R Core Team}}, + organization = {R Foundation for Statistical Computing}, + address = {Vienna, Austria}, + year = {2023}, + url = {https://www.R-project.org/}, +} +@Manual{bookdown2023, +title = {{bookdown}: Authoring Books and Technical Documents with R Markdown}, + author = {Yihui Xie}, + year = {2023}, + note = {R package version 0.37}, + url = {https://github.com/rstudio/bookdown}, +} + +@Book{bookdown2016, +title = {{bookdown}: Authoring Books and Technical Documents with {R} Markdown}, + author = {Yihui Xie}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2016}, + isbn = {978-1138700109}, + url = {https://bookdown.org/yihui/bookdown}, +} +@Manual{janitor, +title = {{janitor}: Simple Tools for Examining and Cleaning Dirty Data}, + author = {Sam Firke}, + year = {2023}, + note = {R package version 2.2.0}, + url = {https://CRAN.R-project.org/package=janitor}, +} +@Manual{knitr2023, +title = {{knitr}: A General-Purpose Package for Dynamic Report Generation in R}, + author = {Yihui Xie}, + year = {2023}, + note = {R package version 1.45}, + url = {https://yihui.org/knitr/}, +} + +@Book{knitr2015, + title = {Dynamic Documents with {R} and knitr}, + author = {Yihui Xie}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2015}, + edition = {2nd}, + note = {ISBN 978-1498716963}, + url = {https://yihui.org/knitr/}, +} + +@InCollection{knitr2014, + booktitle = {Implementing Reproducible Computational Research}, + editor = {Victoria Stodden and Friedrich Leisch and Roger D. Peng}, +title = {{knitr}: A Comprehensive Tool for Reproducible Research in {R}}, + author = {Yihui Xie}, + publisher = {Chapman and Hall/CRC}, + year = {2014}, + note = {ISBN 978-1466561595}, +} +@Manual{Metrics, +title = {{Metrics}: Evaluation Metrics for Machine Learning}, + author = {Ben Hamner and Michael Frasco}, + year = {2018}, + note = {R package version 0.1.4}, + url = {https://CRAN.R-project.org/package=Metrics}, +} +@Manual{patchwork, +title = {{patchwork}: The Composer of Plots}, + author = {Thomas Lin Pedersen}, + year = {2024}, + note = {R package version 1.2.0}, + url = {https://CRAN.R-project.org/package=patchwork}, +} +@Manual{rmarkdown2023, +title = {{rmarkdown}: Dynamic Documents for R}, + author = {JJ Allaire and Yihui Xie and Christophe Dervieux and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang and Richard Iannone}, + year = {2023}, + note = {R package version 2.25}, + url = {https://github.com/rstudio/rmarkdown}, +} + +@Book{rmarkdown2018, + title = {R Markdown: The Definitive Guide}, + author = {Yihui Xie and J.J. Allaire and Garrett Grolemund}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2018}, + isbn = {9781138359338}, + url = {https://bookdown.org/yihui/rmarkdown}, +} + +@Book{rmarkdown2020, + title = {R Markdown Cookbook}, + author = {Yihui Xie and Christophe Dervieux and Emily Riederer}, + publisher = {Chapman and Hall/CRC}, + address = {Boca Raton, Florida}, + year = {2020}, + isbn = {9780367563837}, + url = {https://bookdown.org/yihui/rmarkdown-cookbook}, +} +@Manual{scales, +title = {{scales}: Scale Functions for Visualization}, + author = {Hadley Wickham and Thomas Lin Pedersen and Dana Seidel}, + year = {2023}, + note = {R package version 1.3.0}, + url = {https://CRAN.R-project.org/package=scales}, +} +@Article{tidyverse, + title = {Welcome to the {tidyverse}}, + author = {Hadley Wickham and Mara Averick and Jennifer Bryan and Winston Chang and Lucy D'Agostino McGowan and Romain François and Garrett Grolemund and Alex Hayes and Lionel Henry and Jim Hester and Max Kuhn and Thomas Lin Pedersen and Evan Miller and Stephan Milton Bache and Kirill Müller and Jeroen Ooms and David Robinson and Dana Paige Seidel and Vitalie Spinu and Kohske Takahashi and Davis Vaughan and Claus Wilke and Kara Woo and Hiroaki Yutani}, + year = {2019}, + journal = {Journal of Open Source Software}, + volume = {4}, + number = {43}, + pages = {1686}, + doi = {10.21105/joss.01686}, +} diff --git a/code/R/optimal_intervention_model/intervention_predictions.csv b/code/R/optimal_intervention_model/intervention_predictions.csv new file mode 100644 index 0000000..4fc19fb --- /dev/null +++ b/code/R/optimal_intervention_model/intervention_predictions.csv @@ -0,0 +1,37 @@ +"intervention","causal_structure","outcome","choice","value","prediction","probability" +"fixed","conjunctive","positive","abnormal",0.72,0.994041787821903,0.808080808080808 +"fixed","conjunctive","positive","normal",0.18,3.52912649877719e-05,0.111111111111111 +"fixed","conjunctive","positive","nopreference",0.45,0.00592292091310877,0.0808080808080808 +"fixed","conjunctive","negative","abnormal",0.92,0.169815163718682,0.202020202020202 +"fixed","conjunctive","negative","normal",0.98,0.530141419509561,0.666666666666667 +"fixed","conjunctive","negative","nopreference",0.95,0.300043416771758,0.131313131313131 +"fixed","disjunctive","positive","abnormal",0.98,0.53014141950956,0.656565656565657 +"fixed","disjunctive","positive","normal",0.92,0.169815163718682,0.121212121212121 +"fixed","disjunctive","positive","nopreference",0.95,0.300043416771758,0.222222222222222 +"fixed","disjunctive","negative","abnormal",0.18,3.52912649877718e-05,0.101010101010101 +"fixed","disjunctive","negative","normal",0.72,0.994041787821903,0.797979797979798 +"fixed","disjunctive","negative","nopreference",0.45,0.00592292091310877,0.101010101010101 +"hard","conjunctive","positive","abnormal",0.8,0.996627757982,0.65979381443299 +"hard","conjunctive","positive","normal",0.2,1.13339239512222e-05,0.288659793814433 +"hard","conjunctive","positive","nopreference",0.5,0.00336090809404915,0.0515463917525773 +"hard","conjunctive","negative","abnormal",1,0.333333333333333,0.191919191919192 +"hard","conjunctive","negative","normal",1,0.333333333333333,0.646464646464647 +"hard","conjunctive","negative","nopreference",1,0.333333333333333,0.161616161616162 +"hard","disjunctive","positive","abnormal",1,0.333333333333333,0.43298969072165 +"hard","disjunctive","positive","normal",1,0.333333333333333,0.278350515463918 +"hard","disjunctive","positive","nopreference",1,0.333333333333333,0.288659793814433 +"hard","disjunctive","negative","abnormal",0.2,1.13339239512222e-05,0.131313131313131 +"hard","disjunctive","negative","normal",0.8,0.996627757982,0.818181818181818 +"hard","disjunctive","negative","nopreference",0.5,0.00336090809404915,0.0505050505050505 +"soft","conjunctive","positive","abnormal",0.32,0.702777373323099,0.653061224489796 +"soft","conjunctive","positive","normal",0.2,0.0721086281912667,0.306122448979592 +"soft","conjunctive","positive","nopreference",0.26,0.225113998485635,0.0408163265306122 +"soft","conjunctive","negative","abnormal",1,0.702777373323098,0.676767676767677 +"soft","conjunctive","negative","normal",0.88,0.0721086281912668,0.222222222222222 +"soft","conjunctive","negative","nopreference",0.94,0.225113998485635,0.101010101010101 +"soft","disjunctive","positive","abnormal",0.88,0.0721086281912668,0.122448979591837 +"soft","disjunctive","positive","normal",1,0.702777373323098,0.795918367346939 +"soft","disjunctive","positive","nopreference",0.94,0.225113998485635,0.0816326530612245 +"soft","disjunctive","negative","abnormal",0.2,0.0721086281912668,0.353535353535354 +"soft","disjunctive","negative","normal",0.32,0.702777373323098,0.555555555555556 +"soft","disjunctive","negative","nopreference",0.26,0.225113998485635,0.0909090909090909 diff --git a/code/R/optimal_intervention_model/optimal_intervention_model.Rmd b/code/R/optimal_intervention_model/optimal_intervention_model.Rmd new file mode 100644 index 0000000..cfcded5 --- /dev/null +++ b/code/R/optimal_intervention_model/optimal_intervention_model.Rmd @@ -0,0 +1,385 @@ +--- +title: "Optimal intervention model" +author: "Jacqueline Harding, Tobias Gerstenberg & Lara Kirfel" +date: "`r format(Sys.Date(), '%B %d, %Y')`" +output: + bookdown::html_document2: + toc: true + toc_depth: 4 + toc_float: true + theme: cosmo + highlight: tango +--- + +# Load packages + +```{r, message=F} +library("knitr") +library("janitor") +library("patchwork") +library("Metrics") +library("tidyverse") +``` + +# Set options + +```{r} +theme_set(theme_classic() + + theme(text = element_text(size = 24))) + +opts_chunk$set(comment = "", + fig.show = "hold") + +# suppress grouping warning +options(dplyr.summarise.inform = F) +``` + +# Functions + +```{r} +fun.softmax = function(x, temp = 3) { + out = exp(x*temp) / sum(exp(x*temp)) + return(out) +} +``` + +# DATA + +```{r, warning=FALSE, message=FALSE} +df.data = bind_rows( + read_csv(file = "../../../data/hardint_pos.csv"), + read_csv(file = "../../../data/hardint_neg.csv"), + read_csv(file = "../../../data/softint_pos.csv"), + read_csv(file = "../../../data/softint_neg.csv"), + read_csv(file = "../../../data/fixedint_pos.csv"), + read_csv(file = "../../../data/fixedint_neg.csv")) %>% + clean_names() %>% + mutate(causal_structure = str_to_lower(causal_structure), + experiment = str_remove(experiment, "int")) %>% + rename_with(.fn = ~str_remove_all(., "_percentage")) %>% + pivot_longer(cols = -c(causal_structure, outcome, experiment), + values_to = "probability") %>% + separate(col = name, + into = c("choice", "type")) %>% + mutate(across(.cols = -probability, + .fns = ~ as.factor(.)), + choice = factor(choice, levels = c("abnormal", "nopreference", "normal"))) %>% + mutate(probability = probability / 100) + +df.intervention = df.data %>% + filter(type == "intervention") %>% + rename(intervention = experiment) + +df.explanation = df.data %>% + filter(type == "explanation") + +colnames(df.data) + +# write_csv(df.data, "data.csv") + +``` + + + +# MODEL + +## Interventions + +### Model structure + +```{r} + +fun.success = function(p_abnormal, p_normal, causal_structure, outcome){ + if (causal_structure == "conjunctive"){ + p = p_abnormal * p_normal + } else{ + p = 1 - (1 - p_abnormal) * (1 - p_normal) + } + if (outcome == "negative"){ + p = 1 - p + } + return(p) +} + +causal_structure = c("conjunctive", "disjunctive") +outcome = c("positive", "negative") + +df.model = expand_grid(causal_structure, outcome) %>% + mutate(p_abnormal = 0.2, + p_normal = 0.8, + int_hard_abnormal = ifelse(outcome == "positive", 1, 0), + int_hard_normal = ifelse(outcome == "positive", 1, 0), + int_soft_abnormal = ifelse(outcome == "positive", + p_abnormal + 0.2, + p_abnormal - 0.2), + int_soft_normal = ifelse(outcome == "positive", + p_normal + 0.2, + p_normal - 0.2), + int_fixed_abnormal = ifelse(outcome == "positive", + 0.9, + 0.1), + int_fixed_normal = ifelse(outcome == "positive", + 0.9, + 0.1), + p_success = pmap_dbl(.l = list(p_abnormal, + p_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4)), + p_success_int_hard_abnormal = pmap_dbl(.l = list(int_hard_abnormal, + p_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4)), + p_success_int_hard_normal = pmap_dbl(.l = list(p_abnormal, + int_hard_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4)), + p_success_int_soft_abnormal = pmap_dbl(.l = list(int_soft_abnormal, + p_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4)), + p_success_int_soft_normal = pmap_dbl(.l = list(p_abnormal, + int_soft_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4)), + p_success_int_fixed_abnormal = pmap_dbl(.l = list(int_fixed_abnormal, + p_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4)), + p_success_int_fixed_normal = pmap_dbl(.l = list(p_abnormal, + int_fixed_normal, + causal_structure, + outcome), + .f = ~ fun.success(..1, ..2, ..3, ..4))) +``` + +### Choice probabilities + +```{r} +# gives expected value for each intervention +df.choice = df.model %>% + select(causal_structure, outcome, + contains("p_success_int")) %>% + pivot_longer(-c(causal_structure, outcome)) %>% + mutate(name = str_remove(name, "p_success_int_")) %>% + separate(name, into = c("intervention", "target")) %>% + pivot_wider(names_from = target, + values_from = value) %>% + arrange(intervention, causal_structure) %>% + relocate(intervention) %>% + mutate(nopreference = 0.5 * abnormal + 0.5 * normal) %>% + pivot_longer(c(abnormal, normal, nopreference), + names_to = "choice") %>% + mutate(choice = factor(choice, levels = c("abnormal", "nopreference", "normal")), + across(.cols = c(intervention, causal_structure, outcome), + .fns = ~ as.factor(.))) +``` + +### Fit softmax parameter + +```{r} +fun.fit_temperature = function(df_data, df_prediction, temperature){ + df_prediction %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(value, temp = temperature)) %>% + ungroup() %>% + left_join(df_data, + by = c("intervention", "causal_structure", "outcome", "choice")) %>% + summarize(loss = sum((prediction - probability) ^ 2)) %>% + pull(loss) +} + +fit.temperature = optim(par = 10, + fn = fun.fit_temperature, + method = "L-BFGS-B", + lower = 0, + upper = 100, + df_data = df.intervention, + df_prediction = df.choice) + +print(fit.temperature$par) +``` +### Predictions + +```{r} +df.prediction_intervention = df.choice %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(value, temp = fit.temperature$par)) %>% + left_join(df.data %>% + filter(type == "intervention") %>% + select(-type) %>% + rename(intervention = experiment), + by = c("causal_structure", "outcome", "intervention", "choice")) +``` + +## Explanations + +### Model structure + +```{r} +df.prediction_explanation = df.choice %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(truth = ifelse(choice == "nopreference", 1, 0)) %>% + left_join(df.data %>% + filter(type == "explanation") %>% + select(-type) %>% + rename(intervention = experiment), + by = c("causal_structure", "outcome", "intervention", "choice")) %>% + ungroup() +``` + +### Model fitting functions + +#### Combined model + +```{r} +fun.fit_params = function(params, df_prediction){ + + weight <- params[1] + temperature <- params[2] + + df_prediction %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(weight * value + (1 - weight) * truth, temp = temperature)) %>% + ungroup() %>% + summarize(loss = sum((prediction - probability) ^ 2)) %>% + pull(loss) +} +``` + +#### Intervention only model + +```{r} +fun.fit_params_intervention_only = function(params, df_prediction){ + + temperature <- params[1] + + df_prediction %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(value, temp = temperature)) %>% + ungroup() %>% + summarize(loss = sum((prediction - probability) ^ 2)) %>% + pull(loss) +} +``` + +#### Truth only model + +```{r} +fun.fit_params_truth_only = function(params, df_prediction){ + + temperature <- params[1] + + df_prediction %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(truth, temp = temperature)) %>% + ungroup() %>% + summarize(loss = sum((prediction - probability) ^ 2)) %>% + pull(loss) +} +``` + +### Fit paramters + +#### Combined model + +```{r} + +initial_params <- c(weight = 0.5, temperature = 10) +lower_bounds <- c(weight = 0, temperature = 0) +upper_bounds <- c(weight = 1, temperature = 100) + +fit.params <- optim(par = initial_params, + fn = fun.fit_params, + method = "L-BFGS-B", + lower = lower_bounds, + upper = upper_bounds, + df_prediction = df.prediction_explanation) + +print(fit.params$par) +``` + +#### Intervention only model + +```{r} + +initial_params <- c(temperature = 10) +lower_bounds <- c(temperature = 0) +upper_bounds <- c(temperature = 100) + +fit.params_intervention_only <- optim(par = initial_params, + fn = fun.fit_params_intervention_only, + method = "L-BFGS-B", + lower = lower_bounds, + upper = upper_bounds, + df_prediction = df.prediction_explanation) + +print(fit.params_intervention_only$par) +``` + +#### Truth only model + +```{r} + +initial_params <- c(temperature = 10) +lower_bounds <- c(temperature = 0) +upper_bounds <- c(temperature = 100) + +fit.params_truth_only <- optim(par = initial_params, + fn = fun.fit_params_truth_only, + method = "L-BFGS-B", + lower = lower_bounds, + upper = upper_bounds, + df_prediction = df.prediction_explanation) + +print(fit.params_truth_only$par) +``` + +### Predictions + +#### Combined model + +```{r} +df.prediction_explanation = df.prediction_explanation %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(fit.params$par[1] * value + (1 - fit.params$par[1]) * truth, temp = fit.params$par[2])) %>% + ungroup() + +write.csv(df.prediction_explanation, file = "explanation_predictions.csv", row.names = FALSE) +write.csv(df.prediction_intervention, file = "intervention_predictions.csv", row.names = FALSE) +``` + +#### Intervention only model + +```{r} +df.prediction_explanation_intervention_only = df.prediction_explanation %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(value, temp = fit.params_intervention_only$par[1])) %>% + ungroup() + +write.csv(df.prediction_explanation_intervention_only, file = "explanation_predictions_intervention_only.csv", row.names = FALSE) +``` + +#### Truth only model + +```{r} +df.prediction_explanation_truth_only = df.prediction_explanation %>% + group_by(intervention, causal_structure, outcome) %>% + mutate(prediction = fun.softmax(truth, temp = fit.params_truth_only$par[1])) %>% + ungroup() + +write.csv(df.prediction_explanation_truth_only, file = "explanation_predictions_truth_only.csv", row.names = FALSE) +``` + + + +# Session info + +```{r, echo=F} +sessionInfo() +``` \ No newline at end of file diff --git a/code/R/optimal_intervention_model/optimal_intervention_model.html b/code/R/optimal_intervention_model/optimal_intervention_model.html new file mode 100644 index 0000000..1fcb41d --- /dev/null +++ b/code/R/optimal_intervention_model/optimal_intervention_model.html @@ -0,0 +1,2040 @@ + + + + + + + + + + + + + + + +Optimal intervention model + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +
+

1 Load packages

+
library("knitr")
+library("janitor")
+library("patchwork")
+library("Metrics")
+library("tidyverse")
+
+
+

2 Set options

+
theme_set(theme_classic() + 
+    theme(text = element_text(size = 24)))
+
+opts_chunk$set(comment = "",
+               fig.show = "hold")
+
+# suppress grouping warning 
+options(dplyr.summarise.inform = F)
+
+
+

3 Functions

+
fun.softmax = function(x, temp = 3) {
+    out = exp(x*temp) / sum(exp(x*temp))
+    return(out)
+}
+
+
+

4 DATA

+
df.data = bind_rows(
+  read_csv(file = "../../../data/hardint_pos.csv"),
+  read_csv(file = "../../../data/hardint_neg.csv"),
+  read_csv(file = "../../../data/softint_pos.csv"),
+  read_csv(file = "../../../data/softint_neg.csv"),
+  read_csv(file = "../../../data/fixedint_pos.csv"),
+  read_csv(file = "../../../data/fixedint_neg.csv")) %>% 
+  clean_names() %>% 
+  mutate(causal_structure = str_to_lower(causal_structure),
+         experiment = str_remove(experiment, "int")) %>% 
+  rename_with(.fn = ~str_remove_all(., "_percentage")) %>% 
+  pivot_longer(cols = -c(causal_structure, outcome, experiment),
+               values_to = "probability") %>% 
+  separate(col = name,
+           into = c("choice", "type")) %>% 
+  mutate(across(.cols = -probability,
+                .fns = ~ as.factor(.)),
+         choice = factor(choice, levels = c("abnormal", "nopreference", "normal"))) %>%
+  mutate(probability = probability / 100)
+
+df.intervention = df.data %>% 
+  filter(type == "intervention") %>% 
+  rename(intervention = experiment)
+
+df.explanation = df.data %>% 
+  filter(type == "explanation")
+
+colnames(df.data)
+
[1] "causal_structure" "outcome"          "experiment"       "choice"          
+[5] "type"             "probability"     
+
# write_csv(df.data, "data.csv")
+
+
+

5 MODEL

+
+

5.1 Interventions

+
+

5.1.1 Model structure

+
fun.success = function(p_abnormal, p_normal, causal_structure, outcome){ 
+  if (causal_structure == "conjunctive"){
+    p = p_abnormal *  p_normal
+  } else{
+    p = 1 - (1 - p_abnormal) * (1 - p_normal)
+  }
+  if (outcome == "negative"){
+    p = 1 - p
+  }
+  return(p)
+}
+
+causal_structure = c("conjunctive", "disjunctive")
+outcome = c("positive", "negative") 
+
+df.model = expand_grid(causal_structure, outcome) %>% 
+  mutate(p_abnormal = 0.2,
+         p_normal = 0.8,
+         int_hard_abnormal = ifelse(outcome == "positive", 1, 0),
+         int_hard_normal = ifelse(outcome == "positive", 1, 0),
+         int_soft_abnormal = ifelse(outcome == "positive",
+                                  p_abnormal + 0.2,
+                                  p_abnormal - 0.2),
+         int_soft_normal = ifelse(outcome == "positive",
+                                  p_normal + 0.2,
+                                  p_normal - 0.2),
+         int_fixed_abnormal = ifelse(outcome == "positive",
+                                  0.9,
+                                  0.1),
+         int_fixed_normal = ifelse(outcome == "positive",
+                                  0.9,
+                                  0.1),
+         p_success = pmap_dbl(.l = list(p_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_hard_abnormal = pmap_dbl(.l = list(int_hard_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_hard_normal = pmap_dbl(.l = list(p_abnormal, 
+                                        int_hard_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_soft_abnormal = pmap_dbl(.l = list(int_soft_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_soft_normal = pmap_dbl(.l = list(p_abnormal, 
+                                        int_soft_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_fixed_abnormal = pmap_dbl(.l = list(int_fixed_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_fixed_normal = pmap_dbl(.l = list(p_abnormal, 
+                                        int_fixed_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)))
+
+
+

5.1.2 Choice probabilities

+
# gives expected value for each intervention
+df.choice = df.model %>% 
+  select(causal_structure, outcome,
+         contains("p_success_int")) %>% 
+  pivot_longer(-c(causal_structure, outcome)) %>% 
+  mutate(name = str_remove(name, "p_success_int_")) %>% 
+  separate(name, into = c("intervention", "target")) %>% 
+  pivot_wider(names_from = target,
+              values_from = value) %>% 
+  arrange(intervention, causal_structure) %>% 
+  relocate(intervention) %>% 
+  mutate(nopreference = 0.5 * abnormal + 0.5 * normal) %>% 
+  pivot_longer(c(abnormal, normal, nopreference),
+               names_to = "choice") %>% 
+  mutate(choice = factor(choice, levels = c("abnormal", "nopreference", "normal")),
+         across(.cols = c(intervention, causal_structure, outcome),
+                .fns = ~ as.factor(.)))
+
+
+

5.1.3 Fit softmax parameter

+
fun.fit_temperature = function(df_data, df_prediction, temperature){
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(value, temp = temperature)) %>% 
+    ungroup() %>% 
+    left_join(df_data,
+              by = c("intervention", "causal_structure", "outcome", "choice")) %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+fit.temperature = optim(par = 10, 
+                        fn = fun.fit_temperature,
+                        method = "L-BFGS-B",
+                        lower = 0, 
+                        upper = 100,
+                        df_data = df.intervention,
+                        df_prediction = df.choice)
+
+print(fit.temperature$par)
+
[1] 18.97389
+
+
+

5.1.4 Predictions

+
df.prediction_intervention = df.choice %>% 
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(value, temp = fit.temperature$par)) %>%
+    left_join(df.data %>% 
+                filter(type == "intervention") %>% 
+                select(-type) %>% 
+                rename(intervention = experiment),
+              by = c("causal_structure", "outcome", "intervention", "choice"))
+
+
+
+

5.2 Explanations

+
+

5.2.1 Model structure

+
df.prediction_explanation =  df.choice %>% 
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(truth = ifelse(choice == "nopreference", 1, 0)) %>%
+    left_join(df.data %>% 
+                filter(type == "explanation") %>% 
+                select(-type) %>% 
+                rename(intervention = experiment),
+              by = c("causal_structure", "outcome", "intervention", "choice")) %>% 
+  ungroup()
+
+
+

5.2.2 Model fitting functions

+
+

5.2.2.1 Combined model

+
fun.fit_params = function(params, df_prediction){
+  
+  weight <- params[1]
+  temperature <- params[2]
+  
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(weight * value + (1 - weight) * truth, temp = temperature)) %>% 
+    ungroup() %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+
+

5.2.2.2 Intervention only model

+
fun.fit_params_intervention_only = function(params, df_prediction){
+  
+  temperature <- params[1]
+  
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(value, temp = temperature)) %>% 
+    ungroup() %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+
+

5.2.2.3 Truth only model

+
fun.fit_params_truth_only = function(params, df_prediction){
+  
+  temperature <- params[1]
+  
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(truth, temp = temperature)) %>% 
+    ungroup() %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+
+
+

5.2.3 Fit paramters

+
+

5.2.3.1 Combined model

+
initial_params <- c(weight = 0.5, temperature = 10)
+lower_bounds <- c(weight = 0, temperature = 0)
+upper_bounds <- c(weight = 1, temperature = 100)
+
+fit.params <- optim(par = initial_params, 
+                         fn = fun.fit_params,
+                         method = "L-BFGS-B",
+                         lower = lower_bounds, 
+                         upper = upper_bounds,
+                         df_prediction = df.prediction_explanation)
+
+print(fit.params$par)
+
     weight temperature 
+  0.8420403   3.5050364 
+
+
+

5.2.3.2 Intervention only model

+
initial_params <- c(temperature = 10)
+lower_bounds <- c(temperature = 0)
+upper_bounds <- c(temperature = 100)
+
+fit.params_intervention_only <- optim(par = initial_params, 
+                         fn = fun.fit_params_intervention_only,
+                         method = "L-BFGS-B",
+                         lower = lower_bounds, 
+                         upper = upper_bounds,
+                         df_prediction = df.prediction_explanation)
+
+print(fit.params_intervention_only$par)
+
temperature 
+   2.097383 
+
+
+

5.2.3.3 Truth only model

+
initial_params <- c(temperature = 10)
+lower_bounds <- c(temperature = 0)
+upper_bounds <- c(temperature = 100)
+
+fit.params_truth_only <- optim(par = initial_params, 
+                         fn = fun.fit_params_truth_only,
+                         method = "L-BFGS-B",
+                         lower = lower_bounds, 
+                         upper = upper_bounds,
+                         df_prediction = df.prediction_explanation)
+
+print(fit.params_truth_only$par)
+
temperature 
+  0.4546058 
+
+
+
+

5.2.4 Predictions

+
+

5.2.4.1 Combined model

+
df.prediction_explanation = df.prediction_explanation %>%
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(fit.params$par[1] * value + (1 - fit.params$par[1]) * truth, temp = fit.params$par[2])) %>%
+  ungroup()
+
+write.csv(df.prediction_explanation, file = "explanation_predictions.csv", row.names = FALSE)
+write.csv(df.prediction_intervention, file = "intervention_predictions.csv", row.names = FALSE)
+
+
+

5.2.4.2 Intervention only model

+
df.prediction_explanation_intervention_only = df.prediction_explanation %>%
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(value, temp = fit.params_intervention_only$par[1])) %>%
+  ungroup()
+
+write.csv(df.prediction_explanation_intervention_only, file = "explanation_predictions_intervention_only.csv", row.names = FALSE)
+
+
+

5.2.4.3 Truth only model

+
df.prediction_explanation_truth_only = df.prediction_explanation %>%
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(truth, temp = fit.params_truth_only$par[1])) %>%
+  ungroup()
+
+write.csv(df.prediction_explanation_truth_only, file = "explanation_predictions_truth_only.csv", row.names = FALSE)
+
+
+
+
+
+

6 Session info

+
R version 4.1.3 (2022-03-10)
+Platform: x86_64-apple-darwin17.0 (64-bit)
+Running under: macOS Big Sur/Monterey 10.16
+
+Matrix products: default
+BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
+LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
+
+locale:
+[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
+
+attached base packages:
+[1] stats     graphics  grDevices utils     datasets  methods   base     
+
+other attached packages:
+ [1] lubridate_1.9.2 forcats_1.0.0   stringr_1.5.0   dplyr_1.1.4    
+ [5] purrr_1.0.1     readr_2.1.4     tidyr_1.3.0     tibble_3.2.1   
+ [9] ggplot2_3.4.4   tidyverse_2.0.0 Metrics_0.1.4   patchwork_1.1.2
+[13] janitor_2.2.0   knitr_1.38     
+
+loaded via a namespace (and not attached):
+ [1] bslib_0.3.1       compiler_4.1.3    pillar_1.9.0      jquerylib_0.1.4  
+ [5] tools_4.1.3       bit_4.0.4         digest_0.6.29     jsonlite_1.8.4   
+ [9] evaluate_0.15     lifecycle_1.0.3   gtable_0.3.0      timechange_0.2.0 
+[13] pkgconfig_2.0.3   rlang_1.1.1       cli_3.6.1         rstudioapi_0.15.0
+[17] parallel_4.1.3    yaml_2.3.5        xfun_0.30         fastmap_1.1.0    
+[21] withr_2.5.0       hms_1.1.3         generics_0.1.2    vctrs_0.6.5      
+[25] sass_0.4.1        bit64_4.0.5       grid_4.1.3        tidyselect_1.2.0 
+[29] glue_1.6.2        snakecase_0.11.0  R6_2.5.1          fansi_1.0.3      
+[33] vroom_1.6.3       rmarkdown_2.13    bookdown_0.25     tzdb_0.4.0       
+[37] magrittr_2.0.3    scales_1.2.1      htmltools_0.5.2   colorspace_2.0-3 
+[41] utf8_1.2.2        stringi_1.7.6     munsell_0.5.0     crayon_1.5.1     
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/data/data-readme.md b/data/data-readme.md new file mode 100644 index 0000000..bb1d483 --- /dev/null +++ b/data/data-readme.md @@ -0,0 +1,23 @@ +# Data readme + +Information about the different data files. + +## data_int_combined.csv + +- causal_structure: conjunctive/disjunctive +- outcome: positive/negative +- experiment: + - hard: intervention sets it to 1 (positive) or 0 (negative) + - soft: intervention increases by 0.2 (positive) or decreases by 0.2 (negative) + - fixed: intervention sets to 0.9 (positive) or 0.1 (negative) +- choice: abnormal/normal/nopreference +- type: + - explanation: selections in the explanation phase of the experiment + - intervention: selections in the intervention phase of the experiment + +- note: + - the abnormal switch has a 20% of turning on + - the normal switch has an 80% of turning on + +- "experiment" and "outcome" were varied between participants +- "causal_structure" was varied within participants \ No newline at end of file diff --git a/data/data_int_combined.csv b/data/data_int_combined.csv new file mode 100644 index 0000000..b3eabec --- /dev/null +++ b/data/data_int_combined.csv @@ -0,0 +1,73 @@ +causal_structure,outcome,experiment,choice,type,probability +conjunctive,positive,hard,abnormal,explanation,49.48453608247423 +conjunctive,positive,hard,normal,explanation,16.49484536082474 +conjunctive,positive,hard,nopreference,explanation,34.02061855670103 +conjunctive,positive,hard,abnormal,intervention,65.97938144329896 +conjunctive,positive,hard,normal,intervention,28.865979381443296 +conjunctive,positive,hard,nopreference,intervention,5.154639175257731 +disjunctive,positive,hard,abnormal,explanation,26.804123711340207 +disjunctive,positive,hard,normal,explanation,19.587628865979383 +disjunctive,positive,hard,nopreference,explanation,53.608247422680414 +disjunctive,positive,hard,abnormal,intervention,43.29896907216495 +disjunctive,positive,hard,normal,intervention,27.835051546391753 +disjunctive,positive,hard,nopreference,intervention,28.865979381443296 +conjunctive,negative,hard,abnormal,explanation,17.17171717171717 +conjunctive,negative,hard,normal,explanation,37.37373737373738 +conjunctive,negative,hard,nopreference,explanation,45.45454545454545 +conjunctive,negative,hard,abnormal,intervention,19.19191919191919 +conjunctive,negative,hard,normal,intervention,64.64646464646465 +conjunctive,negative,hard,nopreference,intervention,16.161616161616163 +disjunctive,negative,hard,abnormal,explanation,8.080808080808081 +disjunctive,negative,hard,normal,explanation,48.48484848484848 +disjunctive,negative,hard,nopreference,explanation,43.43434343434344 +disjunctive,negative,hard,abnormal,intervention,13.131313131313131 +disjunctive,negative,hard,normal,intervention,81.81818181818183 +disjunctive,negative,hard,nopreference,intervention,5.05050505050505 +conjunctive,positive,soft,abnormal,explanation,51.02040816326531 +conjunctive,positive,soft,normal,explanation,11.224489795918368 +conjunctive,positive,soft,nopreference,explanation,37.755102040816325 +conjunctive,positive,soft,abnormal,intervention,65.3061224489796 +conjunctive,positive,soft,normal,intervention,30.612244897959183 +conjunctive,positive,soft,nopreference,intervention,4.081632653061225 +disjunctive,positive,soft,abnormal,explanation,6.122448979591836 +disjunctive,positive,soft,normal,explanation,58.16326530612245 +disjunctive,positive,soft,nopreference,explanation,35.714285714285715 +disjunctive,positive,soft,abnormal,intervention,12.244897959183673 +disjunctive,positive,soft,normal,intervention,79.59183673469387 +disjunctive,positive,soft,nopreference,intervention,8.16326530612245 +conjunctive,negative,soft,abnormal,explanation,45.45454545454545 +conjunctive,negative,soft,normal,explanation,14.14141414141414 +conjunctive,negative,soft,nopreference,explanation,40.4040404040404 +conjunctive,negative,soft,abnormal,intervention,67.67676767676768 +conjunctive,negative,soft,normal,intervention,22.22222222222222 +conjunctive,negative,soft,nopreference,intervention,10.1010101010101 +disjunctive,negative,soft,abnormal,explanation,11.11111111111111 +disjunctive,negative,soft,normal,explanation,35.35353535353536 +disjunctive,negative,soft,nopreference,explanation,53.535353535353536 +disjunctive,negative,soft,abnormal,intervention,35.35353535353536 +disjunctive,negative,soft,normal,intervention,55.55555555555556 +disjunctive,negative,soft,nopreference,intervention,9.090909090909092 +conjunctive,negative,fixed,abnormal,explanation,17.17171717171717 +conjunctive,negative,fixed,normal,explanation,42.42424242424242 +conjunctive,negative,fixed,nopreference,explanation,40.4040404040404 +conjunctive,negative,fixed,abnormal,intervention,20.2020202020202 +conjunctive,negative,fixed,normal,intervention,66.66666666666666 +conjunctive,negative,fixed,nopreference,intervention,13.131313131313131 +disjunctive,negative,fixed,abnormal,explanation,8.080808080808081 +disjunctive,negative,fixed,normal,explanation,39.39393939393939 +disjunctive,negative,fixed,nopreference,explanation,52.52525252525253 +disjunctive,negative,fixed,abnormal,intervention,10.1010101010101 +disjunctive,negative,fixed,normal,intervention,79.7979797979798 +disjunctive,negative,fixed,nopreference,intervention,10.1010101010101 +conjunctive,negative,fixed,abnormal,explanation,17.17171717171717 +conjunctive,negative,fixed,normal,explanation,42.42424242424242 +conjunctive,negative,fixed,nopreference,explanation,40.4040404040404 +conjunctive,negative,fixed,abnormal,intervention,20.2020202020202 +conjunctive,negative,fixed,normal,intervention,66.66666666666666 +conjunctive,negative,fixed,nopreference,intervention,13.131313131313131 +disjunctive,negative,fixed,abnormal,explanation,8.080808080808081 +disjunctive,negative,fixed,normal,explanation,39.39393939393939 +disjunctive,negative,fixed,nopreference,explanation,52.52525252525253 +disjunctive,negative,fixed,abnormal,intervention,10.1010101010101 +disjunctive,negative,fixed,normal,intervention,79.7979797979798 +disjunctive,negative,fixed,nopreference,intervention,10.1010101010101 diff --git a/data/fixedint_neg.csv b/data/fixedint_neg.csv new file mode 100644 index 0000000..b8e32e6 --- /dev/null +++ b/data/fixedint_neg.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,17.17171717171717,42.42424242424242,40.4040404040404,20.2020202020202,66.66666666666666,13.131313131313133,negative,fixedint +Disjunctive,8.080808080808081,39.39393939393939,52.52525252525253,10.1010101010101,79.7979797979798,10.1010101010101,negative,fixedint diff --git a/data/fixedint_pos.csv b/data/fixedint_pos.csv new file mode 100644 index 0000000..c294d3d --- /dev/null +++ b/data/fixedint_pos.csv @@ -0,0 +1,3 @@ +"CausalStructure","abnormal_explanation_percentage","normal_explanation_percentage","nopreference_explanation_percentage","abnormal_intervention_percentage","normal_intervention_percentage","nopreference_intervention_percentage","Outcome","Experiment" +"Conjunctive","53.535353535353536","9.090909090909092","37.37373737373738","80.8080808080808","11.11111111111111","8.080808080808081","positive","fixedint" +"Disjunctive","27.27272727272727","18.181818181818183","54.54545454545454","65.65656565656566","12.121212121212121","22.22222222222222","positive","fixedint" \ No newline at end of file diff --git a/data/hardint_neg.csv b/data/hardint_neg.csv new file mode 100644 index 0000000..0ba2d44 --- /dev/null +++ b/data/hardint_neg.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,17.17171717171717,37.37373737373738,45.45454545454545,19.19191919191919,64.64646464646465,16.161616161616163,negative,hardint +Disjunctive,8.080808080808081,48.484848484848484,43.43434343434344,13.131313131313133,81.81818181818183,5.05050505050505,negative,hardint diff --git a/data/hardint_pos.csv b/data/hardint_pos.csv new file mode 100644 index 0000000..d0896b6 --- /dev/null +++ b/data/hardint_pos.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,49.48453608247423,16.49484536082474,34.02061855670103,65.97938144329896,28.865979381443296,5.154639175257731,positive,hardint +Disjunctive,26.804123711340207,19.587628865979383,53.608247422680414,43.29896907216495,27.835051546391753,28.865979381443296,positive,hardint diff --git a/data/softint_neg.csv b/data/softint_neg.csv new file mode 100644 index 0000000..a13a879 --- /dev/null +++ b/data/softint_neg.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,45.45454545454545,14.14141414141414,40.4040404040404,67.67676767676768,22.22222222222222,10.1010101010101,negative,softint +Disjunctive,11.11111111111111,35.35353535353536,53.535353535353536,35.35353535353536,55.55555555555556,9.090909090909092,negative,softint diff --git a/data/softint_pos.csv b/data/softint_pos.csv new file mode 100644 index 0000000..67992ef --- /dev/null +++ b/data/softint_pos.csv @@ -0,0 +1,3 @@ +CausalStructure,abnormal_explanation_percentage,normal_explanation_percentage,nopreference_explanation_percentage,abnormal_intervention_percentage,normal_intervention_percentage,nopreference_intervention_percentage,Outcome,Experiment +Conjunctive,51.02040816326531,11.224489795918368,37.755102040816325,65.3061224489796,30.612244897959183,4.081632653061225,positive,softint +Disjunctive,6.122448979591836,58.16326530612245,35.714285714285715,12.244897959183673,79.59183673469387,8.16326530612245,positive,softint diff --git a/docs/analyses/experiments/index.html b/docs/analyses/experiments/index.html new file mode 100644 index 0000000..9963616 --- /dev/null +++ b/docs/analyses/experiments/index.html @@ -0,0 +1,2706 @@ + + + + + + + + + + + + + + + +Explanation and Intervention Data + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +
library("knitr")
+library("modelr")        # for bootstrapping
+library("patchwork")        # making figure panels
+library("tidyverse") # for data wrangling, visualization, etc. 
+
+

1 Set options

+
theme_set(theme_classic() + 
+    theme(text = element_text(size = 24)))
+
+opts_chunk$set(comment = "",
+               fig.show = "hold")
+
+# suppress grouping warning 
+options(dplyr.summarise.inform = F)
+
+
+

2 Condition 1: Hard Intervention: Positive Outcome

+
+

2.1 Read in Data

+
#### Read in Data
+df.responses = read.csv(file = "explanation_selection_positive_outcome_study_2-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "explanation_selection_positive_outcome_study_2-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data1 <- merge(df.responses, df.participants, by="workerid")
+
+
+

2.2 Wrangle Data

+
df.exp1 <- df.data1 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Conpos_") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Conpos_") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Dispos_") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Dispos_") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Conpos_") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Dispos_") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+   mutate(intervention = "hard") %>% 
+   mutate(outcome = "positive") 
+
+
+

2.3 Prepate Dataset

+
df.exp1_summary <- df.exp1 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "positive") %>% 
+    mutate(Experiment = "hardint")
+
+write_csv(df.exp1_summary, "hardint_pos.csv")
+
+
+
+

3 Condition 2: Hard Intervention: Negative Outcome

+
+

3.1 Read in Data

+
#### Read in Data
+df.responses = read.csv(file = "explanation_selection_negative_outcome-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "explanation_selection_negative_outcome-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data2 <- merge(df.responses, df.participants, by="workerid")
+
+
+

3.2 Wrangle Data

+
df.exp2 <- df.data2 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Conneg_") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Conneg_") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Disneg_") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Disneg_") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Conneg_") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Disneg_") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+     mutate(intervention = "hard") %>% 
+   mutate(outcome = "negative") 
+
+
+

3.3 Prepare Dataset

+
df.exp2_summary <- df.exp2 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "hardint")
+
+write_csv(df.exp2_summary, "hardint_neg.csv")
+
+
+
+

4 Condition 3: Soft Intervention: Positive Outcome

+
+

4.1 Read in Data

+
###Experiment 4
+#### Read in Data
+
+df.responses = read.csv(file = "pressbutton_positivecondition-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "pressbutton_positivecondition-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data3 <- merge(df.responses, df.participants, by="workerid")
+
+
+

4.2 Wrangle Data

+
df.exp3 <- df.data3 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition_1") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition_1") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_2") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_2") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition_1") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition_2") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other"))%>% 
+     mutate(intervention = "soft") %>% 
+   mutate(outcome = "positive")  
+
+
+

4.3 Prepare Dataset

+
df.exp3_summary <- df.exp3 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "positive") %>% 
+    mutate(Experiment = "softint")
+
+write_csv(df.exp3_summary, "softint_pos.csv")
+
+
+
+

5 Condition 4: Soft Intervention: Negative Outcome

+
+

5.1 Read in Data

+
###Experiment 4
+#### Read in Data
+
+df.responses = read.csv(file = "pressbutton_negativecondition-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "pressbutton_negativecondition-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data4 <- merge(df.responses, df.participants, by="workerid") %>% 
+  filter(!row_number() %in% c(71, 72))
+
+
+

5.2 Wrangle Data

+
df.exp4 <- df.data4 %>% 
+    gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition_4") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+     mutate(intervention = "soft") %>% 
+   mutate(outcome = "negative") 
+
+
+

5.3 Prepare Dataset

+
df.exp4_summary <- df.exp4 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "softint")
+
+write_csv(df.exp4_summary, "softint_neg.csv")
+
+
+
+

6 Condition 5: Fixed Intervention: Positive Outcome

+
+

6.1 Read in Data

+
###Experiment 5
+#### Read in Data
+
+df.responses = read.csv(file = "fixedintervention_positive-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "fixedintervention_positive-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data5 <- merge(df.responses, df.participants, by="workerid") 
+
+
+

6.2 Wrangle Data

+
df.exp5 <- df.data5 %>% 
+   gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition1") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition1") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition2") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition2") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition1") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition2") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other")) %>% 
+     mutate(intervention = "fixed") %>% 
+   mutate(outcome = "positive") 
+
+
+

6.3 Prepare Dataset

+
df.exp5_summary <- df.exp5 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "fixedint")
+
+write_csv(df.exp5_summary, "fixedint_pos.csv")
+
+
+
+

7 Condition 6: Fixed Intervention: Negative Outcome

+
+

7.1 Read in Data

+
###Experiment 6
+#### Read in Data
+
+df.responses = read.csv(file = "fixedintervention_negative-responses.csv", stringsAsFactors = F, sep = ",") %>% 
+      select(-error)
+
+
+df.participants <- read.csv(file = "fixedintervention_negative-participants.csv", stringsAsFactors = F, sep = ",") %>% 
+    select(-c(proliferate.condition, error))
+
+
+df.data6 <- merge(df.responses, df.participants, by="workerid") 
+
+
+

7.2 Wrangle Data

+
df.exp6 <- df.data6 %>% 
+   gather("index", "response", -c(workerid, proliferate.condition, age, ethnicity, gender, feedback, race))%>% 
+  mutate(CausalStructure  =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_1") ~ "Conjunctive",
+       str_detect(proliferate.condition, "Condition_3") & str_detect(index, "response_2") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_1") ~ "Disjunctive",
+       str_detect(proliferate.condition, "Condition_4") & str_detect(index, "response_2") ~ "Conjunctive"))%>% 
+  mutate(Order =
+           case_when(
+       str_detect(proliferate.condition, "Condition_3") ~ "conjunctive first",
+       str_detect(proliferate.condition, "Condition_4") ~ "disjunctive first"))%>% 
+  mutate(ResponseType =
+           case_when(
+       str_detect(index, "explanation") ~ "explanation",
+       str_detect(index, "intervention")  ~ "intervention"))%>% 
+  select(-index) %>% 
+  spread(ResponseType, response) %>% 
+  mutate(CausalStructure= factor(CausalStructure, levels=c("Conjunctive", "Disjunctive"))) %>%
+  mutate(explanation = recode (explanation, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(intervention = recode (intervention, 
+                               "orange" = "abnormal",
+                               "blue" = "normal" )) %>% 
+  mutate(abnormal_explanation =
+           case_when(
+        explanation == "abnormal" ~ "abnormal",
+        explanation != "abnormal"~ "other")) %>% 
+  mutate(normal_explanation =
+           case_when(
+        explanation == "normal" ~ "normal",
+        explanation != "normal"~ "other")) %>% 
+  mutate(nopreference_explanation =
+           case_when(
+        explanation == "no preference" ~ "no preference",
+        explanation != "no preference"~ "other")) %>% 
+  mutate(abnormal_intervention =
+           case_when(
+        intervention== "abnormal" ~ "abnormal",
+        intervention!= "abnormal"~ "other")) %>% 
+  mutate(normal_intervention  =
+           case_when(
+        intervention  == "normal" ~ "normal",
+        intervention  != "normal"~ "other")) %>% 
+  mutate(nopreference_intervention  =
+           case_when(
+        intervention== "no preference" ~ "no preference",
+        intervention!= "no preference"~ "other"))    %>%  
+  mutate(intervention = "fixed") %>% 
+   mutate(outcome = "negative") 
+
+
+

7.3 Prepare Dataset

+
df.exp6_summary <- df.exp6 %>%
+  group_by(CausalStructure) %>%
+  summarise(
+    abnormal_explanation_percentage = mean(abnormal_explanation == "abnormal") * 100,
+    normal_explanation_percentage = mean(normal_explanation == "normal") * 100,
+    nopreference_explanation_percentage = mean(nopreference_explanation == "no preference") * 100,
+    
+    abnormal_intervention_percentage = mean(abnormal_intervention == "abnormal") * 100,
+    normal_intervention_percentage = mean(normal_intervention == "normal") * 100,
+    nopreference_intervention_percentage = mean(nopreference_intervention == "no preference") * 100
+  ) %>% 
+    mutate(Outcome = "negative") %>% 
+    mutate(Experiment = "fixedint")
+
+write_csv(df.exp6_summary, "fixedint_neg.csv")
+
+
+
+

8 Create Dataset including raw data from all conditions

+
df.exp_all <- rbind(df.exp1, df.exp2, df.exp3, df.exp4, df.exp5, df.exp6)
+
+
+

9 Bootstrapping

+
+

9.1 DATA

+
+

9.1.1 Data frame

+
df.boot = df.exp_all %>% 
+  select(workerid,
+         structure = CausalStructure,
+         outcome,
+         action = intervention,
+         explanation,
+         abnormal_intervention,
+         normal_intervention,
+         nopreference_intervention) %>% 
+  mutate(structure = tolower(structure),
+         intervention = abnormal_intervention,
+         intervention = ifelse(normal_intervention != "other", normal_intervention, intervention),
+         intervention = ifelse(nopreference_intervention != "other", nopreference_intervention, intervention),
+         intervention = factor(intervention,
+                               levels = c("abnormal", "no preference", "normal")),
+         explanation = factor(explanation,
+                               levels = c("abnormal", "no preference", "normal"))) %>% 
+  select(-contains("_"))
+
+
+

9.1.2 Percentages

+
df.percentage = df.boot %>% 
+  count(structure, outcome, action, choice = intervention,
+        name = "intervention_n") %>% 
+  left_join(df.boot %>% 
+              count(structure, outcome, action, choice = explanation,
+                    name = "explanation_n"),
+            by = c("structure", "outcome", "action", "choice")) %>% 
+  group_by(structure, outcome, action) %>% 
+  mutate(intervention_p = intervention_n/sum(intervention_n),
+         explanation_p = explanation_n/sum(explanation_n)) %>% 
+  ungroup()
+
+
+

9.1.3 Bootstrapped confidence intervals

+
set.seed(1)
+
+# percentages with bootstrapped confidence intervals 
+df.confidence = df.boot %>% 
+  group_by(structure, outcome, action) %>% 
+  nest() %>% 
+  mutate(bootstraps = map(.x = data,
+                          .f = ~ bootstrap(.x, n = 1000))) %>% 
+  unnest(bootstraps) %>% 
+  mutate(intervention = map(.x = strap, 
+                      .f = ~ .x %>% 
+                        as_tibble() %>% 
+                        count(intervention,
+                              name = "intervention_n",
+                              .drop = F) %>% 
+                        mutate(intervention_p = intervention_n/sum(intervention_n))),
+         explanation = map(.x = strap, 
+                      .f = ~ .x %>% 
+                        as_tibble() %>% 
+                        count(explanation,
+                              name = "explanation_n",
+                              .drop = F) %>% 
+                        mutate(explanation_p = explanation_n/sum(explanation_n)))) %>%
+  select(structure, outcome, action, intervention, explanation) %>%
+  unnest(c(intervention, explanation)) %>%
+  select(everything(), choice = intervention, -explanation) %>% 
+  group_by(structure, outcome, action, choice) %>%
+  summarize(intervention_low = as.numeric(quantile(intervention_p, probs = 0.025)),
+            intervention_high = as.numeric(quantile(intervention_p, probs = 0.975)),
+            explanation_low = as.numeric(quantile(explanation_p, probs = 0.025)),
+            explanation_high = as.numeric(quantile(explanation_p, probs = 0.975))) %>% 
+  ungroup()
+
+
+

9.1.4 Combined data frame

+
df.combined = df.confidence %>%
+  left_join(df.percentage %>% 
+              select(-(contains("_n"))), 
+            by = c("structure", "outcome", "action", "choice")) %>% 
+  select(structure, outcome, action, choice, contains("intervention"),
+         contains("explanation"))
+
+
+
+

9.2 PLOTS

+
+

9.2.1 Read in model predictions

+
df.prediction_intervention = read_csv("intervention_predictions.csv")
+df.prediction_explanation = read_csv("explanation_predictions.csv") %>% 
+  select(-truth)
+
+df.optimal_intervention_model = df.prediction_intervention %>% 
+  mutate(index = "intervention_prediction") %>% 
+  bind_rows(df.prediction_explanation %>% 
+              mutate(index = "explanation_prediction")) %>% 
+  select(structure = causal_structure,
+         outcome, 
+         action = intervention,
+         choice,
+         index,
+         prediction) %>% 
+  pivot_wider(names_from = index,
+              values_from = prediction)
+
+df.intervention_only_model = read_csv("explanation_predictions_intervention_only.csv")
+df.truth_only_model = read_csv("explanation_predictions_truth_only.csv")
+
+df.alternative_models = df.intervention_only_model %>% 
+  mutate(model = "intervention_only") %>% 
+  bind_rows(df.truth_only_model %>% 
+              mutate(model = "truth_only")) %>% 
+  select(structure = causal_structure,
+         outcome, 
+         action = intervention,
+         choice,
+         model, 
+         prediction) %>% 
+  pivot_wider(names_from = model,
+              values_from = prediction)
+
+df.models = df.optimal_intervention_model %>% 
+  left_join(df.alternative_models) 
+
+
+

9.2.2 Bar plot

+
df.plot = df.combined %>% 
+  mutate(choice = factor(choice,
+                         labels = c("abnormal", "no\npreference", "normal")),
+         outcome = factor(outcome,
+                          levels = c("positive", "negative"),
+                          labels = c("positive outcome", "negative outcome")),
+         action = factor(action,
+                         levels = c("hard", "soft", "fixed")))
+
+df.model = df.optimal_intervention_model %>%
+  left_join(df.alternative_models) %>% 
+  mutate(choice = factor(choice,
+                         labels = c("abnormal", "no\npreference", "normal")),
+         outcome = factor(outcome,
+                          levels = c("positive", "negative"),
+                          labels = c("positive outcome", "negative outcome")),
+         action = factor(action,
+                         levels = c("hard", "soft", "fixed")))
+
+df.model2 = df.model %>% 
+  select(-intervention_prediction) %>% 
+  pivot_longer(cols = c("explanation_prediction", "intervention_only", "truth_only"),
+               names_to = "model",
+               values_to = "prediction") %>% 
+  mutate(model = factor(model,
+                        levels = c("truth_only", "explanation_prediction", "intervention_only"))) %>% 
+  arrange(structure, outcome, action, choice, model)
+  
+p_intervention = ggplot(data = df.plot,
+                        mapping = aes(x = action,
+                                      y = intervention_p,
+                                      group = choice,
+                                      fill = action,
+                                      alpha = choice)) + 
+  geom_col(color = "black",
+           position = position_dodge(width = 0.9)) +
+  geom_linerange(mapping = aes(ymin = intervention_low,
+                               ymax = intervention_high),
+                 position = position_dodge(width = 0.9),
+                 alpha = 1,
+                 linewidth = 1) +
+  geom_point(data = df.model,
+             mapping = aes(y = intervention_prediction),
+             position = position_dodge(width = 0.9),
+             shape = 21,
+             size = 4,
+             show.legend = F) +
+  facet_grid(structure ~ outcome) +
+  scale_y_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  scale_alpha_manual(values = c(0.4, 0.65, 0.9)) +
+  labs(title = "Intervention Task",
+       x = "type of intervention",
+       y = "percent selected") + 
+  theme(legend.position = "bottom",
+        plot.title = element_text(hjust = 0.5)) + 
+  guides(fill = "none",
+         alpha = "none")
+
+p_explanation = ggplot(data = df.plot,
+               mapping = aes(x = action,
+                             y = explanation_p,
+                             group = choice,
+                             fill = action,
+                             alpha = choice)) + 
+  geom_col(color = "black",
+           position = position_dodge(width = 0.9)) +
+  geom_linerange(mapping = aes(ymin = explanation_low,
+                               ymax = explanation_high),
+                 position = position_dodge(width = 0.9),
+                 alpha = 1,
+                 linewidth = 1) +
+  geom_point(data = df.model2,
+             mapping = aes(y = prediction,
+                           shape = model),
+             position = position_dodge2(width = 0.9,
+                                        padding = 0.2),
+             size = 4,
+             show.legend = F) +
+  facet_grid(structure ~ outcome) +
+  scale_y_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  scale_alpha_manual(values = c(0.4, 0.65, 0.9)) +
+  scale_shape_manual(values = c("truth_only" = 22,
+                                "explanation_prediction" = 21,
+                                "intervention_only" = 23)) +
+  labs(title = "Explanation Task",
+       x = "type of intervention",
+       y = "percent selected") + 
+  theme(legend.position = "bottom",
+        plot.title = element_text(hjust = 0.5)) + 
+  guides(fill = "none")
+
+p_intervention + p_explanation + 
+  plot_layout(ncol = 1) + plot_annotation(tag_levels = "A") & 
+  theme(plot.tag = element_text(size = 40, face = "bold"))
+
+ggsave(filename = "../../../figures/plots/bars.pdf",
+       width = 20,
+       height = 14)
+

+
+
+

9.2.3 Scatter plots

+
+

9.2.3.1 Scatter plot function

+
fun.scatter = function(data, xtitle, ytitle, legend = F){
+  p = ggplot(data = data,
+             mapping = aes(x = model,
+                           y = p,
+                           ymin = low,
+                           ymax = high)) +
+    geom_abline(intercept = 0, slope = 1, linetype = "dashed") +
+    annotate(geom = "text",
+             x = 0,
+             y = 1,
+             hjust = 0,
+             label = str_c("r = ", round(cor(data$model, data$p), 2)),
+             size = 8) +
+    annotate(geom = "text",
+             x = 0,
+             y = 0.92,
+             hjust = 0,
+             label = str_c("RMSE = ", round(sqrt(mean((data$model -  data$p)^2)), 2)),
+             size = 8) +
+    geom_smooth(method = "lm",
+                color = "black",
+                alpha = 0.2,
+                show.legend = F) + 
+    geom_linerange(alpha = 0.2) +
+    geom_point(mapping = aes(fill = action),
+               alpha = 0.9,
+               shape = 21,
+               size = 4) +
+    scale_x_continuous(limits = c(0, 1),
+                       breaks = seq(0, 1, 0.25),
+                       labels = scales::label_percent()) +
+    scale_y_continuous(limits = c(0, 1),
+                       breaks = seq(0, 1, 0.25),
+                       labels = scales::label_percent()) +
+    labs(x = xtitle,
+         y = ytitle) + 
+    theme(legend.position = c(1, 0),
+          legend.justification = c(1.2, -0.1)) 
+  
+  if(legend == F){
+    p = p + theme(legend.position = "none")
+  }
+ 
+ return(p)
+}
+
+
+

9.2.3.2 Combined scatter plots

+
df.plot = df.combined %>% 
+  left_join(df.models %>% 
+              mutate(choice = factor(choice,
+                                     levels = c("abnormal", "nopreference", "normal"),
+                                     labels = c("abnormal", "no preference", "normal")))) %>% 
+  mutate(structure = factor(structure,
+                            levels = c("conjunctive", "disjunctive")),
+         choice = factor(choice,
+                         labels = c("abnormal", "no\npreference", "normal")),
+         outcome = factor(outcome,
+                          levels = c("positive", "negative"),
+                          labels = c("positive outcome", "negative outcome")),
+         action = factor(action,
+                         levels = c("hard", "soft", "fixed")))
+
+df.plot.intervention = df.plot %>% 
+  select(structure, outcome, action, choice,
+         low = intervention_low, high = intervention_high,
+         p = intervention_p, model = intervention_prediction)
+
+df.plot.explanation = df.plot %>%
+  select(structure, outcome, action, choice,
+         low = explanation_low, high = explanation_high,
+         p = explanation_p,
+         explanation_prediction,
+         intervention_only,
+         truth_only)
+  
+scatter1 = fun.scatter(data = df.plot.intervention,
+                       xtitle = "model prediction",
+                       ytitle = "intervention choices",
+                       legend = T)
+
+scatter2 = fun.scatter(data = df.plot.explanation %>% 
+                         mutate(model = intervention_only),
+                       xtitle = "relevance only model",
+                       ytitle = "explanation choices")
+
+scatter3 = fun.scatter(data = df.plot.explanation %>% 
+                         mutate(model = truth_only),
+                       xtitle = "accuracy only model",
+                       ytitle = "explanation choices")
+
+scatter4 = fun.scatter(data = df.plot.explanation %>% 
+                         mutate(model = explanation_prediction),
+                       xtitle = "combined model",
+                       ytitle = "explanation choices")
+
+scatter1 + scatter2 + scatter3 + scatter4 + 
+  plot_layout(ncol = 2) + 
+  plot_annotation(tag_levels = "A") & 
+  theme(text = element_text(size = 30),
+        plot.tag = element_text(size = 40, face = "bold"),
+        plot.margin = margin(t = 0, 
+                             r = 0.35, 
+                             b = 0, 
+                             l = 0,
+                             "cm"))
+
+ggsave(filename = "../../../figures/plots/scatter.pdf",
+       width = 16,
+       height = 12)
+

+
+
+

9.2.3.3 Overall

+
df.scatter = df.plot %>% 
+  ungroup() %>% 
+  pivot_longer(cols = contains("_"),
+               names_to = c("task", "index"),
+               names_sep = "_",
+               values_to = "value") %>% 
+  pivot_wider(names_from = index,
+              values_from = value) %>% 
+  left_join(df.model %>% 
+              pivot_longer(cols = contains("_"),
+                           names_to = c("task", "index"),
+                           names_sep = "_",
+                           values_to = "model") %>% 
+              select(-index),
+            by = c("structure", "outcome", "action", "choice", "task"))
+
+
+ggplot(data = df.scatter,
+       mapping = aes(x = model,
+                     y = p,
+                     ymin = low,
+                     ymax = high)) +
+  geom_abline(intercept = 0, slope = 1, linetype = "dashed") +
+  annotate(geom = "text",
+           x = 0,
+           y = 1,
+           hjust = 0,
+           label = str_c("r = ", round(cor(df.scatter$model, df.scatter$p), 2)),
+           size = 8) +
+  annotate(geom = "text",
+           x = 0,
+           y = 0.92,
+           hjust = 0,
+           label = str_c("RMSE = ", round(sqrt(mean((df.scatter$model -  df.scatter$p)^2)), 2)),
+           size = 8) +
+  geom_smooth(method = "lm",
+              color = "black",
+              alpha = 0.2,
+              show.legend = F) + 
+  geom_linerange(alpha = 0.2) +
+  geom_point(mapping = aes(fill = action),
+                           # shape = task),
+             shape = 21,
+             size = 2) +
+  scale_x_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  scale_y_continuous(limits = c(0, 1),
+                     breaks = seq(0, 1, 0.25),
+                     labels = scales::label_percent()) +
+  # scale_shape_manual(values = c("intervention" = 21,
+  #                               "explanation" = 22)) +
+  labs(x = "model prediction",
+       y = "participant choices") +
+  theme(legend.position = c(1, 0),
+        legend.justification = c(1.2, -0.1))
+
+ggsave(filename = "../../../figures/plots/scatter.pdf",
+       width = 8,
+       height = 6)
+

+
+
+
+
+

9.3 STATS

+
+

9.3.1 Correlations and RMSE

+
df.combined %>% 
+  ungroup() %>% 
+  select(-(contains("low") | contains("high"))) %>%
+  mutate(choice = str_replace(choice, "no preference", "nopreference")) %>% 
+  left_join(df.alternative_models) %>% 
+  left_join(df.optimal_intervention_model %>% 
+              select(-intervention_prediction)) %>% 
+  summarize(across(c(explanation_prediction, intervention_only, truth_only),
+                   list(r = ~ cor(.x, explanation_p),
+                        rmse = ~ sqrt(mean((.x - explanation_p)^2))),
+                   .names = "{.col}.{.fn}")) %>% 
+  pivot_longer(cols = everything(),
+               names_to = c("model", "stat"),
+               names_sep = "\\.",
+               values_to = "value") %>% 
+  pivot_wider(names_from = stat,
+              values_from = value) %>% 
+  mutate(across(where(is.numeric),
+                ~ round(., 2)))
+
# A tibble: 3 × 3
+  model                      r  rmse
+  <chr>                  <dbl> <dbl>
+1 explanation_prediction  0.81  0.09
+2 intervention_only       0.61  0.13
+3 truth_only              0.47  0.14
+
+
+
+
+

10 Session info

+
R version 4.1.3 (2022-03-10)
+Platform: x86_64-apple-darwin17.0 (64-bit)
+Running under: macOS Big Sur/Monterey 10.16
+
+Matrix products: default
+BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
+LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
+
+locale:
+[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
+
+attached base packages:
+[1] stats     graphics  grDevices utils     datasets  methods   base     
+
+other attached packages:
+ [1] lubridate_1.9.2 forcats_1.0.0   stringr_1.5.0   dplyr_1.1.4    
+ [5] purrr_1.0.1     readr_2.1.4     tidyr_1.3.0     tibble_3.2.1   
+ [9] ggplot2_3.4.4   tidyverse_2.0.0 patchwork_1.1.2 modelr_0.1.11  
+[13] knitr_1.38     
+
+loaded via a namespace (and not attached):
+ [1] tidyselect_1.2.0  xfun_0.30         bslib_0.3.1       lattice_0.20-45  
+ [5] splines_4.1.3     colorspace_2.0-3  vctrs_0.6.5       generics_0.1.2   
+ [9] htmltools_0.5.2   mgcv_1.8-39       yaml_2.3.5        utf8_1.2.2       
+[13] rlang_1.1.1       jquerylib_0.1.4   pillar_1.9.0      glue_1.6.2       
+[17] withr_2.5.0       bit64_4.0.5       lifecycle_1.0.3   munsell_0.5.0    
+[21] gtable_0.3.0      ragg_1.2.5        evaluate_0.15     tzdb_0.4.0       
+[25] fastmap_1.1.0     parallel_4.1.3    fansi_1.0.3       highr_0.9        
+[29] broom_1.0.5       backports_1.4.1   scales_1.2.1      vroom_1.6.3      
+[33] jsonlite_1.8.4    systemfonts_1.0.4 farver_2.1.0      bit_4.0.4        
+[37] textshaping_0.3.6 hms_1.1.3         digest_0.6.29     stringi_1.7.6    
+[41] bookdown_0.25     grid_4.1.3        cli_3.6.1         tools_4.1.3      
+[45] magrittr_2.0.3    sass_0.4.1        crayon_1.5.1      pkgconfig_2.0.3  
+[49] Matrix_1.4-0      timechange_0.2.0  rmarkdown_2.13    rstudioapi_0.15.0
+[53] R6_2.5.1          nlme_3.1-155      compiler_4.1.3   
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/docs/analyses/model/index.html b/docs/analyses/model/index.html new file mode 100644 index 0000000..1fcb41d --- /dev/null +++ b/docs/analyses/model/index.html @@ -0,0 +1,2040 @@ + + + + + + + + + + + + + + + +Optimal intervention model + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + +
+
+
+
+
+ +
+ + + + + + + +
+

1 Load packages

+
library("knitr")
+library("janitor")
+library("patchwork")
+library("Metrics")
+library("tidyverse")
+
+
+

2 Set options

+
theme_set(theme_classic() + 
+    theme(text = element_text(size = 24)))
+
+opts_chunk$set(comment = "",
+               fig.show = "hold")
+
+# suppress grouping warning 
+options(dplyr.summarise.inform = F)
+
+
+

3 Functions

+
fun.softmax = function(x, temp = 3) {
+    out = exp(x*temp) / sum(exp(x*temp))
+    return(out)
+}
+
+
+

4 DATA

+
df.data = bind_rows(
+  read_csv(file = "../../../data/hardint_pos.csv"),
+  read_csv(file = "../../../data/hardint_neg.csv"),
+  read_csv(file = "../../../data/softint_pos.csv"),
+  read_csv(file = "../../../data/softint_neg.csv"),
+  read_csv(file = "../../../data/fixedint_pos.csv"),
+  read_csv(file = "../../../data/fixedint_neg.csv")) %>% 
+  clean_names() %>% 
+  mutate(causal_structure = str_to_lower(causal_structure),
+         experiment = str_remove(experiment, "int")) %>% 
+  rename_with(.fn = ~str_remove_all(., "_percentage")) %>% 
+  pivot_longer(cols = -c(causal_structure, outcome, experiment),
+               values_to = "probability") %>% 
+  separate(col = name,
+           into = c("choice", "type")) %>% 
+  mutate(across(.cols = -probability,
+                .fns = ~ as.factor(.)),
+         choice = factor(choice, levels = c("abnormal", "nopreference", "normal"))) %>%
+  mutate(probability = probability / 100)
+
+df.intervention = df.data %>% 
+  filter(type == "intervention") %>% 
+  rename(intervention = experiment)
+
+df.explanation = df.data %>% 
+  filter(type == "explanation")
+
+colnames(df.data)
+
[1] "causal_structure" "outcome"          "experiment"       "choice"          
+[5] "type"             "probability"     
+
# write_csv(df.data, "data.csv")
+
+
+

5 MODEL

+
+

5.1 Interventions

+
+

5.1.1 Model structure

+
fun.success = function(p_abnormal, p_normal, causal_structure, outcome){ 
+  if (causal_structure == "conjunctive"){
+    p = p_abnormal *  p_normal
+  } else{
+    p = 1 - (1 - p_abnormal) * (1 - p_normal)
+  }
+  if (outcome == "negative"){
+    p = 1 - p
+  }
+  return(p)
+}
+
+causal_structure = c("conjunctive", "disjunctive")
+outcome = c("positive", "negative") 
+
+df.model = expand_grid(causal_structure, outcome) %>% 
+  mutate(p_abnormal = 0.2,
+         p_normal = 0.8,
+         int_hard_abnormal = ifelse(outcome == "positive", 1, 0),
+         int_hard_normal = ifelse(outcome == "positive", 1, 0),
+         int_soft_abnormal = ifelse(outcome == "positive",
+                                  p_abnormal + 0.2,
+                                  p_abnormal - 0.2),
+         int_soft_normal = ifelse(outcome == "positive",
+                                  p_normal + 0.2,
+                                  p_normal - 0.2),
+         int_fixed_abnormal = ifelse(outcome == "positive",
+                                  0.9,
+                                  0.1),
+         int_fixed_normal = ifelse(outcome == "positive",
+                                  0.9,
+                                  0.1),
+         p_success = pmap_dbl(.l = list(p_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_hard_abnormal = pmap_dbl(.l = list(int_hard_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_hard_normal = pmap_dbl(.l = list(p_abnormal, 
+                                        int_hard_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_soft_abnormal = pmap_dbl(.l = list(int_soft_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_soft_normal = pmap_dbl(.l = list(p_abnormal, 
+                                        int_soft_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_fixed_abnormal = pmap_dbl(.l = list(int_fixed_abnormal, 
+                                        p_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)),
+         p_success_int_fixed_normal = pmap_dbl(.l = list(p_abnormal, 
+                                        int_fixed_normal, 
+                                        causal_structure, 
+                                        outcome),
+                              .f = ~ fun.success(..1, ..2, ..3, ..4)))
+
+
+

5.1.2 Choice probabilities

+
# gives expected value for each intervention
+df.choice = df.model %>% 
+  select(causal_structure, outcome,
+         contains("p_success_int")) %>% 
+  pivot_longer(-c(causal_structure, outcome)) %>% 
+  mutate(name = str_remove(name, "p_success_int_")) %>% 
+  separate(name, into = c("intervention", "target")) %>% 
+  pivot_wider(names_from = target,
+              values_from = value) %>% 
+  arrange(intervention, causal_structure) %>% 
+  relocate(intervention) %>% 
+  mutate(nopreference = 0.5 * abnormal + 0.5 * normal) %>% 
+  pivot_longer(c(abnormal, normal, nopreference),
+               names_to = "choice") %>% 
+  mutate(choice = factor(choice, levels = c("abnormal", "nopreference", "normal")),
+         across(.cols = c(intervention, causal_structure, outcome),
+                .fns = ~ as.factor(.)))
+
+
+

5.1.3 Fit softmax parameter

+
fun.fit_temperature = function(df_data, df_prediction, temperature){
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(value, temp = temperature)) %>% 
+    ungroup() %>% 
+    left_join(df_data,
+              by = c("intervention", "causal_structure", "outcome", "choice")) %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+fit.temperature = optim(par = 10, 
+                        fn = fun.fit_temperature,
+                        method = "L-BFGS-B",
+                        lower = 0, 
+                        upper = 100,
+                        df_data = df.intervention,
+                        df_prediction = df.choice)
+
+print(fit.temperature$par)
+
[1] 18.97389
+
+
+

5.1.4 Predictions

+
df.prediction_intervention = df.choice %>% 
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(value, temp = fit.temperature$par)) %>%
+    left_join(df.data %>% 
+                filter(type == "intervention") %>% 
+                select(-type) %>% 
+                rename(intervention = experiment),
+              by = c("causal_structure", "outcome", "intervention", "choice"))
+
+
+
+

5.2 Explanations

+
+

5.2.1 Model structure

+
df.prediction_explanation =  df.choice %>% 
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(truth = ifelse(choice == "nopreference", 1, 0)) %>%
+    left_join(df.data %>% 
+                filter(type == "explanation") %>% 
+                select(-type) %>% 
+                rename(intervention = experiment),
+              by = c("causal_structure", "outcome", "intervention", "choice")) %>% 
+  ungroup()
+
+
+

5.2.2 Model fitting functions

+
+

5.2.2.1 Combined model

+
fun.fit_params = function(params, df_prediction){
+  
+  weight <- params[1]
+  temperature <- params[2]
+  
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(weight * value + (1 - weight) * truth, temp = temperature)) %>% 
+    ungroup() %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+
+

5.2.2.2 Intervention only model

+
fun.fit_params_intervention_only = function(params, df_prediction){
+  
+  temperature <- params[1]
+  
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(value, temp = temperature)) %>% 
+    ungroup() %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+
+

5.2.2.3 Truth only model

+
fun.fit_params_truth_only = function(params, df_prediction){
+  
+  temperature <- params[1]
+  
+  df_prediction %>% 
+    group_by(intervention, causal_structure, outcome) %>% 
+    mutate(prediction = fun.softmax(truth, temp = temperature)) %>% 
+    ungroup() %>% 
+    summarize(loss = sum((prediction - probability) ^ 2)) %>% 
+    pull(loss)
+}
+
+
+
+

5.2.3 Fit paramters

+
+

5.2.3.1 Combined model

+
initial_params <- c(weight = 0.5, temperature = 10)
+lower_bounds <- c(weight = 0, temperature = 0)
+upper_bounds <- c(weight = 1, temperature = 100)
+
+fit.params <- optim(par = initial_params, 
+                         fn = fun.fit_params,
+                         method = "L-BFGS-B",
+                         lower = lower_bounds, 
+                         upper = upper_bounds,
+                         df_prediction = df.prediction_explanation)
+
+print(fit.params$par)
+
     weight temperature 
+  0.8420403   3.5050364 
+
+
+

5.2.3.2 Intervention only model

+
initial_params <- c(temperature = 10)
+lower_bounds <- c(temperature = 0)
+upper_bounds <- c(temperature = 100)
+
+fit.params_intervention_only <- optim(par = initial_params, 
+                         fn = fun.fit_params_intervention_only,
+                         method = "L-BFGS-B",
+                         lower = lower_bounds, 
+                         upper = upper_bounds,
+                         df_prediction = df.prediction_explanation)
+
+print(fit.params_intervention_only$par)
+
temperature 
+   2.097383 
+
+
+

5.2.3.3 Truth only model

+
initial_params <- c(temperature = 10)
+lower_bounds <- c(temperature = 0)
+upper_bounds <- c(temperature = 100)
+
+fit.params_truth_only <- optim(par = initial_params, 
+                         fn = fun.fit_params_truth_only,
+                         method = "L-BFGS-B",
+                         lower = lower_bounds, 
+                         upper = upper_bounds,
+                         df_prediction = df.prediction_explanation)
+
+print(fit.params_truth_only$par)
+
temperature 
+  0.4546058 
+
+
+
+

5.2.4 Predictions

+
+

5.2.4.1 Combined model

+
df.prediction_explanation = df.prediction_explanation %>%
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(fit.params$par[1] * value + (1 - fit.params$par[1]) * truth, temp = fit.params$par[2])) %>%
+  ungroup()
+
+write.csv(df.prediction_explanation, file = "explanation_predictions.csv", row.names = FALSE)
+write.csv(df.prediction_intervention, file = "intervention_predictions.csv", row.names = FALSE)
+
+
+

5.2.4.2 Intervention only model

+
df.prediction_explanation_intervention_only = df.prediction_explanation %>%
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(value, temp = fit.params_intervention_only$par[1])) %>%
+  ungroup()
+
+write.csv(df.prediction_explanation_intervention_only, file = "explanation_predictions_intervention_only.csv", row.names = FALSE)
+
+
+

5.2.4.3 Truth only model

+
df.prediction_explanation_truth_only = df.prediction_explanation %>%
+  group_by(intervention, causal_structure, outcome) %>%
+  mutate(prediction = fun.softmax(truth, temp = fit.params_truth_only$par[1])) %>%
+  ungroup()
+
+write.csv(df.prediction_explanation_truth_only, file = "explanation_predictions_truth_only.csv", row.names = FALSE)
+
+
+
+
+
+

6 Session info

+
R version 4.1.3 (2022-03-10)
+Platform: x86_64-apple-darwin17.0 (64-bit)
+Running under: macOS Big Sur/Monterey 10.16
+
+Matrix products: default
+BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
+LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
+
+locale:
+[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
+
+attached base packages:
+[1] stats     graphics  grDevices utils     datasets  methods   base     
+
+other attached packages:
+ [1] lubridate_1.9.2 forcats_1.0.0   stringr_1.5.0   dplyr_1.1.4    
+ [5] purrr_1.0.1     readr_2.1.4     tidyr_1.3.0     tibble_3.2.1   
+ [9] ggplot2_3.4.4   tidyverse_2.0.0 Metrics_0.1.4   patchwork_1.1.2
+[13] janitor_2.2.0   knitr_1.38     
+
+loaded via a namespace (and not attached):
+ [1] bslib_0.3.1       compiler_4.1.3    pillar_1.9.0      jquerylib_0.1.4  
+ [5] tools_4.1.3       bit_4.0.4         digest_0.6.29     jsonlite_1.8.4   
+ [9] evaluate_0.15     lifecycle_1.0.3   gtable_0.3.0      timechange_0.2.0 
+[13] pkgconfig_2.0.3   rlang_1.1.1       cli_3.6.1         rstudioapi_0.15.0
+[17] parallel_4.1.3    yaml_2.3.5        xfun_0.30         fastmap_1.1.0    
+[21] withr_2.5.0       hms_1.1.3         generics_0.1.2    vctrs_0.6.5      
+[25] sass_0.4.1        bit64_4.0.5       grid_4.1.3        tidyselect_1.2.0 
+[29] glue_1.6.2        snakecase_0.11.0  R6_2.5.1          fansi_1.0.3      
+[33] vroom_1.6.3       rmarkdown_2.13    bookdown_0.25     tzdb_0.4.0       
+[37] magrittr_2.0.3    scales_1.2.1      htmltools_0.5.2   colorspace_2.0-3 
+[41] utf8_1.2.2        stringi_1.7.6     munsell_0.5.0     crayon_1.5.1     
+
+ + + +
+
+ +
+ + + + + + + + + + + + + + + + diff --git a/docs/experiment_1/css/jquery-ui.css b/docs/experiment_1/css/jquery-ui.css new file mode 100644 index 0000000..96bf06d --- /dev/null +++ b/docs/experiment_1/css/jquery-ui.css @@ -0,0 +1,1933 @@ +/** + * jspsych.js + * Josh de Leeuw + * de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a web browser. Behavior Research Methods, 47(1), 1-12. doi:10.3758/s13428-014-0458-y. + * + * documentation: docs.jspsych.org + * + **/ + +/*! jQuery UI - v1.11.3 - 2015-02-12 +* http://jqueryui.com +* Includes: core.css, accordion.css, autocomplete.css, button.css, datepicker.css, dialog.css, draggable.css, menu.css, progressbar.css, resizable.css, selectable.css, selectmenu.css, slider.css, sortable.css, spinner.css, tabs.css, tooltip.css, theme.css +* To view and modify this theme, visit http://jqueryui.com/themeroller/?ffDefault=Verdana%2CArial%2Csans-serif&fwDefault=normal&fsDefault=1.1em&cornerRadius=4px&bgColorHeader=cccccc&bgTextureHeader=highlight_soft&bgImgOpacityHeader=75&borderColorHeader=aaaaaa&fcHeader=222222&iconColorHeader=222222&bgColorContent=ffffff&bgTextureContent=flat&bgImgOpacityContent=75&borderColorContent=aaaaaa&fcContent=222222&iconColorContent=222222&bgColorDefault=e6e6e6&bgTextureDefault=glass&bgImgOpacityDefault=75&borderColorDefault=d3d3d3&fcDefault=555555&iconColorDefault=888888&bgColorHover=dadada&bgTextureHover=glass&bgImgOpacityHover=75&borderColorHover=999999&fcHover=212121&iconColorHover=454545&bgColorActive=ffffff&bgTextureActive=glass&bgImgOpacityActive=65&borderColorActive=aaaaaa&fcActive=212121&iconColorActive=454545&bgColorHighlight=fbf9ee&bgTextureHighlight=glass&bgImgOpacityHighlight=55&borderColorHighlight=fcefa1&fcHighlight=363636&iconColorHighlight=2e83ff&bgColorError=fef1ec&bgTextureError=glass&bgImgOpacityError=95&borderColorError=cd0a0a&fcError=cd0a0a&iconColorError=cd0a0a&bgColorOverlay=aaaaaa&bgTextureOverlay=flat&bgImgOpacityOverlay=0&opacityOverlay=30&bgColorShadow=aaaaaa&bgTextureShadow=flat&bgImgOpacityShadow=0&opacityShadow=30&thicknessShadow=8px&offsetTopShadow=-8px&offsetLeftShadow=-8px&cornerRadiusShadow=8px +* Copyright 2015 jQuery Foundation and other contributors; Licensed MIT */ + +/* Layout helpers +----------------------------------*/ +.ui-helper-hidden { + display: none; +} + +.ui-helper-hidden-accessible { + border: 0; + clip: rect(0 0 0 0); + height: 1px; + margin: -1px; + overflow: hidden; + padding: 0; + position: absolute; + width: 1px; +} + +.ui-helper-reset { + margin: 0; + padding: 0; + border: 0; + outline: 0; + line-height: 1.3; + text-decoration: none; + font-size: 100%; + list-style: none; +} + +.ui-helper-clearfix:before, +.ui-helper-clearfix:after { + content: ""; + display: table; + border-collapse: collapse; +} + +.ui-helper-clearfix:after { + clear: both; +} + +.ui-helper-clearfix { + min-height: 0; + /* support: IE7 */ +} + +.ui-helper-zfix { + width: 100%; + height: 100%; + top: 0; + left: 0; + position: absolute; + opacity: 0; + filter: Alpha(Opacity=0); + /* support: IE8 */ +} + +.ui-front { + z-index: 100; +} + + +/* Interaction Cues +----------------------------------*/ +.ui-state-disabled { + cursor: default !important; +} + + +/* Icons +----------------------------------*/ + +/* states and images */ +.ui-icon { + display: block; + text-indent: -99999px; + overflow: hidden; + background-repeat: no-repeat; +} + + +/* Misc visuals +----------------------------------*/ + +/* Overlays */ +.ui-widget-overlay { + position: fixed; + top: 0; + left: 0; + width: 100%; + height: 100%; +} + +.ui-accordion .ui-accordion-header { + display: block; + cursor: pointer; + position: relative; + margin: 2px 0 0 0; + padding: .5em .5em .5em .7em; + min-height: 0; + /* support: IE7 */ + font-size: 100%; +} + +.ui-accordion .ui-accordion-icons { + padding-left: 2.2em; +} + +.ui-accordion .ui-accordion-icons .ui-accordion-icons { + padding-left: 2.2em; +} + +.ui-accordion .ui-accordion-header .ui-accordion-header-icon { + position: absolute; + left: .5em; + top: 50%; + margin-top: -8px; +} + +.ui-accordion .ui-accordion-content { + padding: 1em 2.2em; + border-top: 0; + overflow: auto; +} + +.ui-autocomplete { + position: absolute; + top: 0; + left: 0; + cursor: default; +} + +.ui-button { + display: inline-block; + position: relative; + padding: 0; + line-height: normal; + margin-right: .1em; + cursor: pointer; + vertical-align: middle; + text-align: center; + overflow: visible; + /* removes extra width in IE */ +} + +.ui-button, +.ui-button:link, +.ui-button:visited, +.ui-button:hover, +.ui-button:active { + text-decoration: none; +} + +/* to make room for the icon, a width needs to be set here */ +.ui-button-icon-only { + width: 2.2em; +} + +/* button elements seem to need a little more width */ +button.ui-button-icon-only { + width: 2.4em; +} + +.ui-button-icons-only { + width: 3.4em; +} + +button.ui-button-icons-only { + width: 3.7em; +} + +/* button text element */ +.ui-button .ui-button-text { + display: block; + line-height: normal; +} + +.ui-button-text-only .ui-button-text { + padding: .4em 1em; +} + +.ui-button-icon-only .ui-button-text, +.ui-button-icons-only .ui-button-text { + padding: .4em; + text-indent: -9999999px; +} + +.ui-button-text-icon-primary .ui-button-text, +.ui-button-text-icons .ui-button-text { + padding: .4em 1em .4em 2.1em; +} + +.ui-button-text-icon-secondary .ui-button-text, +.ui-button-text-icons .ui-button-text { + padding: .4em 2.1em .4em 1em; +} + +.ui-button-text-icons .ui-button-text { + padding-left: 2.1em; + padding-right: 2.1em; +} + +/* no icon support for input elements, provide padding by default */ +input.ui-button { + padding: .4em 1em; +} + +/* button icon element(s) */ +.ui-button-icon-only .ui-icon, +.ui-button-text-icon-primary .ui-icon, +.ui-button-text-icon-secondary .ui-icon, +.ui-button-text-icons .ui-icon, +.ui-button-icons-only .ui-icon { + position: absolute; + top: 50%; + margin-top: -8px; +} + +.ui-button-icon-only .ui-icon { + left: 50%; + margin-left: -8px; +} + +.ui-button-text-icon-primary .ui-button-icon-primary, +.ui-button-text-icons .ui-button-icon-primary, +.ui-button-icons-only .ui-button-icon-primary { + left: .5em; +} + +.ui-button-text-icon-secondary .ui-button-icon-secondary, +.ui-button-text-icons .ui-button-icon-secondary, +.ui-button-icons-only .ui-button-icon-secondary { + right: .5em; +} + +/* button sets */ +.ui-buttonset { + margin-right: 7px; +} + +.ui-buttonset .ui-button { + margin-left: 0; + margin-right: -.3em; +} + +/* workarounds */ +/* reset extra padding in Firefox, see h5bp.com/l */ +input.ui-button::-moz-focus-inner, +button.ui-button::-moz-focus-inner { + border: 0; + padding: 0; +} + +.ui-datepicker { + width: 17em; + padding: .2em .2em 0; + display: none; +} + +.ui-datepicker .ui-datepicker-header { + position: relative; + padding: .2em 0; +} + +.ui-datepicker .ui-datepicker-prev, +.ui-datepicker .ui-datepicker-next { + position: absolute; + top: 2px; + width: 1.8em; + height: 1.8em; +} + +.ui-datepicker .ui-datepicker-prev-hover, +.ui-datepicker .ui-datepicker-next-hover { + top: 1px; +} + +.ui-datepicker .ui-datepicker-prev { + left: 2px; +} + +.ui-datepicker .ui-datepicker-next { + right: 2px; +} + +.ui-datepicker .ui-datepicker-prev-hover { + left: 1px; +} + +.ui-datepicker .ui-datepicker-next-hover { + right: 1px; +} + +.ui-datepicker .ui-datepicker-prev span, +.ui-datepicker .ui-datepicker-next span { + display: block; + position: absolute; + left: 50%; + margin-left: -8px; + top: 50%; + margin-top: -8px; +} + +.ui-datepicker .ui-datepicker-title { + margin: 0 2.3em; + line-height: 1.8em; + text-align: center; +} + +.ui-datepicker .ui-datepicker-title select { + font-size: 1em; + margin: 1px 0; +} + +.ui-datepicker select.ui-datepicker-month, +.ui-datepicker select.ui-datepicker-year { + width: 45%; +} + +.ui-datepicker table { + width: 100%; + font-size: .9em; + border-collapse: collapse; + margin: 0 0 .4em; +} + +.ui-datepicker th { + padding: .7em .3em; + text-align: center; + font-weight: bold; + border: 0; +} + +.ui-datepicker td { + border: 0; + padding: 1px; +} + +.ui-datepicker td span, +.ui-datepicker td a { + display: block; + padding: .2em; + text-align: right; + text-decoration: none; +} + +.ui-datepicker .ui-datepicker-buttonpane { + background-image: none; + margin: .7em 0 0 0; + padding: 0 .2em; + border-left: 0; + border-right: 0; + border-bottom: 0; +} + +.ui-datepicker .ui-datepicker-buttonpane button { + float: right; + margin: .5em .2em .4em; + cursor: pointer; + padding: .2em .6em .3em .6em; + width: auto; + overflow: visible; +} + +.ui-datepicker .ui-datepicker-buttonpane button.ui-datepicker-current { + float: left; +} + +/* with multiple calendars */ +.ui-datepicker.ui-datepicker-multi { + width: auto; +} + +.ui-datepicker-multi .ui-datepicker-group { + float: left; +} + +.ui-datepicker-multi .ui-datepicker-group table { + width: 95%; + margin: 0 auto .4em; +} + +.ui-datepicker-multi-2 .ui-datepicker-group { + width: 50%; +} + +.ui-datepicker-multi-3 .ui-datepicker-group { + width: 33.3%; +} + +.ui-datepicker-multi-4 .ui-datepicker-group { + width: 25%; +} + +.ui-datepicker-multi .ui-datepicker-group-last .ui-datepicker-header, +.ui-datepicker-multi .ui-datepicker-group-middle .ui-datepicker-header { + border-left-width: 0; +} + +.ui-datepicker-multi .ui-datepicker-buttonpane { + clear: left; +} + +.ui-datepicker-row-break { + clear: both; + width: 100%; + font-size: 0; +} + +/* RTL support */ +.ui-datepicker-rtl { + direction: rtl; +} + +.ui-datepicker-rtl .ui-datepicker-prev { + right: 2px; + left: auto; +} + +.ui-datepicker-rtl .ui-datepicker-next { + left: 2px; + right: auto; +} + +.ui-datepicker-rtl .ui-datepicker-prev:hover { + right: 1px; + left: auto; +} + +.ui-datepicker-rtl .ui-datepicker-next:hover { + left: 1px; + right: auto; +} + +.ui-datepicker-rtl .ui-datepicker-buttonpane { + clear: right; +} + +.ui-datepicker-rtl .ui-datepicker-buttonpane button { + float: left; +} + +.ui-datepicker-rtl .ui-datepicker-buttonpane button.ui-datepicker-current, +.ui-datepicker-rtl .ui-datepicker-group { + float: right; +} + +.ui-datepicker-rtl .ui-datepicker-group-last .ui-datepicker-header, +.ui-datepicker-rtl .ui-datepicker-group-middle .ui-datepicker-header { + border-right-width: 0; + border-left-width: 1px; +} + +.ui-dialog { + overflow: hidden; + position: absolute; + top: 0; + left: 0; + padding: .2em; + outline: 0; +} + +.ui-dialog .ui-dialog-titlebar { + padding: .4em 1em; + position: relative; +} + +.ui-dialog .ui-dialog-title { + float: left; + margin: .1em 0; + white-space: nowrap; + width: 90%; + overflow: hidden; + text-overflow: ellipsis; +} + +.ui-dialog .ui-dialog-titlebar-close { + position: absolute; + right: .3em; + top: 50%; + width: 20px; + margin: -10px 0 0 0; + padding: 1px; + height: 20px; +} + +.ui-dialog .ui-dialog-content { + position: relative; + border: 0; + padding: .5em 1em; + background: none; + overflow: auto; +} + +.ui-dialog .ui-dialog-buttonpane { + text-align: left; + border-width: 1px 0 0 0; + background-image: none; + margin-top: .5em; + padding: .3em 1em .5em .4em; +} + +.ui-dialog .ui-dialog-buttonpane .ui-dialog-buttonset { + float: right; +} + +.ui-dialog .ui-dialog-buttonpane button { + margin: .5em .4em .5em 0; + cursor: pointer; +} + +.ui-dialog .ui-resizable-se { + width: 12px; + height: 12px; + right: -5px; + bottom: -5px; + background-position: 16px 16px; +} + +.ui-draggable .ui-dialog-titlebar { + cursor: move; +} + +.ui-draggable-handle { + -ms-touch-action: none; + touch-action: none; +} + +.ui-menu { + list-style: none; + padding: 0; + margin: 0; + display: block; + outline: none; +} + +.ui-menu .ui-menu { + position: absolute; +} + +.ui-menu .ui-menu-item { + position: relative; + margin: 0; + padding: 3px 1em 3px .4em; + cursor: pointer; + min-height: 0; + /* support: IE7 */ + /* support: IE10, see #8844 */ + list-style-image: url(""); +} + +.ui-menu .ui-menu-divider { + margin: 5px 0; + height: 0; + font-size: 0; + line-height: 0; + border-width: 1px 0 0 0; +} + +.ui-menu .ui-state-focus, +.ui-menu .ui-state-active { + margin: -1px; +} + +/* icon support */ +.ui-menu-icons { + position: relative; +} + +.ui-menu-icons .ui-menu-item { + padding-left: 2em; +} + +/* left-aligned */ +.ui-menu .ui-icon { + position: absolute; + top: 0; + bottom: 0; + left: .2em; + margin: auto 0; +} + +/* right-aligned */ +.ui-menu .ui-menu-icon { + left: auto; + right: 0; +} + +.ui-progressbar { + height: 2em; + text-align: left; + overflow: hidden; +} + +.ui-progressbar .ui-progressbar-value { + margin: -1px; + height: 100%; +} + +.ui-progressbar .ui-progressbar-overlay { + background: url(""); + height: 100%; + filter: alpha(opacity=25); + /* support: IE8 */ + opacity: 0.25; +} + +.ui-progressbar-indeterminate .ui-progressbar-value { + background-image: none; +} + +.ui-resizable { + position: relative; +} + +.ui-resizable-handle { + position: absolute; + font-size: 0.1px; + display: block; + -ms-touch-action: none; + touch-action: none; +} + +.ui-resizable-disabled .ui-resizable-handle, +.ui-resizable-autohide .ui-resizable-handle { + display: none; +} + +.ui-resizable-n { + cursor: n-resize; + height: 7px; + width: 100%; + top: -5px; + left: 0; +} + +.ui-resizable-s { + cursor: s-resize; + height: 7px; + width: 100%; + bottom: -5px; + left: 0; +} + +.ui-resizable-e { + cursor: e-resize; + width: 7px; + right: -5px; + top: 0; + height: 100%; +} + +.ui-resizable-w { + cursor: w-resize; + width: 7px; + left: -5px; + top: 0; + height: 100%; +} + +.ui-resizable-se { + cursor: se-resize; + width: 12px; + height: 12px; + right: 1px; + bottom: 1px; +} + +.ui-resizable-sw { + cursor: sw-resize; + width: 9px; + height: 9px; + left: -5px; + bottom: -5px; +} + +.ui-resizable-nw { + cursor: nw-resize; + width: 9px; + height: 9px; + left: -5px; + top: -5px; +} + +.ui-resizable-ne { + cursor: ne-resize; + width: 9px; + height: 9px; + right: -5px; + top: -5px; +} + +.ui-selectable { + -ms-touch-action: none; + touch-action: none; +} + +.ui-selectable-helper { + position: absolute; + z-index: 100; + border: 1px dotted black; +} + +.ui-selectmenu-menu { + padding: 0; + margin: 0; + position: absolute; + top: 0; + left: 0; + display: none; +} + +.ui-selectmenu-menu .ui-menu { + overflow: auto; + /* Support: IE7 */ + overflow-x: hidden; + padding-bottom: 1px; +} + +.ui-selectmenu-menu .ui-menu .ui-selectmenu-optgroup { + font-size: 1em; + font-weight: bold; + line-height: 1.5; + padding: 2px 0.4em; + margin: 0.5em 0 0 0; + height: auto; + border: 0; +} + +.ui-selectmenu-open { + display: block; +} + +.ui-selectmenu-button { + display: inline-block; + overflow: hidden; + position: relative; + text-decoration: none; + cursor: pointer; +} + +.ui-selectmenu-button span.ui-icon { + right: 0.5em; + left: auto; + margin-top: -8px; + position: absolute; + top: 50%; +} + +.ui-selectmenu-button span.ui-selectmenu-text { + text-align: left; + padding: 0.4em 2.1em 0.4em 1em; + display: block; + line-height: 1.4; + overflow: hidden; + text-overflow: ellipsis; + white-space: nowrap; +} + +.ui-slider { + position: relative; + text-align: left; +} + +.ui-slider .ui-slider-handle { + position: absolute; + z-index: 2; + width: 1.2em; + height: 1.2em; + cursor: default; + -ms-touch-action: none; + touch-action: none; +} + +.ui-slider .ui-slider-range { + position: absolute; + z-index: 1; + font-size: .7em; + display: block; + border: 0; + background-position: 0 0; +} + +/* support: IE8 - See #6727 */ +.ui-slider.ui-state-disabled .ui-slider-handle, +.ui-slider.ui-state-disabled .ui-slider-range { + filter: inherit; +} + +.ui-slider-horizontal { + height: .8em; +} + +.ui-slider-horizontal .ui-slider-handle { + top: -.3em; + margin-left: -.6em; +} + +.ui-slider-horizontal .ui-slider-range { + top: 0; + height: 100%; +} + +.ui-slider-horizontal .ui-slider-range-min { + left: 0; +} + +.ui-slider-horizontal .ui-slider-range-max { + right: 0; +} + +.ui-slider-vertical { + width: .8em; + height: 100px; +} + +.ui-slider-vertical .ui-slider-handle { + left: -.3em; + margin-left: 0; + margin-bottom: -.6em; +} + +.ui-slider-vertical .ui-slider-range { + left: 0; + width: 100%; +} + +.ui-slider-vertical .ui-slider-range-min { + bottom: 0; +} + +.ui-slider-vertical .ui-slider-range-max { + top: 0; +} + +.ui-sortable-handle { + -ms-touch-action: none; + touch-action: none; +} + +.ui-spinner { + position: relative; + display: inline-block; + overflow: hidden; + padding: 0; + vertical-align: middle; +} + +.ui-spinner-input { + border: none; + background: none; + color: inherit; + padding: 0; + margin: .2em 0; + vertical-align: middle; + margin-left: .4em; + margin-right: 22px; +} + +.ui-spinner-button { + width: 16px; + height: 50%; + font-size: .5em; + padding: 0; + margin: 0; + text-align: center; + position: absolute; + cursor: default; + display: block; + overflow: hidden; + right: 0; +} + +/* more specificity required here to override default borders */ +.ui-spinner a.ui-spinner-button { + border-top: none; + border-bottom: none; + border-right: none; +} + +/* vertically center icon */ +.ui-spinner .ui-icon { + position: absolute; + margin-top: -8px; + top: 50%; + left: 0; +} + +.ui-spinner-up { + top: 0; +} + +.ui-spinner-down { + bottom: 0; +} + +/* TR overrides */ +.ui-spinner .ui-icon-triangle-1-s { + /* need to fix icons sprite */ + background-position: -65px -16px; +} + +.ui-tabs { + position: relative; + /* position: relative prevents IE scroll bug (element with position: relative inside container with overflow: auto appear as "fixed") */ + padding: .2em; +} + +.ui-tabs .ui-tabs-nav { + margin: 0; + padding: .2em .2em 0; +} + +.ui-tabs .ui-tabs-nav li { + list-style: none; + float: left; + position: relative; + top: 0; + margin: 1px .2em 0 0; + border-bottom-width: 0; + padding: 0; + white-space: nowrap; +} + +.ui-tabs .ui-tabs-nav .ui-tabs-anchor { + float: left; + padding: .5em 1em; + text-decoration: none; +} + +.ui-tabs .ui-tabs-nav li.ui-tabs-active { + margin-bottom: -1px; + padding-bottom: 1px; +} + +.ui-tabs .ui-tabs-nav li.ui-tabs-active .ui-tabs-anchor, +.ui-tabs .ui-tabs-nav li.ui-state-disabled .ui-tabs-anchor, +.ui-tabs .ui-tabs-nav li.ui-tabs-loading .ui-tabs-anchor { + cursor: text; +} + +.ui-tabs-collapsible .ui-tabs-nav li.ui-tabs-active .ui-tabs-anchor { + cursor: pointer; +} + +.ui-tabs .ui-tabs-panel { + display: block; + border-width: 0; + padding: 1em 1.4em; + background: none; +} + +.ui-tooltip { + padding: 8px; + position: absolute; + z-index: 9999; + max-width: 300px; + -webkit-box-shadow: 0 0 5px #aaa; + box-shadow: 0 0 5px #aaa; +} + +body .ui-tooltip { + border-width: 2px; +} + +/* Component containers +----------------------------------*/ +.ui-widget { + font-family: Verdana, Arial, sans-serif; + font-size: 1.1em; +} + +.ui-widget .ui-widget { + font-size: 1em; +} + +.ui-widget input, +.ui-widget select, +.ui-widget textarea, +.ui-widget button { + font-family: Verdana, Arial, sans-serif; + font-size: 1em; +} + +.ui-widget-content { + border: 1px solid #aaaaaa; + background: #ffffff url("images/ui-bg_flat_75_ffffff_40x100.png") 50% 50% repeat-x; + color: #222222; +} + +.ui-widget-content a { + color: #222222; +} + +.ui-widget-header { + border: 1px solid #aaaaaa; + background: #cccccc url("images/ui-bg_highlight-soft_75_cccccc_1x100.png") 50% 50% repeat-x; + color: #222222; + font-weight: bold; +} + +.ui-widget-header a { + color: #222222; +} + +/* Interaction states +----------------------------------*/ +.ui-state-default, +.ui-widget-content .ui-state-default, +.ui-widget-header .ui-state-default { + border: 1px solid #d3d3d3; + background: #e6e6e6 url("images/ui-bg_glass_75_e6e6e6_1x400.png") 50% 50% repeat-x; + font-weight: normal; + color: #555555; +} + +.ui-state-default a, +.ui-state-default a:link, +.ui-state-default a:visited { + color: #555555; + text-decoration: none; +} + +.ui-state-hover, +.ui-widget-content .ui-state-hover, +.ui-widget-header .ui-state-hover, +.ui-state-focus, +.ui-widget-content .ui-state-focus, +.ui-widget-header .ui-state-focus { + border: 1px solid #999999; + background: #dadada url("images/ui-bg_glass_75_dadada_1x400.png") 50% 50% repeat-x; + font-weight: normal; + color: #212121; +} + +.ui-state-hover a, +.ui-state-hover a:hover, +.ui-state-hover a:link, +.ui-state-hover a:visited, +.ui-state-focus a, +.ui-state-focus a:hover, +.ui-state-focus a:link, +.ui-state-focus a:visited { + color: #212121; + text-decoration: none; +} + +.ui-state-active, +.ui-widget-content .ui-state-active, +.ui-widget-header .ui-state-active { + border: 1px solid #aaaaaa; + background: #ffffff url("images/ui-bg_glass_65_ffffff_1x400.png") 50% 50% repeat-x; + font-weight: normal; + color: #212121; +} + +.ui-state-active a, +.ui-state-active a:link, +.ui-state-active a:visited { + color: #212121; + text-decoration: none; +} + +/* Interaction Cues +----------------------------------*/ +.ui-state-highlight, +.ui-widget-content .ui-state-highlight, +.ui-widget-header .ui-state-highlight { + border: 1px solid #fcefa1; + background: #fbf9ee url("images/ui-bg_glass_55_fbf9ee_1x400.png") 50% 50% repeat-x; + color: #363636; +} + +.ui-state-highlight a, +.ui-widget-content .ui-state-highlight a, +.ui-widget-header .ui-state-highlight a { + color: #363636; +} + +.ui-state-error, +.ui-widget-content .ui-state-error, +.ui-widget-header .ui-state-error { + border: 1px solid #cd0a0a; + background: #fef1ec url("images/ui-bg_glass_95_fef1ec_1x400.png") 50% 50% repeat-x; + color: #cd0a0a; +} + +.ui-state-error a, +.ui-widget-content .ui-state-error a, +.ui-widget-header .ui-state-error a { + color: #cd0a0a; +} + +.ui-state-error-text, +.ui-widget-content .ui-state-error-text, +.ui-widget-header .ui-state-error-text { + color: #cd0a0a; +} + +.ui-priority-primary, +.ui-widget-content .ui-priority-primary, +.ui-widget-header .ui-priority-primary { + font-weight: bold; +} + +.ui-priority-secondary, +.ui-widget-content .ui-priority-secondary, +.ui-widget-header .ui-priority-secondary { + opacity: .7; + filter: Alpha(Opacity=70); + /* support: IE8 */ + font-weight: normal; +} + +.ui-state-disabled, +.ui-widget-content .ui-state-disabled, +.ui-widget-header .ui-state-disabled { + opacity: .35; + filter: Alpha(Opacity=35); + /* support: IE8 */ + background-image: none; +} + +.ui-state-disabled .ui-icon { + filter: Alpha(Opacity=35); + /* support: IE8 - See #6059 */ +} + +/* Icons +----------------------------------*/ + +/* states and images */ +.ui-icon { + width: 16px; + height: 16px; +} + +.ui-icon, +.ui-widget-content .ui-icon { + background-image: url("images/ui-icons_222222_256x240.png"); +} + +.ui-widget-header .ui-icon { + background-image: url("images/ui-icons_222222_256x240.png"); +} + +.ui-state-default .ui-icon { + background-image: url("images/ui-icons_888888_256x240.png"); +} + +.ui-state-hover .ui-icon, +.ui-state-focus .ui-icon { + background-image: url("images/ui-icons_454545_256x240.png"); +} + +.ui-state-active .ui-icon { + background-image: url("images/ui-icons_454545_256x240.png"); +} + +.ui-state-highlight .ui-icon { + background-image: url("images/ui-icons_2e83ff_256x240.png"); +} + +.ui-state-error .ui-icon, +.ui-state-error-text .ui-icon { + background-image: url("images/ui-icons_cd0a0a_256x240.png"); +} + +/* positioning */ +.ui-icon-blank { + background-position: 16px 16px; +} + +.ui-icon-carat-1-n { + background-position: 0 0; +} + +.ui-icon-carat-1-ne { + background-position: -16px 0; +} + +.ui-icon-carat-1-e { + background-position: -32px 0; +} + +.ui-icon-carat-1-se { + background-position: -48px 0; +} + +.ui-icon-carat-1-s { + background-position: -64px 0; +} + +.ui-icon-carat-1-sw { + background-position: -80px 0; +} + +.ui-icon-carat-1-w { + background-position: -96px 0; +} + +.ui-icon-carat-1-nw { + background-position: -112px 0; +} + +.ui-icon-carat-2-n-s { + background-position: -128px 0; +} + +.ui-icon-carat-2-e-w { + background-position: -144px 0; +} + +.ui-icon-triangle-1-n { + background-position: 0 -16px; +} + +.ui-icon-triangle-1-ne { + background-position: -16px -16px; +} + +.ui-icon-triangle-1-e { + background-position: -32px -16px; +} + +.ui-icon-triangle-1-se { + background-position: -48px -16px; +} + +.ui-icon-triangle-1-s { + background-position: -64px -16px; +} + +.ui-icon-triangle-1-sw { + background-position: -80px -16px; +} + +.ui-icon-triangle-1-w { + background-position: -96px -16px; +} + +.ui-icon-triangle-1-nw { + background-position: -112px -16px; +} + +.ui-icon-triangle-2-n-s { + background-position: -128px -16px; +} + +.ui-icon-triangle-2-e-w { + background-position: -144px -16px; +} + +.ui-icon-arrow-1-n { + background-position: 0 -32px; +} + +.ui-icon-arrow-1-ne { + background-position: -16px -32px; +} + +.ui-icon-arrow-1-e { + background-position: -32px -32px; +} + +.ui-icon-arrow-1-se { + background-position: -48px -32px; +} + +.ui-icon-arrow-1-s { + background-position: -64px -32px; +} + +.ui-icon-arrow-1-sw { + background-position: -80px -32px; +} + +.ui-icon-arrow-1-w { + background-position: -96px -32px; +} + +.ui-icon-arrow-1-nw { + background-position: -112px -32px; +} + +.ui-icon-arrow-2-n-s { + background-position: -128px -32px; +} + +.ui-icon-arrow-2-ne-sw { + background-position: -144px -32px; +} + +.ui-icon-arrow-2-e-w { + background-position: -160px -32px; +} + +.ui-icon-arrow-2-se-nw { + background-position: -176px -32px; +} + +.ui-icon-arrowstop-1-n { + background-position: -192px -32px; +} + +.ui-icon-arrowstop-1-e { + background-position: -208px -32px; +} + +.ui-icon-arrowstop-1-s { + background-position: -224px -32px; +} + +.ui-icon-arrowstop-1-w { + background-position: -240px -32px; +} + +.ui-icon-arrowthick-1-n { + background-position: 0 -48px; +} + +.ui-icon-arrowthick-1-ne { + background-position: -16px -48px; +} + +.ui-icon-arrowthick-1-e { + background-position: -32px -48px; +} + +.ui-icon-arrowthick-1-se { + background-position: -48px -48px; +} + +.ui-icon-arrowthick-1-s { + background-position: -64px -48px; +} + +.ui-icon-arrowthick-1-sw { + background-position: -80px -48px; +} + +.ui-icon-arrowthick-1-w { + background-position: -96px -48px; +} + +.ui-icon-arrowthick-1-nw { + background-position: -112px -48px; +} + +.ui-icon-arrowthick-2-n-s { + background-position: -128px -48px; +} + +.ui-icon-arrowthick-2-ne-sw { + background-position: -144px -48px; +} + +.ui-icon-arrowthick-2-e-w { + background-position: -160px -48px; +} + +.ui-icon-arrowthick-2-se-nw { + background-position: -176px -48px; +} + +.ui-icon-arrowthickstop-1-n { + background-position: -192px -48px; +} + +.ui-icon-arrowthickstop-1-e { + background-position: -208px -48px; +} + +.ui-icon-arrowthickstop-1-s { + background-position: -224px -48px; +} + +.ui-icon-arrowthickstop-1-w { + background-position: -240px -48px; +} + +.ui-icon-arrowreturnthick-1-w { + background-position: 0 -64px; +} + +.ui-icon-arrowreturnthick-1-n { + background-position: -16px -64px; +} + +.ui-icon-arrowreturnthick-1-e { + background-position: -32px -64px; +} + +.ui-icon-arrowreturnthick-1-s { + background-position: -48px -64px; +} + +.ui-icon-arrowreturn-1-w { + background-position: -64px -64px; +} + +.ui-icon-arrowreturn-1-n { + background-position: -80px -64px; +} + +.ui-icon-arrowreturn-1-e { + background-position: -96px -64px; +} + +.ui-icon-arrowreturn-1-s { + background-position: -112px -64px; +} + +.ui-icon-arrowrefresh-1-w { + background-position: -128px -64px; +} + +.ui-icon-arrowrefresh-1-n { + background-position: -144px -64px; +} + +.ui-icon-arrowrefresh-1-e { + background-position: -160px -64px; +} + +.ui-icon-arrowrefresh-1-s { + background-position: -176px -64px; +} + +.ui-icon-arrow-4 { + background-position: 0 -80px; +} + +.ui-icon-arrow-4-diag { + background-position: -16px -80px; +} + +.ui-icon-extlink { + background-position: -32px -80px; +} + +.ui-icon-newwin { + background-position: -48px -80px; +} + +.ui-icon-refresh { + background-position: -64px -80px; +} + +.ui-icon-shuffle { + background-position: -80px -80px; +} + +.ui-icon-transfer-e-w { + background-position: -96px -80px; +} + +.ui-icon-transferthick-e-w { + background-position: -112px -80px; +} + +.ui-icon-folder-collapsed { + background-position: 0 -96px; +} + +.ui-icon-folder-open { + background-position: -16px -96px; +} + +.ui-icon-document { + background-position: -32px -96px; +} + +.ui-icon-document-b { + background-position: -48px -96px; +} + +.ui-icon-note { + background-position: -64px -96px; +} + +.ui-icon-mail-closed { + background-position: -80px -96px; +} + +.ui-icon-mail-open { + background-position: -96px -96px; +} + +.ui-icon-suitcase { + background-position: -112px -96px; +} + +.ui-icon-comment { + background-position: -128px -96px; +} + +.ui-icon-person { + background-position: -144px -96px; +} + +.ui-icon-print { + background-position: -160px -96px; +} + +.ui-icon-trash { + background-position: -176px -96px; +} + +.ui-icon-locked { + background-position: -192px -96px; +} + +.ui-icon-unlocked { + background-position: -208px -96px; +} + +.ui-icon-bookmark { + background-position: -224px -96px; +} + +.ui-icon-tag { + background-position: -240px -96px; +} + +.ui-icon-home { + background-position: 0 -112px; +} + +.ui-icon-flag { + background-position: -16px -112px; +} + +.ui-icon-calendar { + background-position: -32px -112px; +} + +.ui-icon-cart { + background-position: -48px -112px; +} + +.ui-icon-pencil { + background-position: -64px -112px; +} + +.ui-icon-clock { + background-position: -80px -112px; +} + +.ui-icon-disk { + background-position: -96px -112px; +} + +.ui-icon-calculator { + background-position: -112px -112px; +} + +.ui-icon-zoomin { + background-position: -128px -112px; +} + +.ui-icon-zoomout { + background-position: -144px -112px; +} + +.ui-icon-search { + background-position: -160px -112px; +} + +.ui-icon-wrench { + background-position: -176px -112px; +} + +.ui-icon-gear { + background-position: -192px -112px; +} + +.ui-icon-heart { + background-position: -208px -112px; +} + +.ui-icon-star { + background-position: -224px -112px; +} + +.ui-icon-link { + background-position: -240px -112px; +} + +.ui-icon-cancel { + background-position: 0 -128px; +} + +.ui-icon-plus { + background-position: -16px -128px; +} + +.ui-icon-plusthick { + background-position: -32px -128px; +} + +.ui-icon-minus { + background-position: -48px -128px; +} + +.ui-icon-minusthick { + background-position: -64px -128px; +} + +.ui-icon-close { + background-position: -80px -128px; +} + +.ui-icon-closethick { + background-position: -96px -128px; +} + +.ui-icon-key { + background-position: -112px -128px; +} + +.ui-icon-lightbulb { + background-position: -128px -128px; +} + +.ui-icon-scissors { + background-position: -144px -128px; +} + +.ui-icon-clipboard { + background-position: -160px -128px; +} + +.ui-icon-copy { + background-position: -176px -128px; +} + +.ui-icon-contact { + background-position: -192px -128px; +} + +.ui-icon-image { + background-position: -208px -128px; +} + +.ui-icon-video { + background-position: -224px -128px; +} + +.ui-icon-script { + background-position: -240px -128px; +} + +.ui-icon-alert { + background-position: 0 -144px; +} + +.ui-icon-info { + background-position: -16px -144px; +} + +.ui-icon-notice { + background-position: -32px -144px; +} + +.ui-icon-help { + background-position: -48px -144px; +} + +.ui-icon-check { + background-position: -64px -144px; +} + +.ui-icon-bullet { + background-position: -80px -144px; +} + +.ui-icon-radio-on { + background-position: -96px -144px; +} + +.ui-icon-radio-off { + background-position: -112px -144px; +} + +.ui-icon-pin-w { + background-position: -128px -144px; +} + +.ui-icon-pin-s { + background-position: -144px -144px; +} + +.ui-icon-play { + background-position: 0 -160px; +} + +.ui-icon-pause { + background-position: -16px -160px; +} + +.ui-icon-seek-next { + background-position: -32px -160px; +} + +.ui-icon-seek-prev { + background-position: -48px -160px; +} + +.ui-icon-seek-end { + background-position: -64px -160px; +} + +.ui-icon-seek-start { + background-position: -80px -160px; +} + +/* ui-icon-seek-first is deprecated, use ui-icon-seek-start instead */ +.ui-icon-seek-first { + background-position: -80px -160px; +} + +.ui-icon-stop { + background-position: -96px -160px; +} + +.ui-icon-eject { + background-position: -112px -160px; +} + +.ui-icon-volume-off { + background-position: -128px -160px; +} + +.ui-icon-volume-on { + background-position: -144px -160px; +} + +.ui-icon-power { + background-position: 0 -176px; +} + +.ui-icon-signal-diag { + background-position: -16px -176px; +} + +.ui-icon-signal { + background-position: -32px -176px; +} + +.ui-icon-battery-0 { + background-position: -48px -176px; +} + +.ui-icon-battery-1 { + background-position: -64px -176px; +} + +.ui-icon-battery-2 { + background-position: -80px -176px; +} + +.ui-icon-battery-3 { + background-position: -96px -176px; +} + +.ui-icon-circle-plus { + background-position: 0 -192px; +} + +.ui-icon-circle-minus { + background-position: -16px -192px; +} + +.ui-icon-circle-close { + background-position: -32px -192px; +} + +.ui-icon-circle-triangle-e { + background-position: -48px -192px; +} + +.ui-icon-circle-triangle-s { + background-position: -64px -192px; +} + +.ui-icon-circle-triangle-w { + background-position: -80px -192px; +} + +.ui-icon-circle-triangle-n { + background-position: -96px -192px; +} + +.ui-icon-circle-arrow-e { + background-position: -112px -192px; +} + +.ui-icon-circle-arrow-s { + background-position: -128px -192px; +} + +.ui-icon-circle-arrow-w { + background-position: -144px -192px; +} + +.ui-icon-circle-arrow-n { + background-position: -160px -192px; +} + +.ui-icon-circle-zoomin { + background-position: -176px -192px; +} + +.ui-icon-circle-zoomout { + background-position: -192px -192px; +} + +.ui-icon-circle-check { + background-position: -208px -192px; +} + +.ui-icon-circlesmall-plus { + background-position: 0 -208px; +} + +.ui-icon-circlesmall-minus { + background-position: -16px -208px; +} + +.ui-icon-circlesmall-close { + background-position: -32px -208px; +} + +.ui-icon-squaresmall-plus { + background-position: -48px -208px; +} + +.ui-icon-squaresmall-minus { + background-position: -64px -208px; +} + +.ui-icon-squaresmall-close { + background-position: -80px -208px; +} + +.ui-icon-grip-dotted-vertical { + background-position: 0 -224px; +} + +.ui-icon-grip-dotted-horizontal { + background-position: -16px -224px; +} + +.ui-icon-grip-solid-vertical { + background-position: -32px -224px; +} + +.ui-icon-grip-solid-horizontal { + background-position: -48px -224px; +} + +.ui-icon-gripsmall-diagonal-se { + background-position: -64px -224px; +} + +.ui-icon-grip-diagonal-se { + background-position: -80px -224px; +} + + +/* Misc visuals +----------------------------------*/ + +/* Corner radius */ +.ui-corner-all, +.ui-corner-top, +.ui-corner-left, +.ui-corner-tl { + border-top-left-radius: 4px; +} + +.ui-corner-all, +.ui-corner-top, +.ui-corner-right, +.ui-corner-tr { + border-top-right-radius: 4px; +} + +.ui-corner-all, +.ui-corner-bottom, +.ui-corner-left, +.ui-corner-bl { + border-bottom-left-radius: 4px; +} + +.ui-corner-all, +.ui-corner-bottom, +.ui-corner-right, +.ui-corner-br { + border-bottom-right-radius: 4px; +} + +/* Overlays */ +.ui-widget-overlay { + background: #aaaaaa url("images/ui-bg_flat_0_aaaaaa_40x100.png") 50% 50% repeat-x; + opacity: .3; + filter: Alpha(Opacity=30); + /* support: IE8 */ +} + +.ui-widget-shadow { + margin: -8px 0 0 -8px; + padding: 8px; + background: #aaaaaa url("images/ui-bg_flat_0_aaaaaa_40x100.png") 50% 50% repeat-x; + opacity: .3; + filter: Alpha(Opacity=30); + /* support: IE8 */ + border-radius: 8px; +} \ No newline at end of file diff --git a/docs/experiment_1/css/jspsych.css b/docs/experiment_1/css/jspsych.css new file mode 100644 index 0000000..3990b06 --- /dev/null +++ b/docs/experiment_1/css/jspsych.css @@ -0,0 +1,582 @@ +/** + * jspsych.js + * Josh de Leeuw + * de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a web browser. Behavior Research Methods, 47(1), 1-12. doi:10.3758/s13428-014-0458-y. + * + * documentation: docs.jspsych.org + * + **/ + +/*!*************************************************************************************************************!*\ + !*** css ../../node_modules/css-loader/dist/cjs.js!../../node_modules/@fontsource/open-sans/400-italic.css ***! + \*************************************************************************************************************/ +/* open-sans-cyrillic-ext-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEmMABIAAAAAiJwAAEkmAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlobiz4cPAZgP1NUQVRaAFwIgjgJnxQREAqByBCBrmgLgzAAATYCJAOGVAQgBYRcByAMhhYbDXkV7NiTwMYBBpu1ASmKYOPAY4KmZP9/OuDG0GlgVn/IiUNZG95hGtsj9rld6idYaWM7hqp+Wt1UPN14qVQ4EJUreXEVnUzF2ND8IdoUXTvscCJoRePhxRw6b1XFGZh3zV+5qRXijm4OnBhaoOQYDY0kJnzS2FcvqUr6zxGgRSKjSJ5bYY40MdhTM7P9f3VV//8EqytHjn7REQMoGkRVDoQcKEc8UtlLHPcEvvv6cNlrDcA2RXtoY4EgYcasIJRWkEgTpcUAQRG7pj2d06kYsxb6Of+58F8+Fv3ce/GovUcArDPFe3p0iPOhzrTWO9n6FHBup71zFUuJ9K+HsJ/Atoqrsz4QF5Cd+q+2cuYoQHOpTnLgW7/0bmrCWQws6fI9IXtRKTquI/10zXPQV4Ys0qtp2tC1+PRk7+Xc5wSYf53al+UIvuADCdggx3IiRyqp6CsQbwc0TDQunPQ6LB2bDNO9GjSuDqEoag7mg0yCS9mUN+bxxWmPiuzIsuzEudwY63eMhboBKuAPoKOwsJj1/0zV2tkdUFgRDoRF29BF8u6cYlGJvJSL9nJ73e6fnZ2dmV1osSAtLkCTIEQHUtJ7gDJAP4sLivcABedYubsYSCrYpDMdQyivC6loclGUMbZXlNW15ztf3++RIO5aQVyCSY0qVOMa36XO//aNx0oNCpdwY5l1GwfafvvsMDa/PxwsXsYtxURFolV0734uTEDkccoPW0azKCAFE0rImOOVaOP7qYkfoSt+kQ+Kf+YBZiDHgW3kRuKaFhGA0mmvwxIYWBx3ApUFQFyrV5ekxI1qsTJxk1ikTtxWWFm6G+b/eVAroRd49TmA/e233rUDXGoAQ5eaWdJZsQ2WNcCnjDPRRdIzBmAIhmISznykCjke6MAHNRjBi7woDkWUhy5qZW/SHJ3RHyNxNGb1ti6HMdbidJyLC3EQN+KjeBAfx7P4Ln6I3xzgsPSIvxNAbWpr6pwe6ZU+Ls+gjMjYTM6SxCYxs5KVgixISX5J1Vmd9dma3TmYYzmdJ3I5N/Jsns+LeSvfe7h33clH+Wl+lc/zp/wj/5WpmbWZvZmLIELITyGKUrxSlS6y6OIoRyLJVKpK1ahR7erVkCY0owWtaks73V9qXdMHuqcn+lzf6KV+0Z/63+bmQHNHuxlq1ADn0tEud6LRxptqhnnOc7EV62tL51o3u9P9HvFRz9roNZ/2OUysqR1MNGEiJoIvPXm//Es4Bsfg4PigiRiJ2UhurHApXmnw6g+np7bochfZ7XauB24J0+OyMdBwopH++IHSvVqSEML44Pchooagtk/n/xR/3i7yEKnvplPRCwapN9P5raLGpRW24A4ZxDKA5Bc1MA2fkZ8Qviaj6uGLcpfwIn4sm6GW1ucV3yYcyxs4E7vKAeCvJZgxG69iutyAZDEm4Dvqo4TRo853wPAxEWQzcKE8zrgGP8Vt+FNJhrpfb++YgkUxYoI0cAamRzYWd4CB+ILKieUzKQUuE+etsbwiIpd6QxKKGT5adkNjQpgU3OyP5jjAuEY8Q0zu4q8lls+lEXhH/FqjXod8KSiW04KIWErU/FjWy/IAqQNpzdeWZu3xhgpIO7GEl/EKMoEDae4yArWwTZbhgFjU2yPtpEX1TEtJqkMs83G+PAk8Ir8G7pG3gcXyA+AXuAgLlKkFLQkwwf0cDHx8OuJI0J+4ipVN+FZQdijeDZO1S+bEGe+M91A26jPHJXByaB6c3xGEb4tfWme6z6nbn9wtE3EQDsJB0aBBtxPbjBjEAqhD/f78jKPytZnI94nKIVCb2Xk+8UwawaTJBQVa9K0uB1iszR4AseYFg5Nqh+GbQuJnP9cgN5vH3Q/TB6+rlJmYAODBG2WVJiA/eEybmH8nZIeCGsTLQLYYwHfWLimgMQggn1OCgy2Jr4ZVlShxcyqC9bDLY+ludrsHvFmgYS+gr3KLOz3k0/ON1wAsv+gde7vNup3ocx5wl3vtgk3t4Ha2CxNxATCfi5eSWes2P7G469LxAsAk4jNUfCfAKRbvlLGGBRoM9HUxxJm8OJc5BulOxa2McwMFjV9PE1MY0bPEJH20WUYepgdjPKQjLABqNhjcwTjHXGaNuIG28QY5ygwLrFNDOwPquZ1nlRuIKUVPA91MIEFHozJaHyNMM4uRk1PQxRHWfYqR3yQ+bJK6tsVT1NFKt3G0SY6zxFV+jofroIVO+2hHw8KECJpqOrJglGn9kbRWQMDwvqyaGZ8zWjqKPPnY+FhHe1trS3NTY0N9Xa2hRl9dpdNWalTVFeVlpaoSpUIuk0rExUWiwoL8vNwcoYDP43LYLGY2nZaVSaWQSUQCPgDuWKhOOjPKQc8t5gerkzNbxaDrldh7p2YKb07MYliXBvWOoMZihxOpHxprvWELBV3Ur3vGpYYXba/kRYEPs/yahlMejhuhWgeAcamaHbGs5NV067sEVDwTlDk7eIPLGVQqQiBZiRuVCdCg8ZoEmvDNVibh1/hG8ZdO1DvPyDq2LCtdSbLBz5+FB80Uf7SSdUHFlAPIunnhM84IShoBG1j7nnI2kMDLQtMMC/nb/QUKYCERTMHzkWh+ggNsjuMT4bEzRvO5Je9z7lvo6hpi224lgqLE8XxjUuX55kZyAAk73yJfCak43PepwK97EMNKJYBwoLLmorqsnqh2zpus0nAk9RMCZ4cZ4RHb6EhDiJATNKJKw6tQRE+qgooesSNR3RTFVoMFjoAQkp355CdQykR3TxrquDqhTlOKxiU85V9xxM8QwEF438cUSijCk9wnGA3q0iYTcSd3SgTnOCIP9QSDa7E7R7PXVa3UD2xt5JsPKRz3bkTF/aev0m7Vieoc67TuOkBCQJgP3vAh0jhZPeRPpVhPMNbPnn9YBoY1SRJeGfZp+HDdUacgeDDU4nFjZuRx4ZTZk8GpvoGWdXB13ZZAE/0Fd0K4h6GLmffPHYtDQjurNNZ+qjpaZhAiJh6MHC6yJhLqolxVrBpEMv3E5av78Pj91MbVxWrVRFYncKTAb+Gaazp4oyHPiaBGsjFrH8FCKI7Q+X2TdCiy1h+UM1tUJ6hzD9ut4Tipp270XC4Im0jjEurfkXER14s8tIatXj4hL3noC9u19RKl4SGq1Z7UxVkYt5QjLaHG0AUBmnn1m6b4ZZk1ov4aXvJUkrqrGVpEQwtvtHMh7NzDdqucUVG1G5goFOTugVisnwtnBtnA8xNwzIqPK9wkfK0IJT4PmiKfGPu0iutlFF7tSPvQiidiaen1JQ0NIWP5csyIswmaqLlLg+VHdWigwUehyXoY3SA6r80BurhCoC+p1mUsNhls8Q4/VkSUJWUBX+c3UlLpoi43vpkojJ5JmGZnnJTB0iRzYz10mZlUY9PROLJWjohtrj7iT+fHFrEg0ZdSRA0UPIXgQY2eNR/FyNA6ahb4XGfESmbUCMNB1OYyAdbTZ2C1SJK34gJhz6UXKSgFmh1vAGgWwLg45nGCnRfeSSwhGBKm7L9hV7bDcVyBDbRlM4BqRoqjggFCe5uarReNCsQIXMtnguzbuQ+VZwi9wcEQ+zo0Zku14wh6qyJhTYvD4NhSRR2SsxfNATgg+sDzN8DMpTmCVCUvy0hsdan3mDgzQdt2l7PelosToEnQgBdWAo9FOx1o1NUA9DyPTY1wXpgBAXBeP5Qg5VtT0aawbFm5elXRL+eYM1oGAPG5wj5ZtGKPNijNF+wjB9neNgd6DsUJqy8WOdhDh83iSHN2dh5W0IxLqaohwwGUEqt0cyiEzoPSMyrya4HJuW/osviBgW6haWk3AoVJvVLX0Fu4XbnNB0hlL6on+t0PX5JuIiyqIJ32p8bgOhNcNue+ERpZ0x2k7q6Jzw5JXQ6tRRucZQV3L3gHRAvO0mIcaZQ8F2vZHhsnKGTHot5mpyFbzmeBOoPAYCz7orKMizIYsAxGQgK8onzLFSxB8kA2WpbxVwK0+dUtcnKJ0JLFSE9UUJ3x45DntrAcpItHAlgy7qYFTghnBWoV+/zSAi2yO26nU196JfY7AybvgGVQ7HfHpCVEYacnFREukpLSJADvkKz8eIXDILYbQrb0XoQDSCA6FPL4nbMtHWcgq7bBFlE+cLADd/Y19muZ1HvWOQNf7vuKz8MV12A5oJCIpf+IAzQ0K+0zsvVn0gvXk1lKnBJ5pZO/9drYKxYypSkAu2zO5WgmBU0OQAKPBlOcVREMExLuSXReeRhEB1Anck85aK0f8FndyIGXCpiZXBMM8g4To0deQnt6M9kZt9sJV1IFTVwXpS1rbh09XRbc0JKqgahLYy/0A5xzBKCKieVRQqeefDNw1LVbGtup1BUeT5FnEFVwMvVJLlBb6HeL4RXHLjAuCUf6i1yBIT79DzcH1gXb5FTnVrSuA9ghT7gB2apWJ9G66IZKq/hMPoGQgv/Ij4KZkvZVGL5BS8S827e7Sa74pFh+8qfgfeeM3kToxSX3B8I+YBlSGkw8XKBxRhDxtzmHsQ/IH04i47VNG+GKyhXFinFzGbrEKBCCLkQov+aBAzn3HzRUkYFPdF+LZspYtS8PUDYUmMEZ3tJbyefzmGDKAsZi9G1xXAQoLztNcfUUulyM2SeJnyQ2uzrE96bjBFUtB/IMG/itFUNRhj5+Z6UiBmMvJMUD9EW1F7zGbBJ8IZU+lHeCQYjmwITkAFG2KJpQyyfIfwaaYCbnXhm5bTN6Au0n30m91au3vh70zcfud7JNG1ts9pIEeCeMM223WHu0iy0HxMRHSgscozwoCZ1Rb5If/ce0wYUUWLkJgif/d27QWw3+8Ebed1pBrUbPNfxTG7FsNhCgekoaxGAbMyVdCvPKHFexI0QA658YY5EFiFYWjii43kWZVWVu1mAoRmzpZK4M2oxaTBoalW+pnYEYho2wLdQn7WPo1pW7Z5abU23v+rGw56xMWe4eOMsyt+nGn3LXN811t6IdT2M/+eu9thR0fJGrhXTWZL3rPvLo2Yguhr7TN/pFP+n/PBdeHrlpk+RFlglxneZdKgvuJ/lslvJfgzNZSemsGUV+xfz2Vsu7qPiU/JB5TYf99m25IedR/gXDI2mdT8t53KH33E/Qh+5lNlnEMcbFNItKtHV3FbRdllHq2cF/Y6dPtjvHh6qaz7L82N5xQf2ch4JnUNBajCBPZeDmU+LAX7C6Enpgcvvy8OFDm3rH5p8JmOA2LiDqbOqM6/yFjWXck4y0vrVhmNtA2OR/prewTXPqJ7oPylJUeN/OxNgcqNt1GyLk13I/EgWGIOBlmQ25KyYMF8uS+ONUgEDLSVKcj6jJXvgeEK5qg6chgLxAAaD0BECYlPrGFR+rqGE8OfvOQvFNQUCLQDWYBTNrFks2TAFjG2DlHsyDG9SzfNSJdXABXjL2I2uN7y1ibP43CgADWnhg5AaGpM7TA/MqcLm13aeyP6gbaDNS+AY8RQuBa0Coq8R7aQPreRwOAqitKPJqjQgKDYJxS17YnnB0vNCB4ulBJ1PQ4lxvhXJRLqAVAms0zvJvs4xPaS75NHVLfQxbH3kjFmW9HyFW9U0zqDm7UhrzPTXBW8dHfO+DkRpWQ6c3goNVqGkwg20JcYhJmFQfAAT9B2D58smynH9fRLr14aLxSYHN2Sf8TJhNyI/cIwCyQHO9sDsMt047Ga5RSdZJHZHZCy1qDTgA0KfAG7IB0i3nEyrieoLNqHIFmvgxZ352MvYTa6MCtNPThz5kw8BFpQAVSlTrCWP4+tgp95j4O6udmk+NQYKSKdhFQCafQsMUBUDPQV2FtzZaqowIk2IhGGBMux8SojnJu4Yuo/M6qt6iRBNuQYV7Wzwi0f9iJ46B2j0UjnJcFNjlnvT85OlScHz8mI0HtuNw0DCu9/EojctTIf6/fsUCxRxO6KZUDOB8dxhOpayU+QDf/BHo43ycAloQjnDyLqdSQW4XW1WqSJg9i2sy/cbVF/y6qAaL2m34yr1YjHtW7lGck1l0uhlTiWQ4kEFDB5yV/BkJyCO2gAYDFev604bxILsaJyRQE9nmCgGmo4/a1WBovSoo3AMB1QVmhhJyBOmW78uhTOUI5kHp9t4lcZIXqOA+Owf5dJTA0sSrddqyh/+wvMgAJDAzUqaNHgTLl5+BBdv50qi2Za/9lbNaSJ6mA5ZEZZZG93mhOzNE1DRsOITKuceUSvBZhxFgUyScceckl/fQ/xzbZnHuIiDaxYmgYzF91KxN0gwyqH5pBQsX2Z35CTaHVkByFRMGvzy3aVKTaTov4+pEL5ZvtEhzvcDcJWC3i+1tF2O0FM8izi6YPxTuHPk6Lp9lhThMpNjoxwroFLEQRMR43I5Kh7gU9w637ZAcAeQfoqg5OnVwdsGz1l7Dc4p9kGiv+ra918bIVVdmwmDfIjgHm3gb+EN1A5XphpC7roEp059LsvgRETnxYHEybjtyPe+MQlKTUy0EitxMS2BxRn+wQrn1ZYzMc8z4g8jxGAc9RWtvPSCwIYFvLx8EWBsfphDwixj0EBUqjY3yycdaD1rLOVkZkKTbfNUu2l7flJVtvN2xNdXD8oER4VHLYsu4pWoZraqqkrP+2Seco2QfYvSq/SWgZc9RYf57ekAm/xSeE50TXDwt5e6F9Bzf9w4Tl/Y6zsHiy/u7xAMvcZQKjRJ78ORsZHIJ8ZmVZO8wVl2sSI2g1TCqHj3qOMS3VajYZ+XAyGg5qwwvjCttCidq3oomyJ/VrLPTxrqYM2dluf8WQNAG6yzOF9navmpUEsXQIp8EUtNbNApmAZWBwYSMFxoWZpoM9wKHlJRiFdzPLI7JbJX30WCncXKDNEVIfBSJ5FERVSao3JhYsE2vYp9QNOSh9lSKBFYNOLEYFupk/pp80tZc3XeIinZ5aQ8LGEOswt9cNJaq9PsskJmD5MJOj0SFe1DHoN208ZBgMRYcx5UnN5FMSUzNu5yGRSTewREUWFHEZwt5Xui6M/rBPaC3QS9oPr1jwISZ1NWh9MWTMMDsnAFArgoBTEqSxXmI0lwJcfFBbhpL7JZ11wqY+MOkNnPVcwMBoghNXjcafuJYcKBYgaUiw6mY5PtJR7tayCTDba05GqTVLvsTZjlCDkXLVE49qWVOjTNjcwMMZaSgpQK2tpBLDzYbwlj5AgQtmCtjJdeg29R4G7PSOor7+wd2TnAVbH1QWyBtq5g0fUK1FmNDUyRKZbAVOGRnM+ZjXGFWV2IysoKGyw91mBNdtGunK5AAAkips5xdO18eQa8s5Qlt2Vc308nSEXQ8fX0+GCfR9Roc1YPPbeHfny227JpP9WdW6Kg8W7i0WMHhzUphBPqMNnxQLLmBQary7ds4I6XZ/crELpUkBoPl9l4omuTABXqXtjSuoB4KEzI5M14OU7awcQ3JQVBzLMlYRBDpLs9oCEXuvTnW4HBxxL/Hz7tRzQ0cQKhiaGmtz+7z1CpdVCcttDWQRYMiyqVGxABkk1EREIJEDJMQiPGxN0LrBjNhKkN67yJYeq2gNVXc40sbXIgJZ7HIfJHFjbp1niHC0AJED9/aDECABIaWozQKXmTAExneKxXB52TVoyxAqNzAeIUiqQaszhD1t0rzydiN+KVTFvu5gCGPXAewK2JRv7APoXdRt7BHAeABRxrfbcnbX3E5rVbsL4PAPN4r4IXn1JJxC2DOYNj+pD1V9KZqGIZptlQ181LwvRVkIgxfUVK8QeosP/nxhG1rH0K61ANPMawld61Gji4SQW3DqhKGMB4e5IJ5c1D3qAkJ6pLr97EVM+YVAe6RWHvFHVNPnyL0kLXMRCq4LkxRUh/kwWWXG9ZqjrJSB/AW9niwk8hEcMtCK1Y/gSr5m8Xn0dT6KUKyrrBZm5mnxXeAyGXQ8R7MKnajVnVTsQuM+AG5JA5wMzsz+CcvhsRDxkL6P4ygOJS7rJYVtVkC8er9BMg9G4Zb6g65rUn9QIN/MXOOgw+vS8XP6UEYwaXuiKEO3dsxWtcnc9501Xv1rkgxWXqp87pG1Fy7nHuwcReaa5lzWHR2W2N62bgvLLuJ67fdBTg+BTGRF33t/sgDaqJcd07ZjO4sJdz+6/WOKBv3Y1mSHLZMMizhFLoxhAWeAs1/02H4e70zzb7+p3fO/6s8JlvzpwRge2e6A/iGK7yhowXXI55VXrz86Tr3BJIKHsn0XEA4ckDsna/ho8nFjzygw2ANNAU+CuaAtDtG9+842y3Q1k89+jfrdSHfsz+qX5uvey+98g+XCAe9/ze0D6vWjtddzVCPcI4k6ZSCIykb8Evia29/ssQZjtfLcgbSNhBX5K3sd+bFjvE6XwfvwZWd7159t+9fNFqOcO8B8dvYpCW9Puqz3P3WgUVaAbkkjijAAtNONdi3Ettgd61vauRdGI+uzLHy6ovw6r+BomBpSX0eTovN0+Gmfd4q1OTqAv8C1ezkFG93aKMeFm73dJwmKwi9kM6wnuEKOEY4IlScSLhdxU6qKcfQSI3+T/uVvd6OvSBBG5NkrNWFfyrYbxlcposzVXFEHhaYa8Nx5G9SSxddjC5dkLtW/5XL29Lcu8ILQoUsmia5BznFVIjryjMqM3L16BnU2RyNUBf4E8hwSpR3rqmNChj46IahfnyqXcek9sxIfok3+jkFg1obRhppvSFUnwEScjQo2ODReD+kScKJpxCyMtpYJXPgRBeji5E7XOMmcBfsAYsV8n6CgFOTgq3J9beh9wwcXzpyarrBg0Sk0SkLxd2PfDbEz2B/OtRvSwrebpKF3uCfbe1ez1I2npUUvNMsCbnOO/6f5A2aqCu17LBQhO332VZhQvXiLDZel5ArRw+gTua3NAw6NoOYhhRsNS/EllE7OLs8cqbGGgshELPolAVx7xOfDfEXC/atxC7I3UNMpaKPCEt4GXnzWocRA/RlaKVxxdROYCt7mRJ1CGMzZtEeZPlRXG1aRx9Rdjr4a8uYovL2Lhwk/r6j92P/kOj0w/5879hPR3yv+4ccTo/ydDZ1j71gq03M2NmCjaIlj6DQYYgamgof/V50ext1u1mqGX6LFawC0avYWGN1TeQXuftN/TM0YUZBHFqAAmJOlcAnY6krBRrV8dpGJrXnmOTneGOISTCopWG0LbM3nIIconrP+PLKjCx/LmKiDHLHKhqnktYmuncllKFFmswpd8HfwMJgKb+ega7A5mhxx7x3CiuzdKU/ezbeD2kUs3BZaYlZvSzVXLp98VPPdqRnu61P+mMwgSNnlL5z0oVCpvN5OfSSrc1f4PDDuRfsTlwq42wrgmwkS+xjW4JT1w8xEXxMZWtcsYPNvOSkzbDEvh+wkydb99AWf3FK9pObJvedsc6PyWOovAvIBZD+OJFWny2iNXaSmHaWaDBXyS7Xde2mFsnGfDCo5MblVl9qyTBHnFbAUho8e7T8wQBWDo0kFunyF6MzkH3Cc9Hwky/EH19zevuD+QjbwvNKi6US4JCN0F9dNtBl4/z75DzIYrQaeFJStp72HAydX93zIQrsj733g2bZWvwxXLTxJtjekZ4bPjc/fK7+3PXZp/rHbysfH318YvJx72NEO0i378cIOEEMepRYLh2LEHHCNbjGVd2x29Cud+Xnk7WdalmdWFFwBsuOTddL058Q+rSLdN6QSCGcX1ZWuJnTbeuyiG15+aSF4Zon6XC/M96cDZO2Cx+ANQ2bJ7H2r8Cj6rgNjmmP8eqHNu5FJI3cgSyCwvKcVhbDWW4h8TlIRjpdHkIAsdxXd2f2XLkubMV4fLnb/JX9oAMGo31ywUjxxDbw8F7vJ1RL+9GkWn4gkDBVYrKs+K8DiHGj8RgS6fWobK/R91dB7B331q+V5RbV4NLFPPq8pJZ5dqLydnzD9OB2To9/Hi2iOruuv7hu7bOzeQz331SeJSDJgh/Nf0GuDKr2IJ34pqv/H+hKtdeo0gwC02WePSapEk354T2CekieB6Hq2W8aan8/NRLjpv5pe/t/MZgNgr4e8+jwifMg69L52uQR2FxWXf600ouz032AB/qsrz99D+ThtFz8dFL8dM6JSV03DG0KtCiMpYdXB1sMJmvTudqEEehsZp1gRoWyMnZrCEBf9dHCzPNt7l5+K5LnE7LnJ0C5jLP1w1vcw7EggdG3firLGK/gNkUTC7FUvqB2CN4jxrd5cVl0NJfCJTWjaKiIBobfQpBC3J9EUWeTkzQV1Gwnc65rgSZfJp17XwifxabZEX1an1nplPy2aLqgJjXVIPC3K2yK/XcpFngWSECwGTgidYrRfNV33aPKaD9C9PwUVDaNZ/bIQ+xLZuq4y5LPwWqHlPJhLLkxRyxc2RO3d2DyvN+H0kKTwwn5CFKszPavm8BMZG5OsVZjX0lcsh8hwkAgRodX9ug5A4JYPMkTG0GaL6C9963NrWXx7eVYFk4H50c0nB8JKOg+o+C926Hwv8ncaG07RwaHjDwu605Cq0hO+MCh8CD7FDo+X1RHcyk57pxX2L1Mdq4AxgxRBD51h/qR72567R1Sganhnp4KoGV4XoL8m4wQU/yhYcf+/U2vdesiGDMhBFVpXTV/e3DlwwTTU2luN20dHhjfHQspJbqGeVkZoC0IL3CAFPOXN9gs3PPYotdls8JwX4Tc8gq9DP9xgqnE8YFzoRFmNOMHJHkbrIorN4P6hRFvL0ZendE+K5xcmQbjw9ZQ21bZBf94zdiPZP3pNfA67OFq+MM22EBrguXk5Nt8zpxKQzs9Xf116ljpUEf+lG8pLUnPquiR9c3BAkDaWTyjTxZqKztWcOMLaP+XYZ8ZQz7zgvV7kWke7Q6puvF0YpNQLl46KGzsRIvg2EQUPZKtoJcn1tkR9w5lIQpl+YGZAJeFr9t0f234mZJj8Ee2lq3iXlKagWpq+O786d/Fk5JN/8wAfG9pXwCv7C1Kf0fxaaikAjaiYZqT/A7efbSSqLJXeEaM0L3mYf4psy76s4Li7S5ITJC57CdJPv4X824CqKn78cOWYVIXZDm8p6UcjuENMOWTMOkjeO/9yEAwI8lQgaNnVvvv9Qs7vf01MeLtcYeYbaNiq2Zg69jIVkPflheO4As7HTRghTNH27j6Z4UyN5GCAB/ihzb3iItZrwqKX02pXhXAXkkrfrfBOevslXRlCDM8O5KD5LByK22VqCYdLLaN8i1D/9bU8FZTz9bpka2aI1sRVwgojw1bNrAMbhnACOVeiEy0HyEuFX6QYv/BB4QT1Fd5kgblq/zfFuuoV9ayV9LKn6OYkbRHNw+XqeZmc+osTX8BN8I8Gz/5pcq6piBs3lwJubrqcd2C7VPKisl0Hj9YHj1wyJKG00tCch9dD9AIjQe9wSUXZQGUHG0vWXXoWbGzaMpFpC/OtZPSImqBzDD6XEimNT6YzfTDlztNljkRCr1JDB/8aWZwa8Lh/3wf7wvNivF/vwc3wiCNH/+iO1SdH37CosTj6rL7dTO2XxknJhPgOH6wMnbgmCkLpSuDcx6+f+rRTW8yXvtweOhs6hXh/EFveC+/Rv5V52fFjqJjjTdG0OcR4y/PCqdxpRM+35vI8CNuZW9eksfGkBPg8t8Po9qSDr9JjTQZbcTumXEVZjXmGa2D+nyZTHspsdUu2/ooohZDrMxtWa2au+XZdZF6BKElZlRxFXUied4WmhGTrmfFn8bJDj1n1cI9tLFEviwlU1uRCQ94V3n5igssOp4gwtmWUTH1Qil/wViqdTOn2zRmkjtEFdnzkyVPkjuBKusa2E8BvsNZCSWWaktMBh8kiDO20zluaEa/dUFhZfxhYRQlLU8V2w/PtGXZTwQXCFhkEUMz5NUjJrTBOKxsNIuSg29BZaEiGz6u9U+3ekBVISDaOLwAF0+pVNNgVQeqy2dcAsnp0UShh9iQS07SqMPjj3aGs7Qyp771yCfEDietQ31kgv+5FM7kIUoM334pdto8aekSs3GEe+BeLg8JgbVy3pkXPz0l8g0DT6FfgXgps7lbsAf+26FhW1IY6Y3Uvi3LeUsnDXmf/5b5T+8mo6gjRRWZk5/e6cyhx8I8mhuGCv4nu6Bc9ZWD1ZwejmgSXAB03Vmy9N5lWavM5IDs/4JKIsuboeTUZtGiPivfRzbWRQB7habHZmhChUiXGPA31iziClZtzT40ZVZgieLRdj/bEIeJaHpJHM194SvDXXM3hGMo/hzY7LCnrW1XVVxKOqgaujLO/25sgxe38voXedIlJiM8Nv5Dcy1seUjw3WxnzBv5J9MnP1Q22MXhIzTmbKe+gpIj5LO+t5Tq2AWpkgThEHyCwv/TM51681T9lNP+t0oV0StyTRZYjPUJDv8k8D9FBC91BHz0izWB7xnyQmnHcI7A+StMUFS4zuEIYvDJTIH3W4QFZdtALh/0Ozqs/mdGo5+32RKclY4tCm/0mOQWELpI7tl1vqjI6VvsFGJeXD38qLCMccQ33p1oTyPIVFGENCVKEqZCYTzcq0BZlaiCsFxUfCQu4XpyrB2hFNrv6Jz2DVEA9zYNjkVj4qNiWSWpvm6JQ3t63mcTGp8XxM+Vl/uG15lSTlcImN76RvrFUeuzitupJ6PeAZ9nrLbs9TDVVCV/cZ2zJlcR2AXTlbpL9BcBP8ukEV256bjYvECv9M7v+oOZ1XNKxq0hjd8v1O/Vt8am9nhlrGpfenyPdJaBC9S52GcRparDeIwSJQmlNA7WOePCEbAJN7Bx9oSS0OO3kQq/IfOg3q5B8Wk40YDHdJqX2EI3XZh5oVsRfot/pqHreGZuugqZzK5/gHYLQAOUGYzKuEHoUVJHwUgRgR3uR8o1kgvkAv+YdHUaT50yDj+VJ8N00OF45+6U5jQNBFvQkIterigLeMK61DxymqXh1cf9P9AUiwEC7V5IH49aPehS/7bYmeZQ//NS9N0lG8oU+vJ7deXJqse9513dnaC+F+KHesCZnMLTzbLg2/y9ziPnWLrFnJLzwLtXzUmsrEjMjha6M/qGQdlmVek7qeCFtAqv+feLoAtYDWRhN0WLO5cGm8epIQsfFEMXsWrogi37y7PmvGKxuFAht2RRpRRUdArWS0kdfpqyucySnfvd1ZyLXrEordmCSZFSt4GB1xzWAHHxtlhUGRV5+ODk3xB86zhP9ys0FRVLCpSIqQNUzRuih81TcmKRXGppO7q5Rmx5v04LhfAbJbHqwzgMOoMWlRVFiCScDUSnkULmlXtCAWLXfxtGOSNCNH6aUHwOy3Xfjwhs9jKjurL89w8Rm9dHISw4F8l2E5y6naHAFT8QCk0iAzL9WD7Mb/H3TPZ3JtOH9W0q5nOcMr34IdMZVFfrWeVm0fyEx4Rw4WxkBVqUu37ZVx1aWZzjwvK/cIhkHY+sfW6Yt8Ex7Sbn2dY7BxE8wk1BPM8OnMRe5/8B2cStTMGuVEH3Ctl/u/q96kHIbZt0hbwPn5Ndk5hRLQy0Zc9HP0WGO4VMzvrm287vbXxtYf0eY2L3l5wvx/6echI+POm/s+y3E4kYjkhGjU9d4HHnSrXZp2eqv00ZVxxpz5/yLc9KNrAr+8X9x5DPQVWzxOxegCTMXr4xsDYBrp+MeW2MeW0FqbesjgG3O6RUjeNITTly8dK7hU0dGBEcl4TKjowPJxZ4UxPqbElV02jXIkWeNw/E3iFO7efyVjVTLY9qk7NOGBLZG8oG24wBPXriw55gphUBP6lPpM5mBGb1yhv6KwaX0iIc33P+VZ3m8GvC7WKXP6I6IfesXpXL2tPogjYW2VirC/uUf6F5cIkuziyNJfOZh6IddR1FD6by8ZUZOdXo48gzuZU52pyIwrCfKJTEex1DrqiP5HR0j8CGRvvGP/Majyt5w4MP8Tu6YUnSbyYgdePSZxhY/zSJCYLUOUm+gRx7wxvBLkertFC8eAZfWUOd9Tmbu332zhlfkllle8dE8Nb8FjaKLrN7TbLyrd3Nqu1PPdC1J7ws25/pvkZGkn7DFEDapjtzkCkETYygMLUdPp8zWDNThURbPS58FPtdVSys/1g67du/g6RGkehgWOF/I3uzvnWd4p09V5tlEC0vV/z+4vO7KRjzVjnIj3Gkilw8DZx6vOcODZjlrIZ6QfUlrJwUUc+3bpThyTUIj6n8SHbtJSYxsdkGek3W+w/HHy4Sb5HVsYPLB+9/8ciQvlHhDN+vzqrmiFEVqCX7VuJCqRXQ6iDAEzpzpswCfs/Htmio3vbw0H8+OVNXxtEHmScfXyZyCbwT7YvxxlJrP+sDIrgu+ILER+2jEdgyJw3uQnlzHMwVE/DhUf+3lv3euug1vJ9dXfI2uPVw4qF/gmPr0ynPhqP+5xb8z9mAG2wG54GOd/xhFYHviVAVqMAfndgICmL0l7GDKwcfrq6jDx+OP/T80nZ4V+jVD1BZWVsdBHvWBl+QotQoz7Sm+qy6tcGtqcGJfm6ltXSaz97oJPZaKXeFH75toNcMS37yiNzX5VF402g7vzdWagWPo+0p9YAfYaMkJy1iicAsWGKhAf/D+rm2w7vLpa8xGOUy4Gmje8b0RJUnTn4CrzNQZn3OCmuYG3N5Ot8Ms6L2zjUnNqLBQSd+Su8OzrlnWKDq386q60+9oivzv565XtE9JDoV7Z36xe+4HLD2mFSI0rIbqr9+VuuNOXS96MGS7Zndv21bdpftF4gZ4k9eYw/5U9tjpKpEY7nCT9v+ovclzLKZXVHf/bWHNg848UNzk8n+TIZ709c7xi/5rekGCDNucEjolpSzhOlpkJ6P/2logHt5rqjcDXkxiBS8J2mOf11+dUFbwqkjZ5xolwZ9yLvYcSInQfkUFYi1+2d6j2LnBMqKrDhC2kDtCsjg3OTASAGbMBFwU8dDjAcllCemVCBAfTmO8VXbYsnVkaLAA9ZmS8fZTE24zD4H2XWD5hjOqkcLyuIHIMdpvITOcioD8uszh8AOpiBkVdDVRc9VtrU1STCXa+Y4MYS3wJDrVzvunsu4/jM2oKAjeo6eHICOCE9PDSl21cTg4UqfibqsunUnMWICPvoENjrhUNk5V+rqzj9Sk6XMzcqiQ3pU/Jlea5wbhUChxFQkKCrZp8BVij+MRzb6rLEeBAydEqOOU1bxdyHN4md68BdWJ/gu8HCxoo3IqdS3HdJY1Zap+0mchq7eHn9bWg+zW0lxQhHgkPNxJW/CP15Ivz9UTF7Gx1phHS6YUa3hpLztQCIm+bR/OlnyvXsUpp5WJ37U9G3Ted8WC4utkzcTLiTsBp/7tHi93BWxr2fosy6eyT9z8enhl6CV9WOZxy5dg7x9fL7MEkFF1tINj520XhOw8U/h40cdWO0NTmyvk05ixGKZEyy5oiZb+VjrLgRgrHByeU+GgGVIwdUIAm2za8udEqD97rD+6CofhTXWjUyi0agL4p4nPhuSL4zAX0NLKU7IIDjkPLfkjW+uiXv5qQYeGXY1sUI1jCEZuBBVbaXncjlEJ3Ih86iFyt3gIt/R91ed2F4rahDye322/hguwyEd1fqTdSrzrKqKb0hJqxYE2BYej/1vOd5mAUiA07Nx5KxpVvN13w03lUVd71NlljBsAy+jIZBgg41tTA0sG0aT6wRgdl5V2LI2LE7oQhVQxeScZmL2a4Mv1uPK1a13eBab5pDp3fiH1VUKhZ/oFWNWFflHw1B3Z5Ad81ic3VIyvMc63Z2EzcowTfOuSnL9qlwp2Ia1elRfnfHDeR7tr5Y6Phl6kFypGkAT6wSeOSINclWDpBS7krnUfNW54ELfsVvw2EGX1W+7df+uICzQNCJAGZTIwQR7sGjjrz3wSN/MCDffib4/Lm2+zG3tOs/Mm5AqORs3avk4M11wPOzjmx8sN+zF5vlN5fpcioKewWU9BIfOsXFVpLQEtiKYXLCBHW0pu+i7C9JvifLONbnZ+uLNpQFxDCzKPVs4/NoDiwzARyI7Br+409E6sFjbmEXqOqr4LemknwkF1Fo30pw1EE5CDlB8jvsjDeCah0HtEl4SKz3juvqLhveZGmpZu/PuUP7zcbo/vYq/edsgxthxng/ZiJMRejOSzHlklfZRA//Wk9Vc1xo5Zr6EP0WGiTQwnvV+htOeTSy8w49iRpACf33GwrXjDwRefUNtco+ZntB5YhQn0nVVlCmfU0I9Y3meb0CKgeg6wYoi/5qavHb52kdvnVw49LBN/uVES/x3qneOd35ERmr+RMsgi9MduchUojZSmJfailjIHzlyrDoEBwzK+3DJvpi4WGptbX3tl++5NlOCglNHFP5XGev1zeskZKSJ4WXNupPYqwEiwvxM+JfwHVwQ2iTbHRdpA17FjcaWQFNyoxntwXpPavLltCepnyU98Mi96iSGn/ndCZyvv67fsDO78KzFFSMIJogz1kOaQxoZB3mttTge+Nz8kXddQVGZYVgJbtG/KqyDfV3ZOo3RYeqc7Gw1xtVnFvCb/zNaINEnQtnuufbhg/uSqofeK5qA8YFNVn9Naisdby01Or1LCn265mRS53n5N5zEY/t4Vwkyla9nME9Be3Ivuct+XLJfIC7k3XQT3VyyZ8VC2xkH6rqjybCYudqXhq3BTULPDttr9zUI/on+un5d+mPFa9/2yt7JZ5ZwbE2p81LePhl2LaFCcSSVXJcDURRqfVcqvSki1wgfHM0bK98LLvQZ/8BB/9e7nl2D+EyvshxGLduT4Do3rHUafVtexTIkpeuFgbasqXi75WSvaWucBx6fSaPPcdpu+my4yBftW4ljWXoE6ZThec26zbDcPt3T4KF05Taah3zt0ATU2lmH2+Y5l7lq5m3O6GZB7J0fD42ctQqsPGvm5Arf/s0JmXBJf7V6pN0AyvY56oA2R/y62mjNXLGUwZYcqY01w/athIdWV8rNva6Uf2+r2Zv/wtwbCLS1BQJfg0Z2BdzJvIrczY/03NS/ddgQ372tV7uGj2K4/tNM1M3okY1v+jT/LU+RPbpfXFx7nt8xVrSJG2ot20fW1F23Ch9np2kJsRFceRRYDvqrsAbnIOedjzZl9QZn+vaT1xAsqd0S5Z5raqP84Syt6Xrsh6rdGx/8gWxOHIUItn16DJWChPvBeN/ZYG1YIwRbOh6fmxeoS6udK+sdA7eYfouBj7tD2z3/OWv29ca2KGNtsPUp2fv8i/JJ3/2j3oX+BjBJPJRaoArrz5YwGsaSpFSPiuf/wLx6P/PQ/20ttlzOLVprVJPe7R++zeCACazvedsGumEz+l2rQ3HnagXIqbGaVj0e0f4ATAOvhBwts3CytS1oQ0x/2yM7B4Wu3C2Gti5G2SOThUdSUY6sVFluOPK5Uuu1+kauQT27vqyEtPJGwKLPJAMpoc4wPSccUVj1muyY1P0zeWcufXz4FWh5c0gc5TrkwtxgCsqJlVavxbsE8paL17jLt2Ii5d+J7eDjYEByuv61ICjLr99EJ/98dLdSee/d/8AGq69erxKbGAE5eiDIXdV1NH9koTvYbVXEYr+ZQ4+cqAzYbj6ZyerJbZooh6ZfdNF15nllpTHXeFUlczT+scr5o1946N6ZbFactK+MIwpdaFw2I0dV7q6S/rgmeeVRKTLO8R+P8CvTcco9PL6l/YCknK5PDc/Ni/LuB/XMXtzRhn7K328eXMoWZ5XFkXlYoNCW7SgcpioXHXzUeQZPVnYRV6lqhrZjU+Zx6YEfXjq/1TbV5KI6FIGuVo2gfbrCC0KETJo6uQd5jKWQ1ZXOi2br0TPIP9D+lRqcPutSchTN7FJ5cLK88XH5zVEVN6Fd1+W7yepOtcwgVuSdxjKi0/US3EN8t9ZI5w2J5IL5RWWZu2UzRNFSAfb2gRXQcwVKZRWkufDuquQVtEM+f4LkG1/uUtKXmlHFgYa6CURo8SSkp4zSiKQxyWlMei6x1ZcEj2rgBCwH8MSjCdkVLFKiWp3Jcrbi2QllPBACgqfTubLSZs9WbNoiLt2zW7K+kO0baVKbbdgic3V9EGln2cgP0K47irPpql6lSCcpItTDtDGL6foi7Kek7ppFBnuooCxvbllc6m7OtFETEzUUhC1J5H9uuQKEYOpouqOR39XOQBlF6KIpzx4VpQlJZ5LTWPQcUgtdKntDyQiq+GcEZMGxK1Syfe2pJCf6lMoMoQv6JH4kNheamp/A7AsxeIsy/850JNnBtfN2zG/tsIcoEBqLLVAqq6FNhXeNsu+hHYrFeYq6YBTDbitGWjMcs21AaKErLWo39kr8xdhTYGJYs3x/XApD012K+jCUxny4VYZOi7oz4s5RZvEuJ22ENDPezWmtxXLB584M3rcARWWGY6XYJf+qsE7OdWXzVJoWW+uUMmAsk7gzGUxOaWEjtA2XaiRy3dXC5QWhN+Mnl8IxDKet2NuaNHf4r/GlDRqf1KrdV255h9AQGoctUKqqPZvy7y7Tuwbl4gkKijDoIu6nZgnr9ClHBmjZozmLfv8Pv11W6cFiMNmlhU1erejUFRLXXZ2zPC9EnQT9A/FzniK6d31/afWX3L6Wq6HcAPQwBbUYqVacI4/2lFxKeNmxt/biysDpUukdyIjaaxTprvfo5b0Y3vgsH4wE9V9Tyq/3lsXckp+crr+Fry9dCcAHpLUMdYbk543HqcWUbj9jbkffxshx4yZ0EA3rfu6S57fV//S+BHwHVDiB4bYVI4GEIZszJRPw0Y/ho0dtzRpLrdEQGpstVJZUQ5sK7i6IGQw8SSBE5EkhDpHGKsBJ0H4PWH+sNrSs3Z3JYizeCGt7XBO5zuyk7jxR32HPw6CjlwuFS1Jd4eZ5ebOtpRRZPVVWhJ9skK/EFvG64erkYG4VNqY/pSC1xDsbHybFKdtbp8/Cus4WHEfqyOhqTsVg51D5TgzdZ+zXKp8hd3j8F52IqW97+Q+hnqt3isAdp51GvTohRZhXGX/gv4ILtaOS1v0MCKUlX0y9l/wk4S449wOnNsR0WpgTK02eEw451YGYet2rX4JCV59pIB1bdmbv3Gn14JZoUkNJ87SGM1yXtsNLU6nejqxUeW44InnPlxvjLDcrRkTh0dQY9wKSJi24MhUfJytNsCV74WuHu+vhtX27OxE0hI51ZKYX5AXYQka+913kRyeULiLdxZfTxXAP2/kCwsC/PZZySqkVCpftn8PlCZK3PQ6kvFyJeIR/7IEEHTzRwSvVpAQMOilwGen5PcE12wm8sWOPNH9CUoU2ODpGWpDdvLx/D45DY+Ijo1hStH2o+XDAJjz+X9wZw5sw7yIq8T+cyekaZ/uoe1+7V9nEFzoLoDMtJYhkvprDcwiG13iaA30Oh0Cw9qWsGv92MCmVOJtaAoYDgDKyYQ/iS2IAfvJfUXZZl5BIAwCyQEzLqysR27QbPdhn2o8x7Pgizfmy9KBp34fMhZP0gGOKWCZGrNNR1Y00Z+xJXZPuNbM8Yhu4Xlk1WI2YxGApVqir1i1+aJpWP72hSwZePKTODJMjQPWLumF8OTJS9URHjelIopnjNTZ1ZPVggHB66iDByA6NDY9jhwPyRbkxzR9mI3WriEWM/x3bS/Ff93LRCHixG2uIfxeMSJz4dde7sPbyl6KLymQmu5BuMEKxR111CjemaaGOGRs+dFik1A+7oc4TP5YI1Ke/iUBjke4iLfJGLUSzgf/DwYNIZxw0wrwN1jvsoKfXiI8mlLQ//5xvXsSFv/3se8MJtUPvWpdStDP7AOreMUghAB/USMbWgpbu1/sUr2WLIXO5OX8fnw8PugH0HbUy/1+b7si6KVtTpnMY88o+n0qxspl/B4D/LitPpKa92gWOl4eSNmdOtf8ZdfPz+bIft30J9Wl+RqNIcwXBtBMGpim37syeRP9YO4ZnE5FzUn7aqohRsgdoQqoAQHGaZmiLCMbI+f+WIHL4iK4hKXi3UWv6NhWdeSXKDRAYmj0mqWqmLYvnT0bE6v3dvc0l7KN4I+eUNbBduE2EVmutzL49k9aC7Fwi2nBg6u7gwVJ0I/kdQO2CubMAfEhvqT6TeIOFt2IuaG2NFaMX+Eq7kCzXjRYtOGoD1NVGhCrGmBSg6RoytEO/3vtIoEME4truWG86qblWJV9n844M4B/OBPImQ8udFmJtofKOVWEwE06pQZqkZBDYAGrb4wQGcCHCECSsR/qJvsumA0qIJCiFVD0HU6/1Rw3CME1LNu6WUnC1wwTHKD3dDdIQVokboBEEsAdSBdgVWUcGN6Wh2deSliCMIozbgPrPwF/A1I9p7gpMKhtB+1a+b9C79F7fly8V4yHDfq3tJEhwfs4bqMVuGp1EW5uxM+ACzNbw3en0VpqKxgF9+FCYHJr6w1cfZa/rTpwwSYi2vH2Byg+0Dakiat80u5QfRnyr/13r+6jMtbmH9+md0WHX1HqxYkw7j5g2EspPdjyCPMD4M4q6TosCTLGJmoc+HSS4NMGMaTsHpGsILZGoNOzIwxhUC9Z5Xiiq3UUMiw5H1P9qovuCEIzBvNBhUiS8tB90QMdkVRlAS7Bwt465O5SoppnHv9jljDMaS4MywtS9Lm+mO1pojNCngF0udNumoUnaRyx2N/n4OkRuoEzTqzdvgt26xsrEyfPnTS4Q9sgbFCQqgE5t7VZjjMrU3KwsqhE8Pw/tSFtiDEm4o0Je+gqReQ3dLX+NAESPP68mZxon5MAyuqxXK2s/+rw7E1wIETsPMqaaMWeml6qhv/ESugXwgiIfQVABW5u3c3wIlVk94ZDT9mvqUXembDGbCT81TUqqAyosLvt/d7QmGkzgBRER05F7zcHSmBi2YtEFnUxSalMgQmoiRbHLg0SadlUGZdiIMWcd+iZ9MO/hshE3kK15FZgvGYgmAFYMXOgAtm3PdddTTXMuZWgh3KorJkI6TXKulOTeRocZhHzbZASJgyCUcCf1lIFha8EWOZikqV3OVNZdSrFSIgjgRjV3DVGYtFr25nT3Ow+FHi/6aQrOuL4tDIbGyBUiarsuTOkgaJ2i33bkJafTrqZ2dO5QaUc0kUkygUWJ+mII1E464VzoLBEJfYaKe0fPTPflMslmZ3HtahD4fymlf7suFzpe6fSecQOf/WEwXg8f7ty2zOTDoeuWq/rypTBEv0qpf90Wtfn348cGFH1L+hguZbrZ1g5xDO5Oa+JzuLsoAtewy6zWJspuK9DwkqXDoBXLehMkgUqp3MhuSQwge7DMFJs6Otpev0g06djws8EzBc5tExurtt2mFGWnIMuSnR54653FiAwMmJZZFgNHD7k3PyDHdTC5972NF+912CkNxq8Rn0hx9riO2zdu/Hz15s2rV5f9I3ZBDLngS/e5ayNHDgj9T6O687WDp29MwPJncOaYie9uXr5+/drly0sHAhhynd1fbfXSWBoXW1K+sXvHIQZVy/wwyTxVQzSV7zthRG07DFTTf1ie5yDq4J/Hdg/Y+iS289/ngTmAI4chRkympJ3e7eYMX7roMCCM3G+vqwwb0GcBUJPJRwZoLv1BYBKHFAhH8EjA4Nt1E6dtdUBAJszFGozFygEaPrYKAhpKyRil2Hbhr905Zh0GOy3Mr4w8g4FPflRVy6gogHMTB1a4b7sBW4JxW4mIF95gZ+Z+hn50LjOT1nWbmKXdXFXR+8aIuO7MC6kjYIZxlKZgLnOQEKa9hss5FIsEMpJwyhC+n1AYrkc5ig58Y7AxBRbnDaKD3OVKb2gJewY2w2Dl/FHbknJhAgTEAXQF96hG07DNQFqoJ3W1CQJb1bU8gRzDRaQ166Wehf+Xa3Efa4brB2SYwFB8kS3OpTwJCpZHbZElCT4ye1rtQKcQqKkZOJIEQAVQLomfHDWCvIYqVRNis0Zbk9TSftLaOcsKXex4XA9fVq2lnAWK3ksODI+ZhAvU5zBcRFo133fxGxlBkpByAsIYRVqzsyCckLQooiAeQUbGUdMhhW0jyfNQRVUhCufo5zd2doKwONpMP1SbYQBkRkNCs2XIzi+t5a+sVmrytvj5EycAlYZlVZPsfke9r2N6yUKANawnjNpdv/3IRD1PksbEdFoy5wix0apDEeY0ZhT1NKvguBR4LNP8MqJnib5OnB7S4FgWlsq3Rb56n+tMEWljwHw8c6YYm3IDRr3JgCU0dEE2Q+vHoZS6CC99RlI9JMg1+mEBjXfUACiDF7McGOYuUhpFKgiUMivvg0gItEUBQaGoJc/kC/KPrcb1JouTJI7dlGJ9/8SGKJYbEH0A5CDaYIBrR2XaVd2ECw+V2DPpOvM8A1/HOppx02wSBPiK0Vi0rXmowGehiQVI2aa5nCXGSh0/bl3m2neJjn41QKyoJ+Mz3FaBdZxoX0bQC9bbmsbUHpLq2qejkSd2D4TPO0sSToiMVZX0flHag4M45nYRgcrYp+H5zQjciyiURD3XekVOpQkFOgezQYZJeO3e0G87SUbAFiyCzJH7e68p40VUhWDL7Hw1KAi8jTQBWiili7RMG2vli+IEny4c9oysEQVZRNB6jQ7QtPTazKJyP12iXHWjSIwQA+Y02nR3+MjwLzRj3DEJwhNiAKlOARt9d9RbB6hgita4gqH9ILsAe/fUPWTOdItt2NjP5saN1xp0SkcZkW1NT1NQJq3kwcHZdUcJN55sJGkxOnJfaQTsu893RdHGM21OGD81zgUNAozBeDT7GjQ9BfyogRCShSEhYGLcWi+z9jk7u2eWsP4uBXeXlwC94cTScW+oexhip3cpM4PA5n2dbtbNk+791Gtviiu2HxiIutXL1YzN5nXsbrZTksxHQ3PaFOtfbDzIiSJaZeohtII0RqnFGBji+rwyD7GU3pga40p1a/8XmfhTwsdlTEdAGmjmKX3Xf+4uDO9WFlQ06qApdofoc9DMe40WvO+8qioDS+/sLgr1Q54KWQi2KmMdoKVI9u//M8KsO2/0XTeM05ExqNFq+qydfqiMdNXG79vYgaxKVZ7HUwcM5K7n0xN2wKJercAk2XyDsQ16UjSfoZI/nsjSfspa0procryYTifQmg9sB41iK3a2lXMgtHY3x8jDWMcKcK8U6DDN8o/VAlSHRGRi2brlVgkOuBsNvlpBHQlaP6u+B5rSbWYi5g7aX9YPC0RmqbiaOqxzm06os8ozL3QwnIkEWevpabqbPAed7RA6OLvIrrGFl10FAWhUDV2e3+oMXFY9RaJJ7cdAUffldArmREykSuhmnV65j5AHNkx6Gp4V2pv8AdltgjJy6u73PMPIzsb7TV4tSx+yj/2XgfZ+MSNd/gf8IqHzcBiW56YhdkykS+V4q/8doFzl61+wtbClHyh4SQA0v2MckBZtFz2ALTQAfnzAf6PtU2m/uiYJzGpSEAITAFG06cuH9HyH5P+tbawBt81fv/fKp4z7/YOS/m+1+vHS/UUDpphnBsBh/i8lb+keRVtxOYW+4z58bj/1+1xy7ezzWcaMgpPBcOpgGd0O8KXbKdIsxT4upf8i9jSJbspvmWkqtDmTXBnv98Ds6RGK8l2+EYeX9YrrGiO59untuDlj8vy/JuB4CH0Qfm8i37Knce75+bk65//WMluXaNAKLq6P/sHgZifR7bMMWAq3n8GpJhL9wexz7DT2eUL7IxR1nvKdOTJYJ1rLyoyeOxqax1tDW+if9NlRz35pNwrFW1JDW4Sn6jsNGYvGMUYbT1ZLe53IuON9StX4nuBhJLhOwrJd3AqXwnEQje6C5+Pznm5BFhgb34OnF9hVH5szfXJ+7qntIeU7lj5vEj2i8RsyvgaOPiKh3Nh1PdlVA/Th1hoIaKvaCcdreN1FUl1hzDcoPhzQh6f/rd7wYOBLqE1EXpgjjp5fdQa7RYBfPvxqBTMFFaUiA4d3mAa0FwZfIwvoPTiscDhgt6fKUh/dk+RKmXtmzIUqy5WbvEWUOxM589KjXOzLsKqfeB9EBOJgsXXYITIQjX0VAYZ+I46tNmxXzB+DnZanNgoQHyb0MFUCjC6cIwGxgahVFIgSRKdM9+HJg8RYkRiNfwuQwPNPh84R3Z3bDhPlYaaV3BgX9SqivobbYpOf6hUjPsr3us/EiJ9vt2oaxyy8/pzEGmLMOxQWjl2fhmM6hljboRbNmbdRLExW2TufeSZaAKzssvpo9ad/P1m5iwnAlwzihg4LiIBwjgLQthu2YKZk1ufhJuVDadPHAWyBDGVtC8Lnqy00FnBjCx3G/1sYjA2vLUwmRvxb8lgQnB2YAGC96N7CBODGmGteG4AgG8bsZYNiH2vgKKMcPWrkSJFRCYIoIh4CBKyVIg5olAsvRcCkEFyTAjpqH1eUZJEjwKAVLltLtSYCKhmJl2dBIuF3WSlytViLiDCKTFJV4GVcLKUEMZJLXqpzTckta+dqppUFdsBJ6CukBPnlnMOEEXHXnAQBGidsqJ1NNaEYcqSwxjkTDCLlPVUh6g+jJhuaTIYii3atLB9KhtXiJQI7iUu1Yhp4qHDZ2v2cy7I4ySyDVFUNGIg1rt3wwnWfGTB/ezi5aaI4vZhv7Dz/C6PPv+/vI4yfxza+H8KRBzH4kAbusrX+exNvt631XjV4uT4yui9ZPF228XghOi5C+2UVd2ei9WCDloMLrk9vNB1Oajy80XCQ6o9UdxRqjx1O9lLNnvQ7qt41HWxn7G8F7ZYq1ybsrH+o11QhWvnGK9uURyjdVKytqGTp05RLT7EgTb7wZAu9QLrosDLHX1biORXPty3OXViYOsxPVDCj/JmUN1LuKOUMJGx/CFri98TrL3E74pwZkhquLrEqYlY/GNWM/proDdEaKauOorskakGUnMgJkZJLxEwiZIRPKePeRLnYq1Qckc00pZIzkhG7dWqutiOnZrERMb3NOjXaoohYDQgHe4WCFgStFOIXgn1F+EIW81Rp0cED8jd3cDlScDqccJjJO2rFZJAzN/+2pHrUm6xlM38sqsP1fKfIjc535jvy7aLWY1eU2evxzd/QvME/2szhjf1z3ah12COq2ZEPewP+Ovzmf9g/timg805AA5ugd/oR840wWYpasBWV7AU/+RuaNuSPaeaI2VFHWZici8GnWcGUc+MNY7i1RL90Kzqf9r16uTc6W7DVEzrXAPYlQt6pMOm/uO2hPgDsGMrWo0zeaQHWAv6pNMWdHdBslsdqAME/d/J7P7CCDWzIFwXV8UwuwCe8UixJg50kIRv2RM8YYkky7lqDJeGt2AoA) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} + +/* open-sans-cyrillic-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAC0cABIAAAAAUrAAACy4AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGj4bIByBIgZgP1NUQVRaAIECCII4CZ8UERAK6WzdHwuCJAABNgIkA4REBCAFhFwHIAyGFhsGShXsmCEeByDmTVwUwcYBtPHqBf9/OODGUOjDtAsmiU0lEkVRQkU7l+pLlGQwLZMxOLCLhdMIZy3bRY1QQTuHU3Ptqx30nURGfx0haBQKttA1HQsmFkFWqKlXK+hDmy9W0XxzT36bJ8irmJVrInyAOUJjn+T6nzqy97/AMuzGS6yNI+UAA1RpzmFygNEH5OPuOmwZmo6o6Hb6Aw/AvJo8hrGbmlio6XMqF1ZhzZiYtV6I2eRUnHFOxcZFca7TR7n4yD6e/9z7v5VkJxdXmseZ1oWqzSEcwjdjEI7xCPM1QtMf9xCtthQ3JUbvhRA/iN9rq1QvYR8aZCi9CjVzMfAAGmZY6jVIQ/cuMnGI5Sz5MvaGpthRaB9+f74i3IazN5rpCyzlpbyYr/9pM3fb/6TdcEVto1j/LNk6wo5kK9jutQmboAwwmWZcZ9DNChUkCUQMaICKcxrOhDcfpp+2H1eTZWl7w3aXa1UnHZoObmZpFniWjkiecae/XsgW6uy/Ip/PVLOdxZDikpeIizxnXoTsXHSiHENR+bmpdv7McHZmFsBgCVpYKJEArUdQCRCpAChhFV52SKkMsSN5EeI5xyqn6lyF3Lko3RTuixQ6u3TRVX4sDYs44k0JQUDOjvnqm2Rm/BoJvs2JFSti9/5/XPXwm2NP4yzd9CmVYXchCIxONPo+aXWJAoqdbmfZJ/Xpl4hnp4W3mPeX2AG9EoyCsVt8gcYFuEBCFe1LoGhXb9fA6dYRD5obqgDRTxqkagDlqbSiAUZelmtr0vyb5zVX8xEAr7tsLALgfz8lYUTEeafeSKoAoGq89ZSp7QwNjXrG6/7cvmDIsBGjBthBYyMunjISGo6S3cY4AWp2dusDM7BiutOXT+yHNIOMCwx6LLvJJNp1BDB5zgz/3zAM/98HY3pjfQNy+dwBgOVo0JoAbS9oe4D91YdahR3kXH2i0NoB+C91JuwcHWzoFuLmvihAJQAEk4aD2liNvwVYshPE5QVTCpZg1hFnkn5eynuvJUBmjh6OzLBSnNKM58x53/Ylukce6O4LUpKxnP6ADk8eQg6NB+Qh5YAA+Gfqn70P1HqquTDB8s8wMi1vbmqH7/p+QuIN0H5tvoXTu2/9r2sfqfINQC21FKf5EqKWrBNvanhNG4NGv0O25NYSy8YMtNZuhz2iSr1NOsyyamZzxDCzv9eEQda2p7c5AYLeBKHksPkNQi5rYO41ZsaCNSe06DHqfG9XHfWIVI1mbQZMk9Frdy01zGLOEqtjNek3jsEOz6ofJz0RsHoLrbOMug2Elj9ikc19P9Ee412GRZeaaU52JGhNesVk0pz3B+n4BAJ6163RUul9YYC0oSlHpg9P9faYu7s6O9rbTMZWQ0tzU6Nep9U01NfV1lRXqVVKhVwmrZRUlJeVikuKRUWFQgGfx+UUsJgMOo1KIZOIhEg4y58fHT6QpTQpub4+erCiUpK+3PGD06uhS0QfC9ZZQhg60x+5ZkMb4zUbBEjX7LfElRycEPqQVuEY+rxuqD/m/rBw1JR9mSknTVBFK96mSKQCLluCpbZ1L+kyNaPLu3JhxbQlmYD10hxKEE6vB53oRG9V/lRhnfWMA5YNu3WkLRmcTE5C/b4qWyqjNrikMlcLun0555JyW+Fgw8Z3QnWwQ7tgXGIuf459UAF2SQTteDFwMgnaxxrPjhwvv1/LJBvyvmxvMutniU21khi1VGQ/bEghe25T4cpcwf6w2f3MxGWo+TTDE6jE0pBhdAXozNhRtSpbNcqYKa/LsEJrKwc41A+WhF9qyKVP6OMoV5jxzOFxnywELk/2mb66/x7PZPJ5l2ACnqIWJ2zQuR4fqXAQDsMJd/BIoiH9c170a4KKCb9k1EFzUtPR1JdUfxSZ0KXE/OjLqzFGa/4zxOgWGPpBOOCkLQvZf0vhfslwSiMt5jS12tupVpqJ11r274BWwG5KqBa85m4iNGENYex4poM2fnS+sQNBNkWO1/5z+tR7Xc41U57X+1IOi5DjnrYw7d/zwYrvweMqnN/FNgjXXXIrWKcZ0o26O6ssZ5TDAyF2NUd5S5YGh4mlQ//7wxYukXTZQ/UwEevsw6RY15AWNYZLH6lHGU2iDaB+9L/ATW7S88/kIC+IEAbuqd74CLtE4AhZ1HSSqBnjn8+qFWomrLWNaqU/TOFNO7hwCqG7kTSLaW7Hx2W87dYwmo3QvGzRaHjOsInuw+DXwTnY9BCreTq7hCOtHO1DSEfAJr6Ki4L345kUTrJDvOKxS+Gx7Kdl1LT0Wqol8lONaiUbiTppN0tJMBz7iVtuTgtLqxaBFwOI0iP+nvZpqTfuVBlzTy1vU2rISm6unHgNYzlAlCNnaOV9p4T1/z+OlXpNqhOEU7JJ8nu9/cQy6y9APjwKA8dM63U0QLpbHGJPCg4zOKFxylva5SLqAyQ257vc4EK8NmlrdVGtD8YkZXQIsonX25fcQhsP6T9SkMALMpOVxufDGSsaqXVX2uwM2M2rHfV6Cp5CUMkGZzT3VJU20cuQfqPBsqqDwi0+ibJph8FOamhEm91CZc1GxJj1+GKDYEKvHrDJASPSFPIhVYpuLbURlIf23TOeHecsxzVs0BtagAxmjwQlSJ3VTTbewCowhQNrJWPReO+XUkTC7mCh3BXpFntHtl9id67MN7ScBcuGcmrRmruoRTjDdAvn74GYMBg7yOH1wzxO27R7342IonzWThoyfk8CNjqspzVRid/wvJLwwG0TnFCjjYVbBaOzA+hcN8RJiI2WEpLVbq7yUo7pisjrEUwXhfG1jBm3m6ZSudV1mpGYGHfGQrAOFlSY17hs9MF4wUtEdH4mqKAyTwwZZUMnBJg1izgWMRMEQDVEfm3SZXsjzUIcuAgQZlijEJxchZUbZo7PMxuXgEHVM6ntziU1bJPSRraDBcsSW6AeCsUNZXsDQdzkEwwbhfs+OmX8kcPkWLTizu9l8oRo2YOTHV462i6cMWz29dTjhZGwycrBJUbfoxv1sgQTDqGsxaoFBRX0K1otOhmZUhZUSuBr1dPBPzMyU9x+kHjXxBR9SP1JqSk/PWkO8lgOqwO7deCABfq+BU4xcYUtNldS1LzNbndkx/tOoExetcGMFigVmKuxWYgQNYalKAQO5UKsloYWyjMfcD8HGqOUGJvWTVzwrPRs+IOvaHulot66lXtbGnSP4onYjqVJcdW0+yxSk8xf0VuvInF3EFFYyzGau2WB9SZYM8If8cTNKJ+uX8kdG3QesX/6OLv2IqKtZsazWrYv7Rdcwhko8Yu6pJNSEKQotS+m9arD27QKEVEskQz1dPZXakiM8ghURRaKA7/IktHrEuFKE7czsuuReMoh3F1cp/0xItnJIuMFkc8owpukSd8DgK2XQFCnzBeISgYquG3tr4I0poPhtAej9pTIzS6etjEo98VcUiItrzF4R5nYE+bdgnLf/Jt7gEYaAzH0DCCem56HyX8myc7jMvo9OdJ/7MhVduK+AWLJv2DuUVV582q0C6GVh/rkWXviNd9ssn7is2jdN9GzCFlmRbwv9CU2Uoh1nuwSafZPTewSf2fC50vcH12SlxgXjnPK7qv7BkS5/L/R5AjSuWnnHQ/aV7ZfMfMWPwRN+7VlIpbyK5aAz7sK2o+n3SxZLI9tZ4L2zExg1rI07FhExwk3q8aQ/p9ZeFT0UVF/tJ7l1++nMySnE1SUOMafG0xaSuzhL8y8hWHpLWd3gNay5iUvjSWm+FdVnrkWqAiRR3A6eZr6AB8ZO5UHSHY75EPaX7bHLBv9A497V9FTkM+g3v+j8L0S7eyizn4l8NQXAIVBbCZtaJVdsoMNmwwq5a+0C/0kgRAYlvnhiA+5lnUAAkSAfVkyoBn8y4mQ7sNv3x/32/6geELWfDpZAhk+Wew8qTCJn1ESVBnGlyV6sRAMVD4mUgDBw0ItZB0vSqWAFrgoQSmTpqf3Z4flyBYVAk5RUZRNoS4GfxJdqCXahqDqVKmEnl0IXTuqsIo1vq6ksGK/xKsQ40UZNyU6X5ZoTLNQqLj6LNF6ieehFJi8Sv60VBT1w5yEh5P4dIj2Y9yRv92ePjFc8d6ozi2fwY/jCS942XeuVaVopnv7fG17RNkCSpQXvCHzoxGfBgMugtwfvg2or6Jo5YDz6dDxnt3FEZA09m4riwU3N90bgtnIkKe+lrIBJIB6aHWCSGhxC6lKmBIbSCHYrIMnJ7LkPHfxkWqE7nIEhV2bwa9DiYbS6cJ4cHDilTJV1DLXq2MZ9+p/+wtf1bf4+/2wB8oFOelt+3e+BSTrDCZz6/nxF50YcO/wkZV0IQRN8oa399AjCH1QCU9hHYUNbK9RcTW8DE/Fx2haN8ZF5bYBAvnAg9DwpOm1fRcI2gLSPJvJ6qlaGDZDjT4PKO0U5Cye5loFTa3i44KBYG7IftpdvPegXyzBnY8Zdz+k6MC3QeHdjGWbqTuDLLm6rc+Ay73dvGoSbQPUoiSbWhUAClGcRigMs2Mf2DORKoMg3pgGUFhZykYB+t9yoGRWB95IU7bDHWwl6IJSMBuxMnCjiJkVrBYov8jZx4jY2+YEuoyCHJfWlyYPbCBGXtoxTP527ys9+VoSQ/zKnEW0sWQ6AmloKKnE8yyDEKoHnarADz2bOugptMktvZztnwg01CJ2fMhV+RC4hXIHTvBLK0qHkV6XDcKSP5ZZrp9W4WPYfXVuqhJMQLh3ubfIfwIVIEHf+eKFILWrMgcUQQymAw0winiRsZpiT1xijQrSZm1iMga3LhkR4FNaFhz9XbKKOTlz7DCeWtTuYckcYJce4WToBO6tY83B7u24cN0y4bYjlw7T2QeLfhpuzr/K3KgSEaIb/ya0RSZxx7ykZB8FFeYGFoIY3ibQB2YvYEh1JvjeGHfb2GwOzLIOe9AFtAzDVVwSOBOo5Wuwmimr6UDwmUqLDQsfcVwQsnM2nkplNuE3jUSnN+vtCE4ykwUEdvPcYgTUiwsrU+kTgXsp8lDpydHqHtyzKwOUBI9OJeJpMCQcC0dVS+EKzkM3VCJPrx8AXHwGibhwLXByUcZTWosCuUXSEuXmyRwwmRVNU7pm4nDzIu/F6blv5Fn30rE/Vcaa42UfI3SAqBnMvA+L+xlz90oKA8b3y6ao3sej7kmfUNFaSOxaHxCTIRqV0Y7TgwHdvnr3R7KHOr78AITzaPzzDlceQlFHJQFxNhTCRsaxGnOaB7ebhJdM6uGpMeICWapY/CQ8RWbMw7/vZM9jya2u0rgkLxqPFpyab9095fpQDW4Q/UznMknEikrlaikqfiekJ21Jnt8+urgxA/TCvEnDXtYKN0Kn/OlPp34Kb76ZhvIbXW+PY6Gnya9SdYCfcvo9yfnMNW8RCC0v3nSJcB34xmMxyCNtI1j51JEPUAU2xRtIN/yWya2npY72ZcGEQ6xGF6adUn8O6H4nnUSHF1FjuMhsRz+bYNLTXqtcTwrNLu4OxDMBvfXsU/CX0sp7gUg4aejZPpp2HId8TWg0DprQMBy3EGpEtnSlttsPDSNUrgwOQfiDWqp8dtpTKUoBbtYA2+sGl64lc4MLIDFVearl8revPy6V4BlDBn6KcDxUT4DRSQTPZy+184CUuk6mdUd8INL1lPiJo3HYW3jYH+VMyZasOEDS5M9Uiz6o8rtrEn12zrhN7tgyXv/rj9c7isMRXGey52k7vDOcyrLGcqF8CG+npe8GQTreUFlw2FIm2e8qDTRbWqbGH/0nXXMYc9dvEET9UmWvefbH4KG/y+cyS1rElR3KiefwWcjq572Gv0/05YFMP1699K96XnEcRY3EDi0MRBYabgsPzZQ9TPhYe+PW+ycEK0ga1EIPXEN4KV78M/hkduVT/6AJqCYoRypBhVrrZnfNXFeN9TFlGzs9O7ZA+RDdjrW8J+7r7QlcD6Xj+J8UYBRalkSuBluG8Rub7ZeDejS2DZo7d/lH7wfX7qsuUXeuOkCcdo66OwyBC5CjQfqLjnFOnmagFOSSvt/kP+KBcYdMBp6GnP5xsPnlCWPsV7zXTMdXjffytb97J3g2oz5nvtp4fNF4H99g4Y9n6dVF4zkn4TelD668Z+NPpDcrikfzTiJuK7t5V1elM/qPCnn2eolgU9PMurzY8S12brIZPf3qWN8tumKh2TRcN271M0KqV+F4hO2HzeQ6vBFegUtXkrMSi6q5wgRqbFMFvrtURp3rVh1PLddsxjEi0KPGuQR+XhWiABNXhsYk8MR4fKQwqVdG7ZHV0NaGq26mBmWBpYhp+OTz4MlpsA4BqQrvcnI6fexxxrWMizEX/P49+7Tji44AhOUZX1BLqSf7nP3pgDJNehy6fxBSaOaRbc3NiR+UXO8eXWeWUarSSEVYYN6ZNlA3yRz8pstjjbIf499Pn6prugFv+htYESOvMolxOqxYj5sLO1+uKdFH/QVp2SmuPNerS9wrPzfYe5aiIg4F9MUPTtTDMSKLSLWS8XojL6ulDsMkt6NejKiHQr1+hBjOVIgvdJhpgNHXHhlMh2d79Bza4ILs53RrBDgG0t1maWcOxdLCRsnIyegYg3/727EdMn46lcjAm7lVy9BMkIVkwy+L+2cukYwY5GZIeOzVqCwc3qv3m3CMm2K4/wkyBhMbXwjCemk/WPe684O3hDbexghO/RWVO42cqObjIfL+2PRB3wQmSVU9JL620eyq2dda2zBC5rf193cdAHKODS9uTJwZcsHAcEQ6NaU+Q6XlnYE2qn63jp8cdsH6EzEsakpDmrqx8GJAp/TjuCTQNn0C+oY9R6UaIYmERjSuRRDvUaIdnz8zsTV0KohAJVLIy5L+d8KPyz4O/NPTdE5WdqVDEfeocLt74ARD3b4tr3a1Uxb7UPjfsZPMiv7c2iRRBXYk7Fw1Jq5ZyuAR9BklSvRoyLHSrrYxr5ivvH9P7At4a993dYqePFaRmUuxturj3y+81jlmY0npNamUQo5rspe+V/LObClBiy9uQi8it0q0xbrihPJ4EZepyRxEzrKVKlNULqRyCmWcYa6k8Xl1cems1BgGOys/ghatFKQqCGJRv5VaJ7HFPknpTjdHCcU1PHKEW0EmISIfVcNGqxhqqeUKLagTwjHkYJuEse7s1rGlDctWiws2gEhisKhr0qHnYSelH62Bukn9AW+6ctSqYVIw9d2k7yAbp+bp8zcfBvwXe/T6lngrIOPbg48f9FoxwHC2Tp5WSesDdvM2qImuGLcpp55o59fSWvN6h0mKszGfOadI6nr6cQHpb3uFPkPFJucnoQpDU9+3hD9ExSblJwbut/dLveYOuvMMSuQp2TW7V71FFFaRUMRq3Z/ptfbiSJDRgrpkjbwkDzRW7ueEDAfUmF25SvUIScQ35GGMJRHujIWBEdvo8uyoP5VawCKvy4aehZ0oezMKVPkisAcZ2OMe/R1fwibRYCkC1Ke/So2jYB5iqvy77BULSfhw2HW3pvresJn1se2ok2TbKXTrRNjW4L4n6pqbgzrKRysXnBuuOCV8WFILfDOqFbBDaezMPCGVUkeG6B6OBufzzCZz5klpCbFviC53QLgn1nlH0z1SJ/twbqHEouQUqQfZk1PggoPzpWxV2NwXm2AzAg+fHIVPrgiXwTtbMxOh+0r1YJ5fU9n8NA0JnIUc/2xQ86+tL9fD9NPVS/+pF2UnUJRI7NB8f5Sw4RJttFdyNlCmCZrUF9iTIzp5F1bLdVk1IFUgwsJRBzR6QN310e+lW1JLgnJLMzjDsYbQCvrfdC+yB1w321Gtt10Xs1akrexz07rX09toYDyMGyDBfIf/nfApXBTfqbx+WJ7stbEoGkSJmQlNBcbhStME3H0tG13qvG4127/Zer20YFXayhE1a2KMb+WNiyeUjS81rxN4I1XGIUnwZUK/AOsW+9kN2jo2PRPixl4QWI+WnDS7UOBCGUsdMvdFMBC4aWAbbBDezjGwGXEEzENsSI0VpsFHwMNPttQyKvbmTPdXZdntaW3n8bG7rVYCd6TKxM/fJeimoRaiKG67jj9R0VscfpgF5sHO10OWmYZDLMNfELKn1uwR2tR6cBZnRcEqTr5UP9iRX5i4sDp+65suPFx60fzsivrZzLOVI8+GniF6IPrrEezIFVL008w6+VRCBf+ABtd+VD//elD/XeWlbF1fg8IoVZVtYXmp+c3y/OfEYd06S3ioQiVa3VDX+zqy3I0MkllcSl6baHmej16vZTcO8yJ8NLhjwjGLe/22svKiG44DwsBGgtovJ2RZ3ggAOvkXberOrTuvfPT0+bu3nuxN70HXcvYViG7n6O02YD0+zMSLqbfTb6SegZLW78vmsw6JF4M31w9wfWPTi5HsfJYylgjh+h29uHDZR+DNUx1Or/NdvX09+g6b3XNkzUoNzLnZWmB4vi9KsA6K9mfT1gDxw7YJCbDdjCb5CJrcWhgFJM5W2W2o/usFYnyZQrZM/jCxADa5exQn/LhiLpPC/LRvMhsUh0nArUxDxWsAtqwUtpnxg7qpekjg93ibCAp88ueu6kO26+KCVVkrZ6uvWxg7b7BNnIIiFZgfb8x2Q8zaMjd2rjhY726k0nj8g21G84F8jzVpu36HpbGLJd4BMvytd8avCiJbi2Ci1pTq6CZ/8srn/SP/BG02wSbVDgHBevr2vKyxYjaC4B89SA68E9ew9Hlb629nLCm+DT+eO/e/FEo/7X3pkxm5/WyYfX4Idfz0hvL/warBw/oavz516qPygU9dYiEtEZ/TXtUcmzHdyK+2CEZz6+s4k2mnAi6Ld88+XWQPpmsUwtHsk/DbSj3+xuE6JNVhlh3dMN3VLjhzpPp+Yr0JkrJzrKPiu9cqMn5ZbUy4UDAAkxMz9IL6wYHgryDGE8rCXUsx8ivyH/qPrJs1YeKhUGvIXAAP0od3vYzciX6HE9zXLb8b0snKJF5vNMj7+fg1nSHzO8ONuw2t/ZRaLL0moddnMMckahTRBwg1CuyUe22iOG5EzkSBIJbLNYUP+7QHd8uODhm2cdWaxVx2UyGL2GAisb0cS3y0CjWNM3ddMdVbrEtPK0lJSSPoQktdgR5eS6MThl+ehbVwaREzjy+US+Z56iX4IKR0Lq2kqYyZo1Fwu3Lz/XmItjw8IyMVhxMUzMT+G9edD91Orhf1J9GrhYQ0ZRmrJRvnXxbWjybzcPkVTHmGylcW8fsEHr4aE/AIol+UsLYay6JucI61mJdolZzaRDKn1Nkr3PP/3t9HUjT+b0W1+h0JJVsujxb6P5HD3st7KrnRN3GaKxrMU2cWKolDSeuewv3YfHU5GpupTBGWY8xhy6K68kkkDxL0x5R/b1iaP0WfX6jLtgQvM4ylc2oYf2fgDgEYduLEi3sQf/BG5Ysj0hfLYA7thOHQqSJdCMbZH9bLk0IpunyBLsMStEQ3Fi1Uh+yzDmiIwPCGmXL6JbMfLGJT9vW04usVSAl72zRxWpCUCimyhptmGdZ0laAjmVSOpRUWtR6CD0oJZpiAy0ILqAJyZwgzJKGNHbEWrZKOZFEbCihZmnpaAdhR4FOmKVXIl3dFcGAmqJu0Vufp7vlGVJAu+r40pD4EOgS9sDX2thMkkX4AK8faUI3xffyHVZ1zeTqcAZwDqkzc8HC4+ka3v6CKIbyVdTK2k323uLsV65MN0hKe7lvVOcJ+0X0F4hKm+wfApNBDLx3pE1u3S5LVWR4450nu6gm8qP1Bf1382Lf8sRVUSdqQ/eir+BFq+kbyrMnzmLboTp/04HXJ+qTpHtngUHJ5puTyWb9XP3lFlXJHYTtsukPQAyQvfKVuHG6t42KJzJKwXSLPHammfeAschhCS5R53cHjREVufzWF6BSW+HoLS/2Q5y2yw7jw1YphnIhryMGdab4tgaFOMwMBYepIsABf83fwEjbPgxTW/fE+vbrQnMwqasnNNRShPMo7Uv+1pQK3gUQEj40j0WbZnffDT/g3WkEWUmAzpK1/sPOAO7t1eGHz0JlW4IVzH+K0rO115KK6tk2cGWqDkjGMPJpepRde+vx8ZAOtkfoC3gQmVarMJEGWIDQbiywiuLTW1g+TQ4VnWhjqhzxfEQDjHCZV9uTzNS1mlwaXVxMJtA4VGC/YahkhTEvbM0vvcGtgH8aPgqGTrzcgzqnSBeeHagqHNt+q/ws1BamdJ3AHlbGgqoXyB0WwEcDmQ1edZ1bDFI7cUSwp2rgi6+nFlITuBrNis+KJZUhqmsIdehnIQBQVy6Hvb7l0jsCpGAUbRy9og2dO3QSW0l4sFW1eln4h4vc7iBmXfYBYiiCnKtz/enxER5YUV+o0IO31/69C8FcQ7QqBM6SMA6kWTIIN5YeFRk9c62EyoYMvKd+4KzP34iUh6BwYKy4xilwWycbo3aEPXVkInqjKDwJh98IKJi8YEKTKI0KpFaL5KGjobRdHF0V6Tx2Wi9PDCxPaLlkiywa2VMK7vSrUY87JbvMFCjQH4XXj1rcXAiAeLoofbR76//NL2xVnOhpnsvgdx6p4V1vVMU94Z029VpqoP0uRwpPmjCK3lPr6CSWhHs2ryxgPWucZaqeRAdCe2+aVQx5hjINkGFqcxCBkAXo/jxJZmUFPN1aJFhNkcyAtaV2800fgRWfzEdhwBrleknWZdZ7R8CtZFZdRiCk1UpDu0G/C0W5NozPHkNGYuPhCDyzwdsjQKX8yhcmirEsHnoadFF+1eWlfTJ15f18q/NQgMrLLl+FaqFQMY0UCQy6mtQTlxpwD3g71rqCPtzEOAP+CGHaKJTu90phd4aW+8Ytc/d+7T54zTquZRtQ9Rwy9E+kZSEsx1JH5rCbUN8OtQ6FQ97zXvFeaePwuSp+seINxIjrvVtap6E7WXXG3AcsPeLA11iVIHr+dmHbmvcrecXx1bqN3a9mDKK1nlmbSp8aIL1O6u85E4du9A/LTgDnjgITau7IfN0HbpPWyx3crHtvkH/6l9cwOzZyrst5erJgG3a0USUlV+1dc3yoLS+RxQOA/mGWO7rH1fTGo4hXkuWC57NyolbKbSWApzCtxfXTT+NyN0itz7rcfeWVBpDtXfS13N/3MAX1X3ELzptf+8Z73/fX5W2AFpNandhX4S8JvgT1vB/csgJs6x0zMmEleUxuB22ieMmQgRuhd3byi2hR68kGhnzKFhebgkqjJiQJ/ZQoTwwuJtTyrHchCV5PBhKhDB6JBOSxCaYWR6V21uF9cPrBB2Q8EAoHptEpv2JRfs2fo2ObOl999eR0lmbQgEVPB5Er46De02j8CjL+7cgkbhNR9+Z5XHGgucLL4XBQJk30W5U0ABBjtabWh/7t/iH0+gZz/5NHt8eqPHs8NReIP1nXzBML6OeKrkT/6m9zcR7rcv/U9FyEn5IbG40rJpFhRWncncVnRQn0yNHmTrekXmnFFurjD3FrlvDi1DX62rfiKqdV0yAfY/I1kI+LkTL4yosnfAWQ+azUjx/czTo412sx7b5XmwBL1iH1g8Q2qi39/b3SNbxTI6NVp5EKcK+bLXU/Le/jhrqv35xnlCWXxIh5DmzWInClQVRjrCDp8cTNmYfp2sUakjwAC7d46Cur5Vve42EdwBCgCjGK1WpEismPtybAzIGXM08QL+kRhCTYa5bNY9k8Jmn/JE9iULANqreTmM8j0Q2qoorGdLDShgmZ0Ou2g02iXHRL3oESbUwPbv6N9dIDmtJeO2GE2BcejR1ie68mKaXYQ2G6y7SdcMrrv0h46nhdxLQmlgZc8UQbquL6T/CLKZ2R6vA+8Du94QC78rToHD/5hdM2YwrZ/iLRiXTLhI6us9Vd7pKZH3/dF/Q7A3vsbIPg8HoNka12e2zBwuYvbGFR9m/D5GK/x7LmTnZjtW7Bf29t6WnHqQb9f/+dM+mas4SE5yLD/0/6LfeecegMQYkl/AUQ4qK7e/VR9Ozvn7qS6xMs/O26AnB67KHufeBZyZbAs3g9E0pSSFJNCaVzjpP6OEYf00TQtEOBQ/SgREUgCkA+lot7afZORIghi3qnZTAD9dFqxsnZI9odU5wBk6kiSbTyab0iE0Z8XkntErnUemx/m8Hvfgv3vfYsleYHXVbgZljA5JmTLJvm/IPgT/bHLEs+Mo1zynW02XNE/x6KES/6s/Gixi8aAsOceuAZw42p2eXjZHB23xNNyaS04evqFdhfKVMMvL9sB/xkh56AZZmstWDsH6hgTgWIUicCsJdR/gUNYS/4fPBoAPLh5bYKDiJx5SliJuVHuV35NtRpKIcCEg4LFKL4rKznzYZPFaDAuqtJGFqd9KTHK0DaKW8gKpUCVs1B6z9HT35RBAODhs8u39w9QC8jUZ5LSfg8tS6WyDHiZrImWrXHy7Bq+aV05OEVTmsqCLayOlDAMaKjedUZdxYYDyA8x1NNg7+8U4t1dRWloeTGep3e4CLrx5C9Y1IzC6ZTaMhAAlaa0vNu2fbU2xlqOeDXBvi+wKJNS84Jjc9Al9+0ouzLBGH/7yJRYh4azPKfUJWkXe2aAwDAyI18L3ZJVschvHyqGh6Zx0s7/gf4WK5HZ3K/qWiuJdH5Dwuc+sF0snMttL/zhZ8e6fz1fgfCT/aDH1/tEbrosJo88TlPtQQP43DofQQsS4zSISW52u8jyTFgL5sakHZZhiCkTAFgE5wHM4XGXgf2yasiskPsQVN0gXRYhO87BmnZATeAmdrAAcT2UQLrWbhiPijPKbXdT+34GpQvusuNW9SEmXFDEpIXOPgc1SJeBqFFYx53W+3ht9IaTRpaShJCTa62a2v3WHW40mJbhnqUSlYEmitaRELdlx7zk8MuZMUpBN9yRKplAyT7WDWoPyG6HAOUNRenOvePGIIJOJCqQguP5HCv0TK348C60Y6JhGlMoPix/XaRJxEgVDZU/HjGXxIiwf4wAEVxxHKSdGhNWlCsfjnQoxVN0M89QzhLSRTKIgawKde5cPcUI46Lb34gil8fOwUmEKBrCXCjCsGvdbqKIlKCNJGNko0MWkA9Bppnr3t9bC4aUwix4tqdlGE8w8wY4rK2r1WQCnlLZEVZvRG2a6IpxZRaq+AlaluQ7fHqCBCPrfXRpOPfgNeTK51FRvHz7FtwvFsLq53d3wRPWKJN4PsX3fZ9PlJIM02otAcLlcZXOeGYsve6IOGdS5GGTCcOGyZqkDi4lT2G8ssgmE2/iA/B+nifecv7ilsf1PeA2u6k+920LALnxwiuUz3XGquuiBtYs8atvzt/MZ5AnKjCMHM2tLRDHSD8z9SY2ny4yn2PdD4O0hYr4Rg8rXf7YtMkZGuDz+Q3whSMnaCrjCJewn6JYoMSgLwFpj1wQQ4CRdWK6aMLWQs8xhNF6RGyfqerHy3LIpO+LApxTfwNx9G85v4lsNrzVrLI2y8bjYjHnvPZ5OcsppLkrw1tGtvw+nAS5Njuapk/QcgX8KtOkQu/PvdcfyN3b29vV3t6Jm4W/iTiAD0+3H9RqPo/qSCWpaWCADSPiYivmquA+tt9cVgaTZ0+JL1uVw2y5oXncLjf/9/EJqbxrcGL6CNsVHtYLIyRGX4MT6n63s7m8/HLYpI/uafD1/zP3nZ4Y1/3GD/VFiciI07eUlQiGIF3OpjiGRi4Nf9YnbojvmiEaDLo4lFKPMtO+mShuZHjhdk2X2DOLtol0WohfX02JYfb/l5uTcmALb+wMB2VSgw38Pl1eIbghN0/9/e7kpLxPU3K99nx4RWPBjyfdG2fCBafW/PQdOu6pGTgnBB77uhNyrNQz+4eLmwugGf3l2603AT3/eBfB+jfk/7uubx9rYw/dGYAt/rXAxRdc/sH79caX3lbbX8uum2mtYZ7Lz7aphOTMesIes0SP2K+ts7jzjk56v2BxAcwc/7uY+LL0uBaTHpKxpHL8S9qdAIu60/9/118yMycpHSqzWG8NDXe5d/3Yq3PjVGVF23Y72LdaEGu/6/PxJv6spuv/ZbFQLXaxwhJ0uR1ZFmzRdWXLow7GUD1U/0vAB0Mj8MJlq/teFiVbVlothOIl0+jBrc2DdcUbvMIfl4l6deER0rAEr6VZ6m8P8Fu0ibttSw1XwFeLFNFa2jhr/7aXqtN1Lo6ciEhDq41ViREgmo61Wh+Ovvo/Bh7F0m/LDKusc1B27knMj8gQF+JEhIiqNpkksZVyI57oLOlJ/RYsBfi+8edNbUFpG5u8F1lm0upNTcQKC/xquVjDXV01jdiyrt4EavS2FioicyMIK9sRctXURqJDhSy3TjxYpPC5ZD21yDBcRNBgrw7QfnIjff9fM8aXnhMYuQNmAMTI8S4OpGoH3kZK0rVd9i7AtYRux69lZPj+WoE5Hl0rYf1/rcJwg12rMd7Sr+nEnMa/FzsAMhq41g6Q0FTeUQeZBFxASyboI4H3G06tOs0aKMkpaCEkSugTBK7iSROmOq5rIOEoB61pCUvDDq3SrYSdYOi4Vmi2gWYiRVnTdWKS6QCpyimJzN+oEE/STPWQcV1bG1WkZM/cGloaB6R2XrM4U5QZTYZGuSrKx9Yk8RK60SxETE0UJFctTonLR/WXpml+hSurtHcSQus45FUAYqE1CmK2dQ5tvKyu4ghMy33NTAQ0AlRXhRagrVxaBtlWKyRsUp/WCbpcazgA7a/0lc1J1HyEdx7q3/53//7fUeFntvE9tK8hGJux0eY5Ix3A25czdBbxcn4wBmLBU7bxGILe0O4zwt1L0F0zumoV1w/RUbTLItocYyYnYXTSTp1RnNjHWuxEs41osgVwYG1i30rbsxJaMws75h/bZqKe+5sWV2vxNK1b3FgzSa7KuMNXG53KgL7S4BQGb9PIEMVQD26glxep1G+jpxeiq9VcRwuuTAeuVBfxxRpXouF+sdqJFOBXFa5QhTlC1aWSch++myjlKEhFPy91HKkzJyttIiNzLDl1TPmGJoZMg4REcjQx+FSRo/DBkfkxFxZ6cohCgiC4Fbw/AJcjBaejCIs5LWU0NGFQ86i6fvrkdFr1m0e7wqXqGq4GaooBlSIFpYIDBUXEymgyqQNSJYddl3CWIQaBYkch5Bsh4AvAZxOhGgo1jpUdqHGRDH7oWZSLTVZolgtLmtLm06s+96ezTqa7s3amJ9VOdS7v7kxFTGvP7vGso+n+rL1ptldtOauOqr3qvzW1GP49dVd9gED/q+Qqi2cdTLdnbU0Pqq3qnO9uTXWRq+3weJe+pFc/3Gz7ZdSOqIjXX4Ce+9CNwWwYFtDlvcaW4sIloperb196CWO1Pl7d5H4WuGryibkcmnwp2msfqfuVtfYjjoIla2Io88lZx88ERC8n8jHWkSpYqkYO1FyVQrYbo1IlvTLPAw==) format('woff2'); + unicode-range: U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} + +/* open-sans-greek-ext-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAA8cABIAAAAAG5AAAA67AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjIbgS4cPAZgP1NUQVRaADwIgjgJnxQREAqCRIJJCwoAATYCJAMQBCAFhFwHIAyGFhtSGqOREWwcAITouwD4q4NsDJUa/QdEIpHMeaU3n65OBdsW21oNde9P2OZ1nqHyF10gjJBk9if+1HcfKTHnktZxg8oZVGuVUjsdRB9BcGmzl1IxoQBFC2C1CPRq+CDVvgu+aS4/tPz9f/1ZSkPo2d2gAk/nhWWHwYALppnR+17QN022CnGJStdcBf+UoTpVmSvd/3Y3Z5E3BPP7E/Yw6fCbCWISQUyC2KElTUfKP7TNL8pE1Z8239qnXTveEPWIRUldysp6WtmW3u6PLAdW9ucQ/s/e4AawA6yooumBDxCrXHlXXXlFXac9nQM2RDFrKwF+qsdw5eKilVEKxm0f/QGhGIuoL2YnBaHniQDWZArHiEIw/zX63IVju4NHRgJvXKMpAN5ck5kPvEVmugZ4m7TyIuBhAAAhQAFAqMJ1gvE232pgiSWAOLoRh0Di4xBdiJwhxJ05h0LWjHID2O3AYaqkf9aGnNxO55avPwdK5jFDpbYmPzlOJV7R0xf4Al9QEBwRfTCTDUcTgQVsmzmXPoDZcGJm4m+UJ5NhXo2/Lz1kFDIEteBR+L7uuH8rAXQfVC8AelK8c8huB/AQIZvR12QJfRkR6j6mPAchgKp5TjkCQP/AU0OMl5w5G00DUNEfxoALz9MD0UQA6hfgshGg7KxhLmsnBE9kOAEHubF8aG+4bH647aG9bBo4NTDIbQfrtJodKg7Ia9Fv4a7/1mRMWeXJGwCrIhVLv4RxqcKym02fsFQTl+09JttS65lkkYm0+89uN8NpyKPVqMUcy9VYYZZxOkw3Ra/lcUNXsOCvy3QtboZ53aGuiXU6/mkTzTbfUuvU6jTBDEusdhoyFanRRGumLJWadRpnqrkWWm6NGj0mmW6+5dY5A+NMMVNl/q/PORq005pqlgVWOAGf0A0N2nSbZHawaCj4q9ZlkmnmWmBtTh8s84cztcSdmk+v8B8+a+aM6V2dHe1trS3NTY0N9XW1NdVVlRXlZZrSkuKiwoL8vNycbJ/FcjGfTfNw6+aN65NM/OnJ8Xg06F+7euVyr9tpt5qPPVja2V6h025Scm2xs7KsUpKWXNtdWdbYKKEJPwQHHcEPvO0NfaNurBXDFh6CG+mWfB5bYkU6lOq0UGrerDfi3iDz1IjVxKtnjDGSZ83LdLmVgMrtsMPtIy+wM7OebRfLiN0vZQL0Y7iUYJWxjd4k3Hh/Wf50GgedMBrHlv2C35QM7I2NQ+01InuZphaopCKHqd89O+UCp6bMw1ZLaXdshBVG0m9UwAv8+fbXCrAtERTztO/jWI8VG9zEoec3rk0cKyyJFMOhgcvvxLZSTgTVVOAPg+T111Hmixxgvx7zPxNSGaqSFuFFBKzvPcIVEZ6drvbqvUPPdIopPN3vPEHy2dgWCHjfwHmAkKMoz8xzHGWUEy1egomcyXX5Jcx4eZ9zWEHALYxsgtr5oLd3pN/y236PRjQ3IVr9PF/4X4PSQ/glwxFC0PnDznHdJX7NFNri4ZN1iGedfI9agSOVVeQKjT/tuBX7H8/8Lxns41yIs3Q1ekCl3Eh0wHHTLvoExABgdxDDKIgUaTf8yPN3BWPFGan3Ywv7guR5YVjStGnxXiPlea0Xy0HW3sSnf6o3XHCx2WFjS7j0qjYh4s6Mm4HWxRDsVKeczE5ouia4tItKzUip2zaX+FVwZ6KIEwrWb6o3E5LK+p1iUUVaVKlT3lJveRugW4EzPP+KG9ygu2/HlqdE8H1/ZpaSw7bwnEMUVZMEVK2Vu3WlTI0EV129Uu4Nkr/m+hNfBZxGMWyjHWsun+XnAXVr2EbyjcW2ukhVGmp6z1WBFTREqFQMvO92zmkOP4BgAow4tVkm92PGmY/ZJZ7zyCf/dqxplhuaiYmnZ17vrFfK2oE6bX2Ekqumfu94tgz6FxamgafI68NWt7OeTWrJzMyWu1kK2MftcQ835ixMK/k6ICqH3tJcms39Qt8vhHF53EiIOIP2mG/E5JFPfq4T+6tr4ZpuptMDBD8pVutI+WEWNwxuiWN7oxxdQ9Hm/CoDQgFrQUvJJNW1OYih2h8vsu5w8lNjBcJpS2x1xclr5dyuxR2n9g2YgMe8BbFJzegOURAKAYHDxpqYyTot8waGQ6/u28TDiZknl8ej/RakH3VBH/PkZMG2gvjiFdYAlvN9BXcBIw8wMRShx1nlZkOKIB2U64D8pO45zhewVZ4VKyjPqVH0EGrcbhpshWaJ/YnO6y4IpsCfNYtFTTgfHCQfxSnBro+nzuFGSUG42UlwbKlETapuk5sKOkJ3JiOvScgcxCx0iOQwh9sund9kbDitvesERhk3mABDj0NspGeQPe470MyXCeiABI9kDxKVZRGxmE7oBW+t0bCRQMfmWLx0Rzw2WBA5pSXybKnMfiozJpX4GcRgzB0nxVbJorVJJb1ie90hJwdRfN8IPjC7mKiejAOiLnhBD78S0QgYdcPnnO5jiuFgqM9s4MmKFIFMZigl1FM8o9H4OLdxB1LLiZdSx4wMiZKZdLk5Ls06Uzq/5MFGMRz0njjLG1LbIv6+Z8q+B5fhWjSXjDdGcUc0Ow2aDfY4mibeWrabBmDUPyccdbG1L/res1F3hODZIaSbrJqQawruVABua6BTWeAyIC3oFP9MoE3x8hXi3olQ93rGgLRPaX8vzNitDfMv6559D3jZvA6jQyBm8Rs7PHEMGPv1uWty2aQcnlYrOQiZSitH+Re0aG9qMxUi3sVEShNCOJ97S/IyBJMhGEoTHU9iRLoEt/WMViup0YUAoxXtqutxxn5tYxje6un8QS91mTvCel5Awq9Aeyyp8M+OVw7Qz54MVlzt2BsTp1VX5V1Qlfj0Z/PmJbYJigwn3lwxkP8uJaQj+MAPP5JFakCK1rOSpZupCh/dnMLexAfsYZId+ctZwDbOR2FYwwrxyz5irRJjEuqHjf3a3HVB4qiEiF/1aZfbxWbNxA2ksdp5Eqg9hvQ7ANed56D81Q7mdUEi8kngtauUYzAj6lm3KLR/kjUd78MhQXaJHUmJtNyHUTlXx41gwJOQ/M2/4855BDvHk+dBRGm/G2bs08nIXJLPO7iSv3b0ZeLYf4Pecv+CihnWWWdTbdyHOYp2vu6u29lV33At3qvk0bKWbucQpS5sFbadramDHzHQuRhqQOeb4aFM5e5le8M95LcYZZ5LpF9Xrx8QxXyssY8nCPZA+hUBVsXwauCYhYvlVtpjHK0tHcHN0U4B1vi0fOUFMX43E5Tj5Bl/rw2BFy1I7VHojSDcUVllZ6mdVT7Iuui/y1k06UgDiwLe5c+tP3oUcJO/sFAPhrXXPfUlgAKu3Ccx2FsXR1S1Ew8JBkB4um6s7M+UZeD+MxkJe/8h9lgXDAZZM9CWn3ehBarEVov2UbRVZ2OzsygBEkltAJ9/o/s72BaGl2X+PbWJ2nhbvi1Bcz+yTIgD48ZGxuHhTflgQGi69BnRSQmYiEYxYt0tNcJYOTNlhsxXUfw3pOpWhlaF2uvXUcuNZQGD3mdU89VadC+yiDWu62unfaH5/1od2rA7FQZ910rNO1KwcuHxv3QfND+fVE6dCs1/qo0WGz/21pB1DaJXURcb1y5pOB5c/t1SZlLj+DzkQtXaBQ0n1Jqp0ZO8KvPjJ/msx4cyT+69tyJ6intNTuIEv/W8I7ntUfuWZJoaib7e7OfulOaQAxuyc9WZI7OSJ5gN14tOGOnSP6RRaPvSif93CKJ1We6bZXxwhKISABWAfuwli3gAAKvSt5yf7LkPbEBrrEDvBMKWUC5z2UFTPgYIQTRhR+lvrMOyg/r3tzBsRgC8KkjbCqm8v+lZuZlCLlXIXAABoAU2Lz1clGLi/U3XQBcAAG6dPXwFAOBelUPoX5t/d/WuFZuAwkEBAEDgh2JG78QI/lrekXnpGkR/NpM95xB71PSCJ6zKJqB3EADGRNYqsSimpGYDumHSBvRUN7J4q5rV21PXgtmIubWzKYb2z6YpnZ7N4Pk/m9U/uLM5uOE+y5gyohdDAIahnY1AP6ZrJg85Qf+xsfDHDQTjWAtBipWooZErW45yPHKy1PFEVlmmC1ESqyJxEdJElW0V2ueK5WGU8XIBKmKVUycNj3bSyLcqqThP0rueLZeLc7enk8jYupDCY1Vs2wtkysrmLVKujFTmG5edz+VcEjVM3jxNgVwZFCRk8XQvQ4SoIZmUK5/PEE/HtC3Lo6INLaLcsp3Gy+dEdEvr5blRJsPHVGIdSXS6AhJlmmapEIONFCOlelAxGY3xF43mpELtLlwmR1VkKq2+nQbkq7/dXJCLvqN/Ot17WtS0uKlqKZ6i1uDJ6jV4kprgiepzeEJwPM/4YDUeFzTP2EBT3Bv479AGeOCeAA3uDiC4K2AN7gzIxh3+BLf7GOA2H0vc6ke0+KzBzT5Ek8853OhLNPiuwfW+w3Gd9zlc603UeBHVXmpc5ZmMKz3X4ApPotx9EC5zn4I17kRpHJR4mGIP/AVFHv640I0ocO0P8l1NnmoEuSqTo+Ltk60ajrOU8h6ZSmKMUrMGzlA64HR5fZ40OREU5paCHyS7mBsuI0iUmYlYgkxsRKrzeGmzU8mwE38iOcNRgkowFpiRgDXPUJCMw4SmL/Lmmqj7VY8WuuBRzsRlJ6LnSHTtiI5ds7bDOTzEgWjaE41gNfbzCcG+PtHYw12NXVXJWCWz5Scq6ZdRyJFEbmGT/C1cbFywjD8AS8UhWCLmYTGfKAvXcAIfLJDwuInOPHPshIlHucOxg50rtrezx3Zcgl34OIHnyVUn2Jw8nAzi+6Gv7yxczKPMXEyjzONM44zkmZSLLE7ETWKaxAeGNiHGqTzRcoUpYByXxIXeOP0fZ4JDIO+pt+ofvE3/KyZXOl63dby6buV46/TK6UN6uzJBRbla9W+v47j+g2OuV+ghfATiQxPgV/BR4Ff4QQb1FXCcTXxC/CXf/vwJ91d7+HPU/xyBGlSVRFQOfBLRL6l+pJYr59xHH6nlD7xEbord63QdCwLCmEomQcObVrO8yEhisyecJDFzYjq7ZK/6bg==) format('woff2'); + unicode-range: U+1F00-1FFF; +} + +/* open-sans-greek-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACSgABIAAAAAQLQAACQ7AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmQbhTocgRoGYD9TVEFUWgCBDAiCOAmfFBEQCsJEumcLgUgAATYCJAODDAQgBYRcByAMhhYb2DoV41iTeBxADL8soigJqm8SRYxxwIbMRvb/xwRNRgzwu21qVY6XiLTGKNHq2dpb52hG493d6sMVuugy10vjLA+vAF4PjOFkwhVWgcV2HHQJReRSuUlol+NtM5z93sbRfOYbukgbHZZ+Pl5l9cys/GPFr7o7Va4HCMdoaCQx/aecWe9XlUpsy4SS2y01uNF2d4AUBidxsGEItUReIC/CkdghmDkuABz3xIfLRgPgrnIuR5mXlSQKGevkHLvQlAoto5DKqNgZMzJ2JHOEw1nHnVtj//Bj34+F5/sO37uzb5aCsQgGqFRqoKVTB4l4QHM8gEH+YORkSb/t5iYtCo0RKAzCKxy7919t5cxBAOdSneTAd37p3dSEsxhY0uV7QvaiUnRcR/rpmuegrwwlfwKA3/9c/tbODZwVstJPOy9cAHjJFG3iy/xBA/BCElg0ggy31FyJAod77gnxQXOwFYuStBYArc0t0+IgCA6C0hBIwzcZNZbc3z84Fx/+fzbLT6u7BrQzJtmcWeeYMMgAQ4c+OQZh161Sqatet6bVWlCN1nO0rSXNYi9Li1qTxij7I2R0cqAZGYCi8X4MgbONf5CGP0p/EIYf+sebj47wAfBoePg5oDDzSJZNs4Sz+c4vjSdlxsk9J0pqjOsI1Rjjzl7XZ9ltTVnhjDg3QYL012tsZXAR+eqIICG7gKd81J4gTMJgDninS5+uS7JyuLyAKyqtxQq/OKFbXHaheElycZXAkNHA1AQcQUnkNwlmY9gX3wN4+KQyAfbXZQXS9fz7ApHk/AeRoOD8l7SinH0IAH4X4V1sAOgDk1AMRSViyc4dwK8hVtKaHkS7nHHBkxzOI1ykPT03OlTLk8Re8PLhtdvSY8CYGYet2nLKBdfc8cgvvBi/8c6XvvP/Dn/yv3t1QDqmWmorUhe99DNIrASpA0BXcuUrNNs85VZaZ7Od9jrkhFqXXPe4Z4aeziVveM8nvvKDX/uDv/n3ALAFoLrR0kFzaW2hE2NipiLin3y9C0pX76ivOz3d6T/wz9JUn6XwvaOAj9ITT1ryy6brX/6KX6QbCr9Ap4i2qWh34M4I3IVT9WxqYuvjM2xwQ/W69Dkl6gac6bYnSo+cdpuvdDN1hoGew/SooWzY2zxdOTRhon6m90SnQFHg17izf6w+0Wtxc++3SbhgPFwPCAQybIs8we/TxjZIZ2PstlQYIq2yPPnd8bXnFXzXcjfuxt0mvfTQw/ZeDBLA9Gydsf5+VnIwYS/fdCnAmJrmEBNmx8heBZ62d4JwFf8n7NMIno5tTtqbOFUAQdmdt/vWkDQYqPn7+FYPwx0HTtD+czpRRxFlnpwd93wAbTPaANAPAECcri0A8IhmihpO2fWVZrCvd1Gmjg4Ab7jPLOqI/qusrrO32bVpY41fb9jwGAB44M+wVZWxPwBOLFG2D64UJZKi8MblKXNwxmxNe9TpzWTms5CTOZU7eZAn3Q3/TnudRU2mvcNnns79d0SlS6cr1m5VGzYd71ZTOtAjtzF7C0t3vZAwh/gb+x2v29T/2Vj4xrcAfc2Dqv1awDW+Onp9Z8yoEei06LER5nkmqbS6vFK/G7JpOaopDNMqM2dQhwZ91Npox1OaBhAQagKyXb/RLFWiWKGhqTL0Oyi/rFyjLvWdTjvsBpEcZWq0GiAmV6u8codeIyZoLSrTopvzY7SW3TwbtYnkdfPDqii1GpcaNG7OVT/7NP7vU69Zt6EB1CGBVapJN40R45YaBMiuCylvQI1l7jEY3Onva2psUILX1ylqa6qrKivKy0pL5MVFhQX5ebk5MqkkOyszQywSpgvSUlP4vOSkxAQuh81ixscy6LQYajSFTCISXBDWQXVCnymvmcZufrA6Mdsqrhnmbn5wcrZVjuRuqN2nwXFHCMdihxOpHxprvWGLEMKv541xqeuvht5oiowU8u3PNZzycNwI1boCES2cBUqrXk3rRwNst3PY59yxju+v7PiBY8AOKizJBJzQ4WMJ3E+1Q5Po/srK7i99HHeesebYsqxsXUmD1ZiFB6cJa6nS64Ltpuxgbd62/owzoasReCtr3zO2wXxMe0wzlppv/QcK8NaJIH2ej0QbI1phExYnwqNXjTaalrzP8fkqLxPbdisx7EpN+sDJFJYfON1IdjDyPnBGvjJiu8N9n8bTQYJ5PPQZ/kNw53ul4nB5eOJrLW9yyOMDEk+StNcz4S3X2GGBMMYiR4gfiKDHxkQ1pPTEmDY2GJ/0NN/Z7RCMMJqodZrglFe7e0IJj4XHw1PMZpVEz+arWfQ+ATrhhkU2UWzAJ627NLiWVje5lngy9wZ4ywdyOcVwLJew36lGD/S0P7jXyDcLNlUOImrvr39Cu1UndsyxTwdjA8wnGGXBG75n3JDOEE6Fbl0w1g+Jf5iHlvUuSXhl2KdsVl+qk+M8GOrucdPO5GrPtHokCE79DV7W4Oq67gL3+wvuhPd1DOEPpv9sLA7IhGuJ4pinqqP7WoSNSYJ8+5G5n0j45fZi+zVi0hoZzdV9mM37uWfvKHb4kqlrQXnE/8g117T/Rtd5ToRwJBuz9hHeOkKOEM37Jgnsstbvl7MtqhOOuYft1nCcwqdu9Fw8RheSDvfQ/E4QF3G410Nr2Gr2dzf3PPTUYa2TUZhiQrRQe8nLMPGKeznSEuEYwifgNB9p09B/llkjaj3GS55KCu/qKi2ioYU32l+g3XrYbpUDKwZ2A1OZWNbdnb9YT3tmD2uB509fH97K5DE3sVkn9CUpD0TJE6eOHuJ6GcUujHAI3z0RS0vvLz8uTsjKl7ghtQnc5zynzpaHcRJG4NfR0ZNk8inb2ZUChH9FkjQgrkdZPGPwnHfFoyIGa6Sew9d5Lyt6XdY1yjY7WI89k5XtTjy8wYEkc2M9RPCxqq0tMOJekfK1eMHxG8EEOiMWzG9K4PInKHgKIcBOJtasnjJL6+hZ6HPtyBSxFBshF/V0nsXL0zFQzwirsWJ7w1vymMIpEPtKA+C0AJXhsDkcUd8zHWYXQQkgg/6CSc9LjuMK3oqs0JNgE5xIkUFNm03N1pPCAkeAlmWGtf2JWtfmKuFycFD8PU0PvU16/hCXq2IkgsVBcGypog7ZOYnmBgBsP078DalKFXRfssrtUQGed+nyUf+Nile+6EpOacG+BJwSnCgmNWFK+LLnWOHqCxqe0alGgLcyIKAo6YccFqbWMLYJ7EwSi4XtV4vNG1RRsfVr32pduVkWSHLLLaYzLXnByeAL8pGiKbo+3KCwomc8ell5pBATU66vULhDJbvKV++FUJ5NM4SRdzuZHJ87IXsaOE69F02aEFBLvqRDNBazx9dgQG5l65vUV78vi4yEVH2Rr5qzUAFdI9fM8TnU1FBNkPsA9z93yHKXY4+zp6IlQ3wkeDuiBQYTjb9odD0Xa9kerRAe2zMSTjtdNyv6jGg0CAxiP4LKfVzsg0J6kMcIzQPlvlV4I4IETE+WPfyVgbTm1THTd02M1BHle6KdqtPWcJ2HlWH5Lp0fCbCxcpMGEFZP4Vb7+n5ptzOyW9np+0vgRW+wJwUHFGoiguJjVUXRavGkYipjkjXggOTxjzF8GYaaIKaRubV6LAPRlxAcm0fb1mkOII7RVq1mMCJBd0512K/NpstnOqezgr1Q/hwM/xrUERpKXObf6oATYkl7I8fpTBoRmzar+SdJU6XRb78WV09lkgwFJs0c7+osKRUASLDCVhVpRrRMJMaD7exMaG0nVp1IKGZh2x/wK7yZjuQ4BTPMCe/yMdemHpJE+rVmslPZ7cMIqAL3r2MZBqVR74lufj1VDXyFsTkdmqEfZMshEBafLL8u+vr0i8DbXLulQ83OfcxjOXR6UHZwbJ9URvlVmDd2w9z91cXEFKtbf68rUPxP/8PNswgfFF95FvCcuX1oIc8aAVmzjQfsifGnjp8WZ/IJKLn/qNWj2Q7szhrYIEm271Uvuk+59pNjzbt+hcN1PXoTIXaXzXQl3Jy3SokCZQ/ndLhK2HhV32HCfUiHky/GzzNthCsqtxZbvwnF/BNjJyEIX4jeax60kuOdaqhCmvrdXW6mnlft0cG6Wxq0ivdCW84nfruNCTKgELtoVg6HNNC85xQbHp5CBD/GwhNgTkDl29UX/flWkSXWXlAz4yl+a3HIZVzhd5bKMTzvhXASwM8dPe916PW2+UOqfiAHWcCILeATydBgjZbVFvITs05CR7Sa48Vq08qcfCd7g7xUdRbYm38S/laji6i24j9A1944QlMJ8SzLzeslvcCWXwxGu1brgkdmjIpQxle/OggcGgzYUOPYhfXUOgo/YOmzgMoB89MA0EeRnVgtr//zMwyS9Yz1+ek4/sI85lWUagLFz0b0D6q8roHa6qykkq6ofbWOzYs4Ft3SjIxhWJawi7lh0YShWbqRzVi2k4gTS+7+pIUthNCsomFMzGbKlWLgzE3Vy5aVbznb3EJqJpeu1Bq2P7Y8K63tiVrVnciJCIE6dzl1Ng1cfYAAKXIKHTPuhi2yqQEm1K30MeBLVJME1BcdaU91NgkiwSUH9dkzM4sDH2LdnMFSdhFk7aVHlrGQ0xh3LA/dJ4m2hwRBsntBB3jEtKnw/Mgz5KjybMQjeztZ8onOpq2vAK7+PRuos6slRFIZfxegPlZxxyMQxZlO79ZVR+rsWNIxJONYGKV0xM2KW87GJOpFNlmfe4VUwTwwVQSxipsV5QkTk1Wv4a12LEMLrDDR0bYowcAopWy040nTHAA7nyjkIcQY9jBM5eqDRjcJHhp7G7xI+JIqHZUVLbLTDkmdlwiztDag9XtNPb+2PIYNb3QB1k5Ky7w9PnIE3Bxtf8fkUPlV00xdz/YjAmMrKoI5AVc6USjDeVID4q8yvSVgB7CwbxfdsYSvwjQ7EVDAVUcDuKzl0BsDTuOcSzLMVbAj5hGlHS0eZx7rX5phnml/aoL8rEByqH7oXIcZhy0r9iPOETxdDP/KkJrHMaZKDTCM40iFYaZjcA6LnzkweJODQO3GqV1riP5XjNkoHvgV5wNAJD5bhV7MErEpZFaP9d3fkILx3sg1tlbgcHuZvqrhqtU5Xk1DfN/dCuUMkSHGFap0DtWiTDbY4ZnrPdhWV62fIu1up+3h2H1d42ZWflgXXHe3wgEukHg/W3u95KDhz5hG6KZXnxojJVbMV4adyvpqc01YwisVMBOpg1QpEjkLYVNpTRsHgVwdg8jKlyq/2gaqQkRG/rEeiTvGz76vy87bzsl8FdEY/SRHxGcnPgBQKnsjJ0PsTFmxhQ1/ZlaLIhCqXVIpUwUraCpuWnEh99awNUHlDvJOrGAcNuDL1s47djjyO9l5zsoQG5YFe/RSnKihDRIGehbLbjW3E0ZUk84ZBIa1J8jl64v7r6f64UyXPRmNZDGJIufCT89MG3j6ilhO22Rlw+Mo1yYO+TzFRIUJzX1LtDaZFHRcxX5y2htkL4qy1puqcznxVqZT7IMy1diwliOimQOnDYjYVkMAOp6Zq5FeSGinZ7wDrn8vgC37yeT9DVJr3pe+kWOyUcCagR8A39RSMAKPhi8NrP9m1qbXUCfM288nnJBKdcP4BuPTQYW+FltrYM3WXOD9v/64T8rsd2bqkU1WdfB6iGiG1oMJZUNYW+XN5wii7gJhbH9vavp+AxGsobe8r/vGf6IZXZWhfJ6Q1CLKamoY/gne/nfaSBCvnC9UZKlfIKot/gVCEyJ8Zm2rhhbahp41KNfPLyhzRupztFVrTrU6PIRQlive0jprSP0O5wfuVtVTom/X1VhC/LfRdzcay0kwJnkCfzRQntZ3vXRaFwLcOmyo224W69BlK9/e6wk0aQCJjPUD9ldbdxrhDCGa5SLrtr9dA6ZZKGEqPwOjwibInyvc8SYQZ8zbL7Mo2AQ99LNahaz+1Fa2+6jKY4d1r3ppuupKVNHv5j4mZegv6XdLlsarruILetndwXJJYnfoEcR50bVTr+fY6oCyzOSu8CP2F7OUrNPTIlOV/9nJw2d5nIXCMsbJccV3ESOaMuzAXVXzhZjMsbLqjrxurVWwmch+AKF5AdcMmBXbQ6RO9UDg6uLNwDOB2+7Hrf5df6b4SmETIHcyQakWtr7+/uuz6HRNnr2VObQuKGpYjejnWymD/AZP2/VD/zSp3hSnnlJket5IOKpsXaZJao82lztdJ/a4zv2DHKELWsJyMUmCiE7HTRnOs0xEYxHkgbwsbBdyMaW+RmUa8NgU9Rzt4ReFQSeg/N/0Ol0v/tQxUb6w/Xus/M8YBhgrSfMhliY01443e2HIy8+fOOcd/05/rJbeZOP86DkM75Pqk+Eu+mvN9u2hFKIkOlPfGPlYYpHpn3Uw1+e4+c247FQZ4nMi6oWzhx/+gGsQyv/NOlIwTAGd7e7AwF1oDBKyP8Wv7TRYM5G98Tpk9ee2csCRKo9v2HerlmYqr0QWfbb0MS1Hf0W/U7o4XnU1qrCX2xNcIk3sCTlidzb92sm3hznqwLLMZFX4MuJChpJ1ZlrMhsO7oe6EF/pabK6DNzfn9mG29emGR3TJCErsvC8fcXEFYgPXlCI04nW4WmGnZkoRGm97TQs3O+5/DR42Y9n3mYnsTeHQVicxLNSmgYfQTFkHm8S8RmgQHhCfdx0Gt3NkVzoaGB/mDgPTjwJRG8uOG237bklyzrcVU95PHdcrOAX0ecfLBT10rQRsUUrqgpZFoujO9hijvRV6x+ilDUFHRDxic3tMhq49hnfGaOp8Lnsz2w0snmONriauXTeIt0/AFSkPCU3A0+JFsFps3AnY4mcuWxcL369l/mRZyDvd1/yK0ofkn3EwNASBQCDTVkj9zOkTZT7vks7WdUzTU0uUhXZ08LwdNuVgs+SgGrNmnkCJzcmEODnbGTsBy/+MMkEGMzyd+HuI+45lpdYEW7RQu6VFpxElf4Ml7pnSSl5UUURyCW4EuZlazJOjPHcsnDGwOtmjy1WThTPx3CGJjDE7LM23zrJSTwxl4zaqlcfI8qI+IreSsMZj1QSw09yr8NWNAxMEeDs1sd6LxXKRE3nZNVJRRTJ+EJIE3ih06fdFM741YfovEOddGSBl8AKdz9SPB3J12ei9SBb3xD+EtHVHoZNnfPRS0BokyeolRLmembQqGaz5tDM05koKyFSJeAmds4z8olXitYiSfFUYN1uUFufnRmeQKggBRYqoGWkB/mbz8FVuTktcLS6x0HuQU540cC/RYpJWUYgfEdYqVNAZSNk4iV4dK6DXNpPjjfSwUI6ElSdv2Q5Lz+xzxCFDaueVTlSpmi0KT2VKKmBtxQkqF2YynSwSyFNm/fAOHUnH/RCKkS8ZHDTdNVgQkohKQ1emBrdn1kn+ufqvhd5C294KIO2DXdsotLq70vLvt/8od+spLoJEfDSCZp8fEZpMCvEWUdmXTfO/Nbk0NmKAs42i0BiUGWHbM8cjog9zxr2kZuhDUHpWdgcpkVUeGinnehkmF5rMtMNXIdLe5OiTHcEGiv1KI6zLCZmD6uopcalQzYk9O+ZrUA5pNaU6r0qgqssnMwUtJDk1dSD2I1KDMWGbDEYNJavg33sZk0xUQZ1JXTyinCLoYtyDJkOy2zLr7ECklqG3cyOfkkbhft6RoUickaS2VWhpfOAn80MUZw+uAcXrcI7BEID89uzpl//mta+h/fwh/aCkMEm0rWOURb2WYoASFkUENYIz9vWaHUA8szTEf64+dAv2nb6SNEfV7KOA23UJytKTDrUst4uzXu/7q3+MWRuAlIwco7Ocae4hKeFCVJJDRXJIA79AsHWquhEOTLYprcyI9M/lcytC8aaoJL2ISHhbDqwWROiGNmCy6aGSKFFXzrDAVhFX8TamfaImwo2bho2Ff87DEtIoIV7iaPaWd8CqeVIqLw7a1dGsURk+3F4w/Lj92oh4jvAG1vm4bSox1sTBEQl9/llxnGAEd98x/pRpUyN7erF+tHJRkHC6lYe+zNiq6llk5Yi7CHJwDLTFNC7cpTclujQyoTBEDZ+gNcgG5bzKJNqcdQG9sL0GB1NqexnJbix31I9UNzyUBGtIYc3Up3tdSV5tadmi5VMbbAa829QFCDy9GpsiC29FaEhJBwpEFCr8z+wQbAo12FMcnfDc8neTzdePvs7zvpY6qym7gav7xaYdZBs4VhOLWqZOlSmWosUt0fn+cQKM0nqEmeoy/IlYvsjI7jpwSjqh6LP4DMlTZSlQxmnjcg+MEeE0sQbeySzxGQXT7P0O4kJRBKNKRZvY0upPyNHzJxZcwYlmsXkOc/kwMwY4yblELhOmNqUnzvvftXmlf5Om7YH6RyHrv7rfZFq0I3giMZzPSN1u7Ij+tve+TJQlSGSVr4VeLJBhG6RY3L6mOuTM2MnRnu6LR6Qej1PODPQ94rXppz1QpAj3aeIzFeGjttqYGkp2KIWeb13i8P5bp49R2A/6VJinmfVe24phkgkyl19nlOchGUpYQ8bvx/9uGIthhFo0QaqbcEZOsTyiZ4UBzafqugq5+K3o1TWzU3emfQzTTkiAc1JQDzgJXZDb1QLe/3lwGgLUlIIWxbnL4d9AbacPn3QkJRqPXvmhcF5f9ApRAWnrvKqtCP2/6J/YkhVyTumvRJ2GungRlinrhNXh/GbC7Ai5QaaMCBaWkMEkd3gtm2/QueARI9KMMcl4msq1fYx7nLc2Jy0K53uGxX7hx21P7p3//0ZzuCYrnt8TdK2+Luz70usrfR/iWjZ/7Jb/O1mP+1R6cWosJbgArmFZKyVhm+ONl8jftJbQjs1m1WXMRdWWs7XuF7PPFv2XnmKtRASZZ3iyYpYNHtPNRX7Y/tXY/+L004CJukznTEx+cCkq0qIbImsjR1TRyS51MOzfsBgk/Hsry7wgg5r/CPs96XRuVBAyl8NGSAKJNBab1ynO1BIvuZ8DkZf27LCKpoqy2KNj3OyyMTn9xQDUBtJpU6M0EgV/K/jYc/JqnuXHj/buiHXhIj8s9hA6JSSRLdF6u/nJUcYfexbWdlzpqYupM6zmb0IZuYxY2yE8suGB1gwZ4blbx2nMPV7zPKJYZg49DmkeXFsX+T0U3sOnGBrjzxKZ7wD1jh9emSiJSYhLkcel6kGOWFwshrC8OW1Caks4hxxQYUpxOTvpMIupppvTI5hhAck4Yv6BXqiWFWFYP78Vlii+HvwoR0bNQX/a8X4E47Na7chmaMiSE6L2J7aFW1wK2afekI2/sufNtut0r0RrJgnKpdoERlbtMEw8kwQ07y4TfjzKWS1Amn0LfTr1VffHdMj4Vlk5+Zu199gx/91Xq1of1cdZEcixdPKUoOOZ81rWx2njGVKT9UMDcVZ2Cz4hlOmr3kczSTNNS1lfhZtcSKwQWAAGkIrs///sggrCN/NmTEDgrkqKfRbhOQo+xz/cWeKr3xPAeEY5J0EVugRZQCDr493U43tcLtZzU4KtnHPBk1zhkqtc4zo3uMktniC7OJedVDzpRRpLTKPqbc0kslVLFHr/1bFdA83msuyjO5iOJ9Pc64hnmKMNd0Xq0a00pVHklIn/eYb3zeh0SYeb8DS2sZPLDDTj//PH/wmTgxUAcWOT58SBuAOAKCp38Dh8+kHSsQYok+FWOiATMsX+1Ii/69Hdtqh5//AEJs/hk6kN9fu6WcLdBlvGb7KXAkWAfaYA7krlDZcp1hGht8CYK+Qdj+l9I+wzt7tO+Xkue/8KbHs3zGliP1kR90a/x3reUXemhFx3Pf4uLfI12LpizpY2PzI3idbMONi7cyHJmwhAOHk5CI/FP/HEOe3s08pvBMuUtgpia4Wu+LziB5u8T7rx8b+5I+LYDQkzQqu9sBhami0liEUCWvk510ptmt/UIbuTplGrVasIcDxj2pB10ps2sZQUTYNYoCcYl7hhQN6EZm49JYlanNtcFQrNhJ6mC1y3JHjK5pmxw1xZGFN5xoxF7W065I5r8igH/RlldiQsCwVRWqkuXdUiyRgPCd92VPjZE4ZKQkAyYiyyyZlGrSBRWS3JuXhsJVWFxgO7oC3cqW+MsjDln39DIp3NdzptCecnbGncv04ysmA8101NDgiYb5d/pvN8vVi0lDeKDXlpCsP7P3ybFQmgs2h1b1P6OmGcf5MtmOvv9pvfzEKScdwJeuURoc4ZjalEP5oE3dBtARYa+b2t6WmAqhFcoHlKlPYDI+6hLm+Chu9IKnDsSnJV1RiEXKPr4AWt2dSi6N20SiXbMHk0VizmCTp2/Lw9wgHTl3QKmQz5jKGeN/SUcqiDUHZTOGSp2i9+cZ6r51h2I9RVIsxpc85p9dzZeVVKOG4w1QjTqaCzNmzIPGRqdrY2Pg5TXUzKrefAbLtcLubMyI50N5uYVShCgqE7SdxS+0BLWDZHWpHOJFG3sAPsOa3GkU9mREG9OrOQ1I+seR4KjhpNjCov3k63C9lsDkQB8wqVVi0ZpXiJmsP5hIxsI0G2VO8krMDzMGtTVOYiilDlxclntNCdHA3ZCslVRtRIqOhvOlSXMElGMNRG+v4KRc/llUq1Wks6MzNqF1NTqKkjtDBYwXPrqYJyL21rKW5ZCRnpRlTkrQpeLOEXCumkGXmKipzGbIQpJrSmQCmt8tXTIwzLdXUZ5caqXGjLRDMCN8ii/cUFA3V8YCrdaJBrRoZdM52XNdee70wOyKRl1MyQgwXFahbqdWeJsFzZVvULnUyGvB0pRCXNmdXWXEROFoEqo+r8fCeZbC9npDfNu5tjeVn20XSqdlPxaRMGMlRcXb68SZgcs3iUKxZLrRbRi1OuU8gjDJuxiKTMlRndWTu7tH37xiDbH4U9cxR5MINmY/5t8xw4B+Q57YzFowoJDs5gFkZVf/PpvBnZ3a7RaMCQUalaNSZsOVGUpSye9nOUFrYXBCUv45rS5nMEsDjlz69iGq5br1Mum9EmiUXJjp8XagZES5m0rhcuMKIEjSeUC98VCADHrlntXPNqMn6H/PTB+oB16c//Fx4CXvHvX8Ho38v3qx+fNewhEVCIDPXR+0R/VQp/8x/I1zzGS6/nNudrD2Amle3wDXaQc67z4ZY7WEVurcPsSXzel+hLE+z5P9vxam+MAK8E1++iQJgib8+FNuYOAakYsrSLKfUypQf4fZ4jWPqA43UPheX5oo1mcaUjKDkZ9VbOhzXBqLuxr9BXG7qunwXVL1sotAxtZDnQj60AWf9Lb0tZf8/1PNnac7WTPvsIyQhBtWbHqY9HRtt/8wixyYWsZXOMND0LD6EFW1hkflnV/Bnh7AK2J8ix0gMz7o02NSsgrtSbthBB9HbrfZb2foWgBuwQxJ+63/a7VPZK2vEOhFdWHJL8XJPb/SFz/d8K8j8jAqxTsfR6QIxj3hcB+M5Vj64ya/vSoxYDd853AC4mad+5mLG8ejHX9ZOLBc+jixXlYXexVB8BFyV0B/tqOgBYo/ViHYAx+uK9pQFmc+qY+Gy2JMYSkXLlKVMgS4ZMRey1LczOcybyRO64PDE5cKelwRQ6d0JBnslOUXqG26lYTGZMBZqdLCScyQtckPlx9klZqrB0BLysOytLCDG5fUdKRHwxObor5A1VLy7sH8+1AUNGJ41U1nkLxpyFsbTFfnRDfGi77hd44kG31K8Zdo+NUFZLg/blH3pJvWnVC4XSP7eUtynyKmWkgs+SydDyxxFQcVh//g2HSeiIZiBZURdHpJnih0mLO7oQ/zYv7kb4Gj5eavRzzdY8veWNUFdBTy3SXbuo6nbXkuhc+I472qcpom3u0ZqBiJYsaM5dmnKRxsxoGLsoA1wf5oi6a1cRi9TGbk3cru67VX2Ryk6hwm+X+25Z2y1teEqMj9wWKbbdIoEjCkVNgezmC3lqrqYnOYpFdu7OAOlyHpJls5eIrCUzl/TTk0uH3Ce6WDzejRF2I3e9G7hr7ThW2zGpHVM6NviL8haJ5AWTZsGFWRPmObjzA/fc3IUdxl4Zbm864My08dNqnJq+4p5syZiZJ/SZn7u01qJ7dMpLnQTRE1DGJY9bPRCkgxjEEPwFfs9ed8e24+72bWfdTRv5aXnpiru00Gxc6vLFTjtR7czY/ReLY4vuQqPizs8ed+dmPXe2EePR+rbbmt7mTs959UtTXtqddGPQ9UNuML7s+uO+O16PQS023Ive5vrei2Ndc6vW2JHc+c0spnupRaeX7jt9u231lLboWX3RT4p3iP9GNxknembb6Klt2aOr6CX6Rl/2fyl/XHvQfxHvwPfBev+FcEB6W+vxNutpfdZPsnew/5auAx6GCt2lj4/OtA7fVeNTh0f6iYsj+sDIP732D8M7kqfXYF24eP4a0Uf77/3IRwDfdXj08dPnr3O8jD4V233yCYIfu16D1r9v3LxGcICDU3eFQRrxCvY46afyggOBlNODivo7hSrtbhKa+ve2CA==) format('woff2'); + unicode-range: U+0370-03FF; +} + +/* open-sans-hebrew-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAB4kABIAAAAAN6AAAB28AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGk4bhiocgWYGYD9TVEFUWgCBDAiCOAmfFBEQCrAYqEkLgRgAATYCJAOCLAQgBYRcByAMhhYbADKVBwAAAHgcgKzLR/b/xwM6xn5yIJpWiBEiUtScKrWmSpTWZuo96ncmHK7QEX54vFeGEN03oxIRIthX+aKb3/5EO2k4jhPjoGMZrIcVt3fWyCz/C8Yc74Bxe40ur+iLvtnCr2Z5WwZtlQ9bZDBCktmf57f55z6iBSQkFaOwMRaFjTElVYwIxEyY9lKdy/z+WkX596MKHvrGaH92Z8+8CaaRatroVNcWLSRvPELyRiqXkPE/01RSrVI+aQZO8pGfjl2f1cqS21K2WQaoFIBbZB9uqWd7fm6Xh1Qqtwo1PE3Msyrw4UYR3Lb3v6b/O/duT8JM6HbfhLuDsPSltJ5QWg2lrVAITxfu4yTGEIP21x9CUdScwA8xCS5lU34xTw0QFID+oY72D0xJg7peey+iWyDTr+36qhJhBxDYXIoDLuoh3v93zgLFXwgU0iHm7UpD1Ul9esZuxo+NuktAioWmvq4G/3+q6nrAkSbsDtMpTHdtw5ZSly3LiPsHkLg7QDqCynsEZapRKaRSSElW6bQ0iCm1jLVQcullSt/iLcueYVucrc3xazj7eVhMaEuMhgU23H25l7P+TfSrbp3tloiQSQSjnHW/ldaAYOyEviNM+4hYzL+ICg7SAViKhy+H+foi4SxK6BQqRmUwkDoSw0CyMPrcEM6eT9SD7EqLqRJkN0xFFSC7WZRvAtndPHM1yOABwKYD7W0EMngigEBHyD4dX9wncwpmkYCTjogVFosQTGVR0lh6JV3JVYqVyukmOBOrb4Z0wvQDGMpPQdZvgqa2Dp6F0E+2gjBIx9vWTWnn6Xr0ju38KaZyfjN3YMpIbcnAD/lYjI5fCmQsPgV7dCp+5FWP113bsi981AQu/Llvwz/7c+r/gb8c+SPqdBbiI0naBXkxHFJdjhZDuB0pwzEoMaxFaelsVCiDa9NbUaMs7g1b0Vh6LZoR4d3hg+i98DF0JnwJ3QjfQ0/Cr9DHU75E3y+DfkV/Y4ARIxgds88idB/grY+jSHHgok9gG7Fc52OzeJTn8jysjnnQmhtn+zeC7hFy1SMRYGIz/B+nHqvF3IUYkp3i3VdFUBeAMOHhWlHo4AacLv5thutwC6/IjYOPEihESkSZFB+BMF7w36JGLL4APQ+XgZ/qzbgktTGBvgb1aARexB/4jYjGEBbgeY5HeD71HlaVuxRHQ2ciqIOQrfIvxa5gHG2q0aqMXyXElGoBh+EwLA+FlVovpPlEAF25UlXr7Z4JhYALX2GU4ullKxU3ucBEn0IeocBQUEgRCgmFhsKCCxjFHjqBPS4eASERMXxqYwIBEI7k7Zo3c0iaangzRVstnK0EmFMXeyk5FvWMuT8JNvpvLyD/b8MAvQQA+IvjCAAZPKSnORwAbkqweezFVXMpQgBNN0rNCAD979tqEB4wRPZcSJqOhUihj4POrpKYANhnEGQASjEHFkMV6KDjNfsirNvBUsepcWZcGFfH1zv2E8ZSlhNOi75sEN7Synnlni5n4TVKbin+zK46fGDPoCn9c/6UP+YP+X1+B4m7ENfQxhH8aLlU4QLb1/zbQ/3/VF8y3pn8Bph4hCb5lwdw4nYtyvopO3URZFdZ7X2/MMs2E4aqU91vgxvKDenUY6PdWuwxbdSA9dYYtjuesgQBlCzWNybs9Ca7MPQ2AydvwozNdjqk1aBxG+yw3w1FqrXoMmRKsUbdiZFGrTVrq90OGH+VSWGUKbvZTcHWsESj2cKNOvQbYl6Ipm2xx1U/oac69LGaNBMEpKLUzGLSOrO2ODiowJ240FtrIW/ue052TE9tWG8ZHOjv6+3p7jrvaG9rbWluamww15vqamuqqyorysvyGV4+LOazaRX8N19/9eV96eyLu+eT8XDwxeeffdrvdTvt4qN3sq3NRhrr6pZv51vNRhKr+rC3VYsUdiNcwaFgryHkodX9kc1bSmunWCNDS57cFWZyvtB2TJYUeLD1V9cfc39YWsqlB3IrmWQsUeUR3zp1Am+cWGwxcmCAt8bcB9tWNmb7iEyAWsosAidUJqtIx42bjT8fx17jGOcMa7ZzXqfosTOb+NtuTDNSSm3wRqpbVPa+6QuuCTqVFrFfuA4zA0ywazWuEcrfXvbKI54nghWuBlZmv6lnldVHlkcflMw6Tc7V09/Dzkli3WxExk3s6M3+mNM3B0tbt0D8fMj+wrR0629cXEYbBIo4qwwuXKlxerIz7Y9UX+dUnfPwKPQNdTPTmvCKPXrUCAF2Wi1qIqTCAV2RJRUd8IExuFzxatviERgliMzYi5iUTV1trV5tXG1e7SztLqlIt+wXVfYvQhIo+bWh3TSERjyqq2n8w0uoGsUdPSkj5PFIX8YxBiqx3Wx2ethz67sfLu2vDXZJpSTJb+IvaDbyyHsMz2nDJsESQNTgneJrpBjJBuSxlav3SrtVulYZLKxdJMtzxS4uWiR38ti2t33ZOCyXGX1tHYe1D7yR+QazLMnZiewEJd0pFz5ez9Cysu53cnpHyj/nzZGjrJAtC4IHSQn+tN/q/Uj6/fQiuYjEazuouvkN6u6GO+0yuVQtcitASwg/4JxzOnwl57kiQh7YB7VwAfE8Mgfo7qY+KI0brd1h2mxQHpFkWs1GfxjzF2Zwb2+IriEpLcqtfBCmwV+ppRVrKX59t6nlpO1cyt9XHOaTWu6oKsaBjW7mQDPkIbQQoOPDK0v5/ElppbnAixzb62auZKBpUDR1So5Pya5rNRvpipJhqxuT5fKl9e7LdPFqXUdUnqubF0fsowd9ALZgFDGPe7roAVNWdnA+S0JiB91DbRxZTTM3Xzyot4whVrg2ZQhKFNdIuyoTJKJI8yLy+8ENveRFMt1DyzPqeomU9tO4pnDDmfLRAsaKJLZ8wu+0ptJGbWa21DgNdyZulx35UnodyVZKO+j0sEIWm6GIHzPyQtwy6kZhAh2yGixd6YxxQN6R9wTaL7VyiknRIswsuOfyQV/IRy8t+UEOlnkwrp96uEM2Kzln7UFeOEphUkDvxnqAzgJiKVx+p8dvrMjsRDAJNnU/EHW5YzjMEXtTdgQ0IzmOEANI96ictQsSAzTCoDXUjOp956fSDYTT3sDIgSwocYUce0RWlmTI6V2oJWvKqKBxlkF5MAC8C9KdwqykBaFN6a5fwk0TT6+/nzOh6rapKDxiWwK0FvvKhXOQse/efF56FIGOJ+lAWQs9Sh5Umez6EpQ9rRpmCHyIufqZd+s5KmfVAeAuVnXUVlxbGoXd4QYF5OUtA+OJVcZdV6J4cIEWm/JIOXdbDw7ocYmrGuGvoBaf883PQmg9GhsvL7Cbp+pp7rvdPc/gOadbeC0gTdUK8aGz8PjQfhiAG9uptei2v6hIVEw4e4FvdqfUDHqUuHQ9zZEGvhkBN63k9Yq01hy6iK44swbu2ubtE00b4yWG32jIe1tYz3pdBRRuHQgHjZzvl/OaUKe3MZC9D6UFJwWM2wX8BHDtpO91SQRpCZahtAv/wkg9H4UoNI9M66Ald6K8bHdHzvNa5Wef0oUDCyxUZ2EYCB4cmFb+6L7UQm9X1YqbLysSHo+nSCmURl1CkocVjkTuISTwQEFYBEiBPfRGg2ehbGhCXtQ7HoBuRM8gbTw5y6NT3YPeO0uorGeBwXr2pNzXUvH03ur0m3RAFT5BJcdwFiyktOReGECtV/gcDb2J7YRbj1lctoMs44m/5zW5Kg5ZoSQg8utp+p+jknQAgMEr7KwyqyEsTGDMaV4kzE+8AHMVEYEa2BVv+DHVKABbRUklK4JP+UpGg4yMJDc3sStq1aFKlEHJCZV2apnzpayMTnQfqAZxjZTtrR/cpkdATr6yfFEY5eabwEvTbEjZmMd90A2O2PWsCa7cPUCB9VHIVRtRb/zWhQUOD6Pf7BmM/PR/xA0Bxf02b58EKqo5hN/yeLUhR5sFE7oUvLJqR5/Yn4Ak/3+wUyhlkk64GjYwRJf3HbfNV7n8p4llb38K0mUjvQrQG1P2en/x40BM0tA7nC8lBHg4m9/D2Ifa64++MV7DuLScUXqWnH0n5PKPGHmWoMUGuh47UF9P/w5vVeB40k4KJhJjdhA2XIsFoAEfhtbiC84b7zRskiA7GatKkQHLu+wsyc4xdPphzN7SbEvHvrt62l9NGaemXUFdjVL+VtNQUCObv9OhAkaMX9qcEYBjWPnUSaGFdz9IJe5sSksQoUD4iuRxYyWLpKV8g+h/QH6nQz1903faZKgHNdFThTwa5oZLYL55dDKlYUJpucxCwLUV5NsyWyin5ARrjnDAHF8tWyCL7KAmtEZds2lAcMioGEgli+JxCbT19l4JCOcB6RNAbwD8CnBfACCvEjutMvcQWPDYVFygIcBpwFFxFEpw+Ee8d58XV4bHC/eEE7qqEw/ozh23d509dfjQ9eeHjhzZcurGLSu29Yq8dYn5v2mv2z0k0PRqIgyg8Tk1DisGA6mf9LxRytv+JKGy021Rgh/BbaKgBGW0y4c1caV8vRtN1FN23diRvCJQOCvgFN6403exaop6xmBgVbZep25jj3/4ykephBMkoyQTFeZSw4jnvq24Aybd75XAd2BP1R+7GZgijxQltws6QWKHlnU0z1o2LlnIoM67ntsqyC2cpSAoUllTI3wgr0wQhZlyUbP2DpKHu9pp174ZBkNpkORDXWlS1DO/RgyWFBqkr68255XvdMOaGeqpF2PzUWJLyOvyg3ploBANEC1KpPhTvGbvKyu5OKNTPllqwM5R5XFuu9rBrCpeFa72bIJo8CltHKTpY+5FkzpR9rBfID0fBYtYYOLWQOq3DeL8upJSD/po6yDgKdtETsFGTGsW1d9DREHFDmNcNr2X5pUJs/Kgh2GPuqOUxV0PcwtZaEHJFqH3VhPc7Px57idKupgp3y6iLSXaJjkNHeZUqNr6fH7xsnJej1fiQp1WGVTaNjt8PdzVmjRpjq0ro9t5qXO0LTo8nnSmnHUQMDC83pOTu4UAikcCjOwx9+APDfbPcM3gN5ff5SFdSEOYfVw76DWqwGjmzRk4a4xXuNRI/MWapiPYpO/eRTWwaENU1LU8LHgSZftWG4nZyuG///1FCP3t9MyYc2amy++Dnd05lEFOcJs3dSYgAdVZeTyBaJ10Y+h03x+25eQ4lARYjhsxcTvugLjM1key9Xql/fu5oPzj0STK7/eojlxwK/sWsELrnKwqWl3xTTODNZnp7uxf78e8f6SQ0MZnkTNutwd2Uc9ca+hwEv+gRXj6y9IWN+izFoN8zTtSSbf+254Y3l8HVv0u17JvNUrxasBcO+ra7P02MvDPDg9s6kchSbwcAuFBkS3XSr71qPVwwuy6tt99YcjAz8xwIS66FGGU2LYPdIYHOENyYibIO8cE5WxeGw6oTZLtwjNXlwwihlWov2XEenIm1Cf0Misx2FI83bEygbV7yzHXLz6dPfpTdDW3sPDproKndrE+tQvWRi3V+/67d9cJt29ZmUs+ju/mleZedvSSWM3Uenp0GNs9iuMzzk+Q6bAi/MW3kqF44hgxou2AONL/ccKawBge270shlrPWiexco86/h4auuHDI86pG9NNewX1eXczkrjeLqGuGspfkpHnaWR5Qpl3WEq0tCqX4frawrtNPVKY17NUNE/7pGuXb/rs8JHFV85Jre8JW5mxbtnZimyGkvZJB1tID14XHcZeFhzrmlRDXqB8QJuhS4ezSZuoHfiA7sPiiIDPE9cELuCKKkws+S61ZXvtfA727FDavgOlZc48uyWvX1BAfJSiFkqs54VtLYmpb/88ftp05ep0VORI2Sy2OymomDRAshJCq7cJwr3Pa8/2T0qlnXX04HX7DF9YXX76pC5NWkkOC+wmqAlMs5X1P8eyp9QzdZJjXrrArt0u2tK939ptF2PXELiMl6s9U6JIUPctJsyrRgWaI4IcTiEtX76ck2/aVxyYwFsbKR2+WCguGV+y44lsMmEJy8JaaZcgHwiuf6vQdjXFu2o0Dil0XuUD6i8L941tnV5Pv/ANy+3UQUqyq8q5KiRGNRlRz/oRX6R2HM/Z55CdOub7VL64jhTp4cBWUAsm884fu785GbPMaLZsSkN4/881DmnJI+Hz9/Sz/EK3uYOUZJcIcckl7zqf5CUtLCWLW6SUjodz5+y1hTsiLn/mllFr9vGl5u50m2OtVFhrHMprotzrZnxYhms/qMY/SJ3dt4j+nuNY1PD1X7ls2q4pIg2SLBeWpE5asezwYXnhcmFKFb1gxzfWHOoOqe9CHk3GfDueJqkihQV1E9V4pqd9/fmW4wVcPjmREiXakd5NoOIpjMF1MWl2jw3ExTnEYo1Hi9KVot5Ei9QcF1tZG67GGEPZcokuKuxeBL1T8MHjuIVeRPtP5mUFX9iHZs3SDAS1pxhTeO/39HNwQgXUpteh/y3ogRLrzmKXsh2DLUF+dIa7l37TAtdkMkk62pRODEnMdjt8hq/1c1AnDLZsc651Kb4XwbzMaZqKNTTIRmK8iSmM9C3u7w7bCrvxk5r7tdLRTPw+4gwutmEqKsXssjppAaODEeO6u/mvXbtv6Ywj2q4lhWYPw1e+FsdhZntAkltNxIk0abAoCi78Kksd+Nv9PbtYZlPgsHmNU1yoZMhNbtbY71+gxeNP7pFE0P7Vuk3WLo0NVeqnRPpDim2H/IS6+A0F1tflTQGzp0TSyW+YbiY7FbPBv69q46Cu03tr3SbKgFdTuCdPdTMqVuZ5KbR9ohQsh8ItK8VxZoG5/2hmaHLQ3iBj+foln/i4r0lsd5xgupmkRznLa3G5pBCzxJpKOUxJS+wMfhkVNylK+002yLUuTg3srIxKT+r22V5Q/nuvl0kZ5JarXxGLLoZ0TJaB5ZDSkiRS3WFTwfv1G8LT6sx/B60LMZGu5eiPJ4UsdREGfcP4VGh+PUeKZCYvI/6rZPy+km0aE5j0a/YaNnCyEtbUX+taFs/4Mov9lSqeoftaGi2x1jieu/fotPPlo99ldc135aoHr7u3qklbVnh0Brg2mK6rNLyEqKozI9wCFxbfl29eMJ59e0V3WEY8x0vpKrY+FjQF61x7XKJdVHvi8gIq3XKy0gPrvmXt/HIf64MvJSH04HWhMWxX11/OW0q+ziV7KjKwKkICTjqcRhgjhHbt5EV6ud642Jgs2D7+AhgqqoG2jdjnGao74UVO41b6clShWe87lWT6b8rwk1uLTsZGx6tOJXVxJ9gsSly8b5HDIHGsqHNhpH6bOOtg4OZDCnHayh0Fk7Nq3ZnGckd1DWuRk457dIOop8jbJ9rFRGxvoHGWhasI4dLhYtKH1C346NID4htIXrJY2p5Lj5zecA7J6u7K+aVKJy2kKLyysAhacAxbt7w9Q9PiJaTGm977g3Qf3+cHueMBBz9qDibdf6U57W+kMzf/4tnScKH/33/2p/m+JzrZifpMOsPz8VPySZf8CUlJ+viBk3x/WinLc9lxm6UpXr0cT3zHn1MtZqBHU00LQckG+fUhCXt4q+ZnOdYVPpUQPTSTctv3c0bOy8PNBL40ivA7dfa8RAfifyec0vf7FuBxzEUWa37/QGPkQ1tpWcCcOPk0of4CW1O9lqX8PCG/NsrWVrC0Y1sjl1L4lSLpePJpnYhM0V+vnOb5zicifhso04iXPAa0R6Rr0oxKZ/iVPpTvxxBS/kFAhUO8Lvfc1XG8iZm0jJXUsh0kl3mpQzL6iXiUvNOuP2KKvuMso3RqReGYoIFR//2M/XkcJ9pu3i/fvpAzcGRX8061brrahRRnadfNWDoyIgQVzVX1AvaHwe6YB4gAIkHMWAjDmVmxdmBVN/AU3XG2BjEOLuKAHN6roPYkUDYjZDlzw1s05E2PDsv/fwUxfRVogjidCbogXhj5AUKilYNCRES+5QdIYyfVLkUC9zpUFuEcKwK0SFSANkjHWUEG1rpMBGwKsBOxFFx7Pta6XNCNyD7I0+sQPuAQ8bCaXAGIZeilwn5hESWQwBU7+hlIQkSEshE+MgzJtM3jaK4CRG8i85Ah/EVkZK/l1sH2svJzP4GGCf/vjQfo2UZw1whOtqg/YQQnWEehojiwwdYi6wDd4aDLcewoprfWt7kvO/EQXUbHqf9cXD/B0daQfb1jwC3A+xKltoNrBgkC25I4NuKwogSVSyhHHL9Sskwf5cRtKbJDBJptjrL/l3HYJtBh02Yis6fq37fEqbYH6D6RuahnOYU2BKkx7NlOF4RwrttIV3mjTk1Rnt0JITPwk9tLfVOLWo0ejEG2bqbpxLaR5xiG1RGjzn7prgtPU4CmgKDOm8CYqYGMMpZzGl44wAagek4AvuMEEMKNgcYYBpYpMJ705psLiTqJGVsbqI0R+ztbfGThrxvJMv00Lpr2Vsir1t/nUGpaLRJ/cNeHIyS6Um8oqmFR/WiuLHc0hCTIXVxbT0L2P/22D3Pk2e2wGbC0MxO+v99XlRwqJgYbK1ELkqQQU5m2RUxQgY3ssw4jlEfrpTrpSJmwlWWpUshOZXEUKgON8pTXfr4/m8+RqknXRYRnCMvJLDFa2HRt0uZngus2sapBC3XqxQbalq9c0+52MO4Crx0bwBYygUZ7CL/fH0ZqfD8kvE6cci1q3oxk2qDdo0zDsJ3Sjm1YNPNuIWVgG2AUwnoTcGHyHYvP1fgnnkGjUvp/uqFlY/CrfdGlRBYueV3lqH7W73+3s4r9fr0uNIfTjMq5BgDnaYowBK8j59KooxOGcdxuU1T7TCigusxyxMSZO1gc0cu3vmyieKAvnfX7vsg8WjlAD3yIBCFEoqCEE6cyegAEsJvoIvZQeaXoYXCFKgLyN4vxZALCUHumdYXDAbDmJor2gi4v2RFgfkBAAHAifi/50xzm0i0yjQwAAM+/XngIAPD6hWPw77vvVXg81QVDhAEAQOCvyyTlcUK73A/0Lz0WH3xC3nY+h+tlrqjdV1TEw7p8ix2v2bcUmSdj2WxrnFFV2HWq36jTHnpfvNF8Vc/jXM3S1L3cb4V/6EceUZ5TMvtjikytk3fXnD+8HpeoBq/qUJSAWQqDm9fq/aq6bPo2NQ9OzKRlblBT0IcRwf9fAqAEwM4TLRprc1LOszEbODAOsgnQwONtZ7Kn+o76xL/ERRZBABJM4GtEgGEJMANw64t9cBAAhu1PvZICAAcBm43YOzgbQ3dmNk6IG7PxZP6fTSAKx9lEjrFwlp2QSFkMAdBjaDYCaqx38dgASDQxth6ehF0cFKlGrRYmZUqUMpNRCEx8Gf1NKfKT1TpWDV8nD6x+99VMZaycEgUN/HANjpXehUkkvJB8s1rPXyxgSZUoExJONp+/gopXcYhjNSZbqUjxwKrTrJ5ya8y59f5DeVvA4pDNU6msbwrmL/Bt+hKxklnsbsnH/BI/GLRPxSKWYqAnosym4TL8oWPGek19khAF1IraXgl/LFbpgCRWkipMFiNRqozSz1KlKAxEkoSoQrW1SWJYw87y7lkcePrpV/tWsyrhAWb9H113/r2/RxA/xza+D8HkQUwcEuO7m2dsr+Ntm2dkVeFl/X0MLWk8Ldt4XAjLIhhcVnE3E/0Djb6Bi+vJRs9wgO7BRtcgoXMkHaOgfezgpJfQ2pOWjjR3dQ7aGfZbQUNLzLUBO/UPpprUOa22kTUNXaa6KbFWkcqyTKsoZXkhtLJClhbpvJKig5Ucsij3yxTm2yzmDiykdzmfQuZmkDkZT8tOZFbitMxYZgTQ0gNpjOQ8adElqWGHlJmBEoZdT9O7Uucm59G6M/R7Uu1bmewX5SV5YXQ7p0y0oSVYMl6HjNO5UmXS88SaJMY4mOi9jmK+l0J+hHSqTiI+QzxkNU/lypfMIkQyorVsv4nEEkbIrEPQ30vAb4LfTHy9Ah9PHp6AyTjlmDRwgXgaO3DYErDb7LAZiWvYjEmRMdZ/i6dy3hvMRSO/KGxxewM7iGWwN7KMDAXdQFDgDXQj3sjEd+F/wOOYNruTpqAaSAqiAeWAYcFINRKNd4k/EDEwPoAu70C54wfAswBRFGQDToEZyEbMyMS6sB8wHAtwSiUBHUMTc3qfhGMkm7ZzjqLOmEPWOXdderBKTfoc0ToHhssZae8iNGYcGB0F6emEuQld2ns46PKM72JYpCai4XGdI+rBh89hn3oHDAII6NGC4egNCiCEJFpKeRAJYDSIxlau2DOhArnXhmJWHHIBAAAA) format('woff2'); + unicode-range: U+0590-05FF, U+20AA, U+25CC, U+FB1D-FB4F; +} + +/* open-sans-vietnamese-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAABwUABIAAAAAOygAABuxAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkobIBw8BmA/U1RBVFoAfAiCOAmfFBEQCrwItnELgg4AATYCJAOEGAQgBYRcByAMhhYbTDYl7NgrAs4DEtLZf+Yk//8hQRsjBO0PrU2kiCZFjAKLYsRiOEERmfhQztnNN6JrqzuaV9BPsVoxJa1rbIGhh0Nn8aWxfab6PVvnDAXnr+FcDAx6VxSDYDhE51/mMYinmVSJY3uAYoQkszxEc3y+SWZ2cwDgiMoO0FVXAbBQpwqo2f0KWV9WVWhk3f3sT3Ov7y73k6MQfypgij9/kCkECeSnz5XTdvMsDPqyGumCHroN0DY7MLbdYWOiHmBEYmBRNmE0YAYGUwwwhzYu7N7mL7pdVD7+U870/dFIbEhKpA2QU+RZJEPqWSAvEGgTVgHwhlLR6alHwssN8MQCgR2C0ID73/M/a6VqE/aaAjJ81Q9rxmGa7iHDUNZSr0FqmM0eTgE+bdXP7fKUU/sYgmhtdJ6CoFg1GJeZZknbBeXaFw8eglhroT/xZU/MXj1hGiqh0RiilUIo4eLj/1TT2gEGY0JLrZ82OWQFOoWiMx1SxdIpVS4q/A8MiZkBdodY6S1BciOVEqVMOWGduFqHmCpXLql1yOHuypA799el8qqrCtXXdmqK+vwx5nfPVf2xDAmFuLWOsVY3iFq/PawSEg6IOCmZ+z23roBZCnE735bOhYYQ0SIdTbiOIZSO22gdd1XEiObp273pQgCx9Uz0X+f+BxuyWI8AhjQp6Mw+y51cK+xTK7PjMH9udmAMuz0/0De728u985PjmRr2y0xH+xSgbsnzY81WsWTzVB9sP3Uq9jsN2K598oUfeqS5mmoC6W4s4s0pwLKyFkB8BSAfrtXrlGxQiuZqv7DZRcj3np4fJmzx3nPD8wRA/C9NP8mSNMODR0e7x8U48QzxxkujHTD9CMhhpVJPSgroCokdsp7FBymL36ceCu0Is8iI4Vg6+an9pf2rOzukEBMlwzTSYygWTw6d/Nz+qvpHjxJDZv15XVyr/i94dOyR+aOatUsAQtHQ9oPqAxrLoyQJGjBey7fi6Koh/T8KdV56AyjFcDLJlyImReN3QzJjjACwpEmn7VJ9vGHtmqd6oV5nZIbvp0qNbSaUm7SFmIhElxYTcVNDyOG8BhIUcIl+t4fVwSf6TbfbasCYeRXqtek1asYZXLnKCTTbLBVPtXpi3foMmTCrXJMOkrMxIc6ORZdZ8dzXb1NJqNmxI9pi0KSTPiFuqlSnUYetIUc1fJRp0KFHn0FzBSJoR+aK4ToNzJN3U57e3CtRaKgXCetqa6oFVe+eveborZacYvDOGq2kcPC2a5s6hiePHz3cq7x7sPvNZr1c3L939858Np2My1du5WdOH86SvZTz192Za6CStbb+2bRWBi2hX/g8aLYEsXRmvnLFSBvjNRsIcIrTwthK4aLvHUI5I2jNvNB8zfNl5aiQHgBxwkbCdfo+UPNSCSynGFV2unxOqwvcqEkArQVskwlYiN+fcHTvqCZ0oievreafEs3WM/osG3adfbNkFKdkE74+7uRsK6MxWFKfVHVd0TzgnmCzysENWz9x1HBkL47rrHu8y9+XP1KA2xBBg+uFkxLQx1rWsXI8dddSwoa876PD15PviM1wYGTIUBbupt8aCjqdacsXkwjc09n8O4xYeU+ZDPeMnQFxqTAZcqww3Zmop/q0aYzIS4pCTz3FK11eKxQJcmqQszbBYkHSmrkPhgazOBUQDG4ZgWfADhiGmVzrLBghWHpFFGJwXk9YqjCEKRwWY5eEVC3eSS0/IsAkvOtQjHrEo+mRInmhvf+SIlqY3hgeypkHlzaGyzfmy5vX+aZcEFvm2vLvOojRJQKYZFnxPJzL4aBI7LY8tp1aAqNDaCx4zVVEERTHINZOfzRo4x/aj/wYYe+THHeafTr3ikwXKZl/PZfyZRVv7n7d1HvCYGXc4Wgrcf5R3AwK04bLoBtlcB5iul1qdinFfcG2SykvpSoyZDTQuHb9xOPeRNPe7DP1WaKqOYEV3Vew4ytl9+fqc1MjehW0E/8bLrigZw+kwDURxMLt662PcBsIjuDxlU68lBnjn82GAyoS7tnRcDBfJnHfLvacSGg/Er+Clh4zNjFbb2Q0G7n84N2jkTfyi6gDYRXBZBfebVJw5zUrOVILsQSHgDW3UVWZfZFN5cT5c8trl8QX0ktN1NR4LbIhfWQ0HGQPopqOz1CcyzrtY5rtat3eVXXguvLu4YblVvdBbI0JFvHMpitSWiJ1XLQmPPkxX0zJlTPU+nHzbLFwna95dKoRFCwMSfJjCSNIsNyNBEM8NSzL08wAzm2XR1LjlzEY1Rj3tt5UEV4fiZvzR3zmNmCMyVioTdkrxAeU1OIPNo3Zy5KrtfHglkGizkkgFZzdFZO22SmYQM0ZMLrkHOtbKHgKYUAebTQ11DJt4wjDR69chATrjspRHCXjj+Cn0Sj05tSljo2AcufmDQD6+ZqcGbB2gBZ/twSUipQ7Ggiq0Jyew9IwbTl2cINL3wWagzYQghBxsS7Y+C4UpBN7b6xnpe/shyrI7kjoDBYqO7JT3A8l/xSPcgVusxssG8qppNtdjFrYQ9x8Ot9/PBzUtk1cDPd4GTFhU+dJpB7MnbJXtBluSMDKoaWe0hlR/RkxZscHCuyBEr3VrPjNiqDU0dPgJSIyGqFGYI2FfCun14daSrilSV+YJu8ztbllpR2pQ0xi6EkLZy+vI/Uu5XGxDO+cmxElnOkERLQXktJUw1BR5nRb7zkRO0HWYxCRT6vpPjq0cCwKDJH3bZCGNTTymleSYadxPbnRH6gsHE1bTruRvKQsJnXvUM27NVHt/TyB1T46RB5mfInKQYXDicmnHhkgw0FrGJ6YxWOiZqlQs3zDsdmeM4bNSd0x2LqRkLFSCC84JDaYzRDALkVZyaqEyhtwTQE8yc5GFIGyBouprIH/YoWM3R8siLlmYoMe0P5AepH8/Dm/wFII7bN1/cIBH+hP+tgjxDTMqcWiZWDjjp/HfL5CE0s2klHAWnkOQ3iGXp1MaUBKcOWC0pBQQDb5KcPbwTcsEkPZR2mCOyPdBk9tgqM3qTIDPw+OoItZRYbTOhL/8VZOnRcmaey4M6q/BIsPoVf01KVn6boFFvaFIfJFtHGdCe1bV+RsV+R29ff4hi1DJ1qgNWGJ+0j60bkB7wkIuIeF1+EIXoRCED7L8iTCVZbgTSYIxMFjcuYv2CAmsnFq9HGD+GwfMCqX6ETxjTbu2Hncw5JyKHxE6ahnoUtablO1z/tMlbAh8e2XAOTLnkIJ9QrzbuGlsoQNq30U4hubcqunFOp8ygc6PC96F/g9sdRK2PkWRkSrNEfBereh8sv/887NcHrHVG8GimLoWRhzn7Rm5rw5kwyy4fGTjo37BcmK/8dEDSqX5iR1/6FDN87nTdlXu/KXAZZHmwRyZKKDCJ5ZRD2hHLuRHLC4D7pY/N6OjE+99zL+szmar94gv8i6cpxT9on65B1RyB81VnMEjus0fuhBXx+9uj5nYRIxPtVtxKV8p+/QtS6BOk70MVcrlq9ggqYmMLjMFV8XA2g4V/36NbgfyvwzWZzJhXdZt/qpVB1JGI2g6PEtf2/oqOvxmH8wvTqGSw+dVgNy3d3rXnz3Lnd/oOrfdYJbgxB5A1+Z3MjrMyE3JnIlOfcLJKDeR7NNNq5Tf5Dv3FKvrJ1y7Ps47iL6Ce6xXxv92gcAtwa2uft66ZA2NqyQN/fcJ5SRCxVw12bX66sMCgxYiEGPBhvFtJP4CcgBcKNSyo9oHpTqQyl7lNL+BAwEEtwSP3CJigqgHDyVWypo/m+NkpuDU0Lvfh7KJQnDnBGZ+h1JzMBvt03HGfGbbWTdsOuPTca+wMzIzx3x2aLcJiZfEgv8kfQBispSiLlxgwleu0aH+Ep0xaiJxDl8BCrLae6WEds3i4NB9z5Detf6mS2VsxHbN0B/AVBfv64tDHbKPiYgpWBtgObVFLoroPgsqCwuiqVC5x+wjlgjoJddg1ZAsgPkjlSyg1i2+SALPORkOmuUc09f3eUS8GU+aD3V50qzgFlk0rwJtr7Eb76Q9PaLs70fGMfVAFB3BHnSDq5OBSdCcb2xfq0V1XzCGDHucjGrAoq/fisBYlDVb5MVZsxHHOQdEDC12BVKBFl1NQXxM6R367rwIXgEsvgcQatDgY4K3d/WvByGhWIpsCA6RAdpcM2S0M/HWJLL9G0Jzly5YX3pBxofb+k2Tahv2T9tAJlDfuP++VX5KgvqL8eGXb3pJdtbqq8ziKMh2j7dfW2BwaXJebPgbAr5Ws6TyXIezIfKhkbEPPrJBiCLuPlK9HqyLu8RXcGK/sETObP8GBoxeTIOqnR6Ra8Y/S20wAs3vM79QGIjtpXfUEzmqrEJc+bGDXMdaF6cFDCXrFD8PWnFDjRi8j9L2br0TBDTIyW33edJ5aIDRHLJfc8ZxOdsK44+c4c6PFpgOBiDuBobW3ddY4soZlyYwNylTl6hbTpDohMc7wMzHzzF3fP4NRTZq68uQz2rk26X//pxmZTea0yXJystIQLk4fqwCUu6NlONsfoM7vHk3NLS7dIu0iVwkOOS1Yn6F49aUlv62FIuna+0fJW7VDU3WnnCv/g72lap3OR588XSucHKkwGF3cwOD15WTAdhAT48cGrfv8l7Xa7l6XFt3gvYoyNCxv5RrjJXTXIynr291gBKnoSelE9DX2rnITa2vKuhnT/K5MzoVKG275hCHT2CG2l7+Y6v7MozUjJ4aHo17HBfHhxj9+RjNXd7YWpNMLXrsY/dZrLyKAVk9ZVPNhku3Dlt1Ra1aBGDPFlebr/WeVDYNh6aRMl2IcUQQe9QoCgkifSuGp8XZTT5ajUFS/LLDsFlv8EUi7TsqgS/EmICz6/P8L/konie2Uc1/nJKwq4aEQ1ou3SGX9W7rZ4XSWsZSP3sOmGsYqEmFHRXh26ypBm2kXE95hZ8rerrljWpTFdqUEiAiJ49rO2u2E2axLeDerb+QJMFbhpvZLnfzMMvQPmnUtXO1KR9NelWZ+QOYfN8SFb1Dukg+2tTLU/n/8/kQmhKk1eeQ2wKsdVwZ46vVTk3hBHIc4vP8GnDzybWCdqVa9Ui+QRiWZQlKmJj+9BU9/aK9USdIFJIGHWMu+mO4QL30ZglJDXpXDUzWZlikp7b22vPftLw2Rc0SpekuXBojaCQMUW13+ALSeTqzeUvuWz0bhCT0lcsnmk3FvLrm/x0FI/d1g5iZETknt8fxFLCYqJiwzaqMuube+HOXnEvA7S83EwStEF8+2K/y5ja0jEmvE4aEeWuutxbe/7gwr7dXHkqtpMCg+D9atH1dMoEn2f1QB6qfTkZzg3Jc6ZEEUF33Qf0T9SuLtWqrDTcM268p1u7UqJcfLcpu6r/l3cg8tZssk2yjqWHFHm04PoistIrcwOLA+IqfAZxO+KK4ngOEGRZ8fdur79mKiu76NxQ6ZHtw27UTm+Idw7sPlHJ4Wrj6LdJ+Q7ebDIkZw+suxMEExISAv9kmrbxSlVFzj2VCO+CGDcPqxB8gNWRSy0dtXzS1CN8C6Ld3c3IeH9rXzzewjVbEwSj/t/FnvsFPplR+PB25bydJbjGbQutLs4aAsqdMAlmLPwHkjseYk/6SV2bFYNB23no6IjmOk4Sfp2idBgfL47JUus9k8jdWWOE4gxOrlcVDkF0uKK5Y0vpKD1tFlP99KW3T5mfqI8gupcrxK6IVMLINdnJTT5hio1C3Miml6/5mDG2Pz/WFBV2bl9NCin0E2fCzEiiW7lC/ApPJYxak53c7B2mBF3fGHc/iZnB02K4/XaEXh/W9OyNetxPKYfH8en80PCIgvhEdZ0cdRCMFYmSg5vYtmQctaeTKDnxv9lrX7udXpASE5/wfeaGQ5Jn7DCDiEuIic1qiX9/7YjmdHoeblxjlk5OoOyF6/892x/5yTvQjZSn3pgXVHxL/d938vqSfKcf6G9kpHd8v3rxSIjsJ21anCvBN8IvUOkUzk54m1TA3k2ez3BMIswqIcKJcb9tD6xjVIMISSxbN4sgPRX8pcvMCZPJuhkF+XQLsoEjcLpllp1mpN99J4RHIBYhwjIym4IwTpR0AoaYrV/Y1zYERF1RWe9Gg20xVC71LuZwkUNLCL5FyNetQL71CySQ84waBYG8W2gMrl3ieYrI8D/juS/rEokb/IxMdXeYqHOOhKCRWo1xbl4+9IAApVOw7YkbVAMJSVF2HmaBGDX8w0st9SVsvYyCfIY5Def4pVHPgpatWvpYlj4okil7fuUUSceJMnwbxnf88rznWuH577P+bDeiXWnvQb1JP/V8bQ9ipYHcBwGiIwt5mhKsDUeyDzA1OCBTmUo+TmiFQqaYaksuHTGWQtoQle+i/huKfsPch7klZr3IFgAHKvZ8ygyWHKUBN85D6upy/vSXs+ZFlruSv3NXciVnNX8Bmpegd82Us95lWMsZotykqKbe63FgLc0TWLl1yd65zv3q3PWSyV3Pvdkb2RvZm3ST++cN3cSgExWntg8QIkmmIwRspuagPlHOwGYRq+RuAsKDGvInsu7l/MglA+XYzljh0LwRslYBzXzIWgNwU047Gwme6HGF0URa0ysRmxmcf1AESrxwA5ng03NaCDFKtWTTxbJQPBZC2bikkwxFJyzZdG1hKNpqySbV2Su5q7U1ezVrDUDFluz0oqdDzFBsidZR/S57KqPwne3ohVwaz+RSe/mQs2AOw3lEm9Ya8vczTiK1ZjBtDeUSqs8UWIPnkOYwBXokxAZB72Y4epxh6aMMR38yLC1hOHqaYSnNY925Dr6legxH+0J5CQ2zFOeXxfjLkKVzhilSGw/unBufC9vyRtGjhkO3fd/7AJZO+813PMSAfLIzscfbjK8XAgF1qFYxAfPHncYdMJ+q+8bG26qVRIFVZOC97Qfkr719eKy+rGrDDfE6llpewaaV+IzD7j7Z16ImTvaoJ/r7PUqrCdJ5K+pQQee+JdgJ/e0BdP25CCrNXdlFN7G3pRu258nFWh2U9Tyx2LLDVnG6y4U/YTIBho6AIJhU5MPnYmQ+kHGSDbD7mj3eppu48+tO2yPN6/6e9Wh/P/i4CUzYexdqtdVohM6e9mDP/GURVBld2WW6t3Uebthp8+6Z7oDpex89qpscanX8pPvp1UOSA1VtncdZK7HJIhkSf02yx8e2Jt6zIfVfqj80gQ4Hhu3asQRXp9oDSC+CampXdjG9t7U17B5trLc/mgpuOMbWmNiiRXUf00HU0OCglq+MhdCxqmAwIUkxRddEAowx/wlQdmbqUsOxNSa2aBijTnRC1NAuRupSvor2Oja9VuclKWbZWihOLNq3UfeprD/KtqEH9bykpq4DwooAVVD0Crearcq5+e7MBqVAGBO9DBB72y73C36xg47QVAhMB6RzRRQr58XPSwMRDVOqdIwd6LgqY1sQ0NzrHZBGzW1AAP7TXnZ81fuMfK4cXdmWNTTEDRWEYZqCuF675Z0LskD/JR3PgzFmqAREGxsOBEG6Ap7Lk3bJdlMDIEDbyVhHVPeUNMscp3lEfhMr48IjkEpdGWDn0mv3qgOjUaP2mketbK3ZxJ0O5A2MBE3F0l2iHS8tFiese4ob7+V83uEqi+NWEPAElG3NzvYXDnRHRnwJyrPAQ/KL3GofhQihd/cU/dYg5tuhnSlqoWeW6ksFl9LxtMNHfq3MjitvnubAprVs/1Q8kqROme0iVxuy6PWGdhhG3rktX870XSuCSaGp7tDGXlX9uO5l24ynceOYxHqtPB6EMCKSMBIOc5U1BZMflgfpanRkICBp54SCWRRJM2SZZ39vPSRncCWILR1oGGWEXveO6G/YU5yubEfKgZ2O+2Oqst7Q1WsCsqZT164w9IEdKU8XDMdMSs7ABTPr6ADvC2HBmcM1ts7a4CSl0vRZBmxXgjDT4T/FoXmMTHtS7LRkjNGN7Ug5sHPGfV+f9Z2Sn6Cl3seZD5TT2iVXL+7SVE7bbrgF+Qk6qfdRLjwK2idp8q4taDuxAO1t+e7PW0Ea163zNuJao5YezJbZcVxlfwneW47mwjXjtPaf2R4LsoF07lEv3WSyG0+3hoftOeYIwZ3D4AWKvWVWTY57M8+RA9dxZKNmgLMR1giSh9I9BFG6MY+Xyrg97JoyQo8DNwfNiEkyPi0ebddDOVjJ3db2NK4iTxYvPLS9L4AACGB28WqARXgs4fk/hQwUM//6/chV4DX/e8847F/8v79bri8CSPqCUA3w62u95U2D/Td4yvzSdez340aedzg3DnHiMScLzDpGUjnGUgFfZsMRyKzCIuux57/gTnI4lzU42adgXhwek4q3FSUQA2xu2R+kiIX6CC68kJo30+PQncM9xwZ/izpEks04ddlmF3IhYHM/1nYpYpgYyjXC8qEBCDqKftKFlFytjId/FYFTmAdO11WDPM3jQ/0gFcDN5zWMBPLyRpsKEN38GiKELzoPAdzQTgOPHMxhYytgPrarjoxGeYf3pWKaU88PgAzimctg0teMpu9Mhuj6P9OQhX5G1w7XOZZ+MA9DgO3hZwg8ngi5CwRycXu89MUupRhv8JMnX7lCGdKkK4Zlz/YUY9FFgxuHyqciF3GkZIiiSYT54jyZI8Xexr5KqEiXVaGONEWESeQLsTubezlNhhZYl6Swxp5kjgKoyCtLsnGlMpFrE0WjMM9tWJRNZuaJIEMku7fMwObAmu1hpocgoSKIcbNCNsEKrjC0pI5gFvhCwFWeZsHNVcHmwfOsUoRNscoPTlljxtmsIykES32oQDSskB8GwWKKQ5cK0VQ56HEErkWUMJEsL5EB42t9pD72ih3ToYjx1zx++WX0FwFX4O/lm3DncgN+eDl4aPlH22LwwOIBWDwf3DfbDX/NBv70Lvhz+ibcOB2cmm7AJ6fPwaLJ4PjQrhuey8c42h6+jjeMtobnq0bSjdEs6yMK/OZ8RSNdqaXLdQClVQK8apaFSjpf6PFedDFbSGeoPV3qqXLcYrL0ISeXjmd+OyvTo2mwM1I9nNpWG0oppCZ4lYFE2p8Uwk6MeYvkAyVH0p64RXd8PiGUdoaw4wLd7trtNldLPxwo71dzj7fJkYnUG4JhCXbW0hnLdKC0lUC4rVuc+tvQ7JwPse04mtIGQ1qvS+sUaa1STY12PkiTVqnSykUA7D084zW8wq1Y4pw+4RTI4kMik3VsP/jdsb+QxIcQHxKIXXz3jLUr4IrtYfuflDXE8oTBg4ntYNDuH+wwVjJURUUZtLtDkXvBfbC8x5dM/ub1cONB24pK7dqduZ1rk7lLMpfnr3NQr+M4kssE3+K/ppKI4tjXWejXaVA3cnFpSU1+3X5tDHIKW3gbwv1VJkHmdQbKdQxDMplgW+zXSUlCEUKlIj0UZFP1vR6lqYHZ0h7Q6WBvRlgsWtsCLb9n5Nra8yHRA/LE/ffjsrJ58FAm/46CtoUPGStvzYdcUWxeNocUUqnU3AUZ5jB5Cg7NdABILMPUzssDShQEd5kvuDSZetBLPAsJllzICwEA) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+1EA0-1EF9, U+20AB; +} + +/* open-sans-latin-ext-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAADRIABIAAAAAZ9AAADPhAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoEYGyAcgiYGYD9TVEFUWgCCDgiCOAmfFBEQCoGLeP04C4QIAAE2AiQDiAwEIAWEXAcgDIYWG1FdFeyYIeA8QEjO9w5/FBWkG48MBBsHkG03lP3/7bgxBjRota9tmSDkgtFlV1FEgl1UKJyNbuvG7dVjGT/T1maryz4UxOrVNg2qROPCeblWmi4PGx8i8iIqMNmXTKEXwV8UmgwGl0tmMDIWsTiWYbPRDlrXyl75ZS6aP0QMbRHyAxZngDs5ohHnz/On/rlPTeEUSl8qD3C3jBmcpAKTKVMhpuD2/2+/sk7w4/n/1kDvm535m7CKzakjdACoWoek0NaoaiKX1rFSMbqw/0/d63tiQwlDyqlSgf9Y1MUh7v93cYAKRC6Qi2OXrSrgsnQaM4yGim73t3MvHBAG5EESJkG7A7DN2tohMhULAbFRAefEQJlKlYCUgUi2mCiIihG9WXOtC9eXq7rI+rxre1jXKxTFw9weyY8kuJRNeWN+f+ms/rW61d1qkNgC25LNM+PxaE5eAh8gpsd9RD7ICCqnINnl8Chc78EnyH4Q/ox43raR2ktph3+yEA3i99oq1UvYB6g7u/Qq1MzFRNODhl0u9RqkoXsXmTjEyqIvY29oymIv6sRkY8keIb5EiuVQMwBwq+Gb3YhQ8Iv9Nb8VhZjBDujEt3vKVzI5Pv82/WzfaKT1GI+1/g6wFhX2Fl2QKuqoaebdN0/z3psZezS2viUZeNf2R8neH0sfBf9HWkYHqNuzVcIyBAwhxipbBksqyqQoKsAuddoufRP/f3vVcrj8DuiGbjVdnXiySv6fhCze7R6qynKqIiNra6TNgnot3eRJw3I88W+1/TxSm5VRtmlXLIw8XH5M/mbfow31VUUsCgkR7859nm39a4z+XumpS/ClbJqIiGfSFwMCDNRAyNRPobYZeBBs2aIItnUi2EER3WmP3IcoggNRBIc6EQgoom56omMmolOuRK+5Gb3jYfSxV9H3PohPoIh+8TX6w+9nRoADgIbsQgAbKoExDrTyIdftwAICLl0Mg/tODVWFbES/0hjsC3ZvVLv5PO7wplYQfKveVYb6g9OQhgDExnvX0mD8JM8Vd7B4isi/g8NzvI29Mz+CXEVQBDsYB8L3A6EvGIJO61ZDDsAH0JEOuRgQoAQLr94Bm2TVUpe3eu+HD3766JdPflt/1jnm2sDVYQJlyqN/0dSAgG49jjoGAQH5xB574r33t7555/tb78dfhEgEsTUSJAA5Y/7Td+qMSjs18vLp4ygxVQKMryaHt3nN07w1KClQ/Qsr7/8NANbvkQNQ8cU7eO3qAkAjcnVYWTvs9dviAIt4NdQTIYCINzxDEQD66dEnBBGAAQVazCAAwJAhEQAcEGDIOBKA9V+tIUAEUtDYSR2kogR8d2Yf9CtBNy7ZksMRJiFHU5qWvMrbMFjTmDN2X0ScuzlpnCLOh/LrHXQFXU3Xc7WrOxkGBGh6tkcQ0UisJM153vV96MeAcxcnMfq+fLVyrY60F/StmR6XpOb9OJkXB1/e18vdAL//9LH7l+9L76+4z7t35d6Luw137S4rwZ3fcqkCHj3Nfvr5fSbZ7JHX3vhabMpkF115lrkWGzDP1Us1Yd387kmdT/pFQUpmlqmeKuCkyqsm7ayQQDGX5ah2nbtfKYnsKTfVSRO86aMTL8lZVaJUOy1PGqljclTlioyQsFQG6WDqHilUmSIaI+0jJ3FGkQqNoqUTO6lcnQlu/EVJkO0Ud+ESjZXyHFegRJX6lMlyhMwxrUpOkjzmcsIP+5ftrDipsh13WrFqf3iXK+KkyHTEmZBoraUiZTjihALFGpYSsGt0i+65XbRV38M6feqkNCM9LTUlOSkxwRsXGxMdFRkRHoZe46p2Ouw2q8VsMhr0Oq1GrVIq5FWySmlFeVmpRCwSlvB53GIOm8Vk0GkpCBpBuXFgV7GVxJl5MdvY3TJf4+QtNsOCYlNkQRreG4x4gt8XNzqQqmOdC5YdPJit5NlpqseNIjilGQiC2H6t0SGP9muhSueBVjVHHdvXd9fOqwKQrC7o9nws13tsovWWAOmzYEUmAF/LExl2296UtxnLjXn2NseID4xFz45l5ivICtL2o/hiOyldqYjtgWS6WWkW857jp9wgFNQCHeeh75yCXRarRYcNZJsvm3coQk+IICyP90TbgfPGdqMHwqsvNGk7OwqhqUb4+CPErt3KBDqyKbrHsi9eH6ulWWmC/qkuvxAk2fzzkLf0zQ7Rug8RELRCOmYGioHxkBoPtvH/0wuH9RiZOt4g6Loi5wZCmLgr9xJytKuRMNM9JY2FlVtERrZpKrRywTnsQghjSwQZ7spmTze4Vz7yKVlGmjL25S+h4T8EiBC+p7gMW6TQx8f/YPHV19/UJPHGZ1oBPVxg0ULg2J2I/GKddU3j5A9u1PJrCsuwaU1N9Vy8hHarymR4Jz/SZk6D2AbByRgstwmVxJPwhxI3Ea0LNz90xvBkvZUkPLMc8trLeqXKK8sXI8326+eMLRfnhRUXvT5ueMjSXN7nAlA7mHA37k8wmL3JQZmenFAQi076nqeyq91PhErIh4jzu0xtRmaLQnPkKxKRhtjMniMxz607iszRkCByGLj+in+GK67o+is9zmMi+D15aechQU/gOYGZ5zYz6HAuXC8wLaoycH2n3RrtZ/+23zuTiuA9SMtOml9yaZLYuTrOslPzctPphGhRsR+8R0bTqALbleTGbBcnmnYL98EsAYT8Duo6/n05qkXTE2bKh5L9U12gSbI0CVbzydUe77RbxY2YmuUvEyeKvO8ZO5nfFzfaLEYe9/BmltXP8yWSc0cJCni4L6Z0nNN+rqYmpEiE4iE0GxdH06AuAfB9RpU9HhCnCNRCHtWVD35EkBI6vg4Np0HTGdV9ikUwe4eBwBHUoxzOWVwIvn21hGKRVJd8n5/ZSK1HepKX2eJ4ckxK6B3tacOlJGPrApj7sVe1zQy0axO5Ji55eMyd5mN9woHYuRSiGKUYKEYLGfOdFY1naZ4UCy7X3VtKdq+WBWeSHhsWQLn9TEDWJ4LSM3YKVSeIFFIB3o2GAKEAoGVpNGCuyW5gAYE7CDfY4Fh0xXOaQUdSQgPTaIirggGiWVuxC03KIEZwbbIhsPj8lh9Xkwgz0YPbC7pa9T2dOAdZaQLWmpxEz45K6tI6+8kqcEANCj88gNXLiCybyh6PcLjo88yqrfBi4LLv2aLcgQQQCEbbHbkhXFytMmTDXQdmPonjk8J5JTwC2vxBHCE+cHbiFIHUNx67UYNxnq0QFhbM5Sp3n2BVTzhGRzzqKYmI8i95mL/wNiXnkkCHL1BsDSfUvUo9tsDjUWOIe/FbltnZjRUKQT2knvWJn/azTTVctK8gcmEycCuFBYMtuI7uMFucz1/xAY32YyhRA/pL65x4oyRTaObzqeNctwU33FTDQsOOH9E4Qu2PFsltjpwkZ9zpBG/Fe2eIJuMhmuxnGgVn4hy7VahBI4sT4ZjX48tyfxSoO/QMtDqCCpox3eCgCCIgQEJv8TxudMDog3BTUcS/EEBl7h5IlJ8JyoDrHdE65TawPM56PE6DdO6eAHBND83ghIoeIVd1yy0tEMly01K5uphV6rbXYLyg1Qbqtj32SiEq1dynJbjIRhJBBF5QnP/ahKugVJiIcpJHFRXME10Jt3ZxF1fHHa7VwHABqRxKHGHPgZZuLZtndqwzk7oLttyLiO09SAkGmVjEg34AfLxKVaxDcCSz8JI1S9pNoyzjnL/UmrY1SYTTNADHTFMxp8wHWhzABnd45G18IjQTGxmo6j7JuFTdgluRt2mh9anHt2GTCI9lWvoYEoK8y8j4Dz8jb3UkS03L5SF2VILa+6KccJubsuvrgd126UKckFEtE98PsOscdniTWF4nlOuvVwQe+nZLS7Ws8TzXGpztkkvYC3qzargpzMdZSLLcBXFJRaufdwfcfvffUXEBlC7b+n0ZoMfR61A+T8UeOTEt4sipyJny2+iRfAchZf4LrTTMjnNPyvINhJh+py77JFd9J1n5dFd46Un0KoFlaIL5+JXRiSLpmDm4jJYLBpU+rWsYcT0Go4PMeJ1jtXBJxRFz6ErI478Y+wmBWWkU3wvA+T/VM76vwjawvaecI9VUXjCbsuAicCG84C1vdri6xxCEG0AruhjQcggYL9oi5cAhmPszJjai3KD21dUV/ryzTdHUYqBpwMBfOjHk/IEq/sqZcgw0vSMhPqDOKb4VtNSFMn+kBk7kBS0ESQYSkksUi0MJvJ5/EeBPoAEX/lT1fHYkm1pJPfvoLc9mevB6qFuAUy/skeaBYVO4AAlU0D4nm6vTOsmOHco6546zgp9EDSNBTegY+0+ytVigBKqgwDDOlwp/acYocSI0GSqkoX3JYO0xSBVD7fqdAQNUlhGsgs5tHq5sqBTDOYoLx5DLMLpVxiPt8aQ5n2iPDaDK8CyNB3sKIICseIUAlf1hvDRzFHzo8R32AuCnbtnsQ88i1oaIvrr0GCkSapol3ymebHh75Aii8qjfjSp1KI4HRIc6IHvKOGrNy3JSCqV15hPf77nuvliVWo+jVqVisum7arjtT6pJJJTKI6VUHJNIK9UqtC7aUoVbrizHsvmZV72kF0230krV00QIEsZ5lJRa+UksXpOviPvUPY+r3vfHy/z497/ffjH78mWU9LcrV64o5/xhR33islL275GGxD/o9J92wquHcoz+8F9Y4p8zd5X4NWUfJTmEUm/Cu8O9J5MHlj2Z+xgfrl+WVwMgb82UCmyyTlIIdOVm6CBrknzync25D1/0Jmt8dstwEO/EbUVYQzTZlB6imGa1A6ld/K4gC0twAmVyNvf8IEsfLndz50ED+OS/zj4IZcgya5VO/ovRNCf6AHnOhZRCAZJsTgwcuDhn43+lX+aXV0VnC4aPF8HCJh9R1qK4OSnCcz0F3QlvyayKdAmLFRD+ohUhcT86I+mWp7bw4U6/kdNZCdO16BJAQRNuTq4p2Y0vr3bHh/h4lkYGe8qlAZg6PRzZaYYBeLO8dj5vgdJhw9PpWSNfj+c409sBkjjNl+waQ8N9hUL9gLXkZQBHNA0Ra8QeGizPkWb52fQifn1MChb+H7PpaE10lbrtw7w/oDxrc5lRDq6j+egQyeTM32SRN+AaG7N3BSrVEvTv3/+tsqA98RnqhO9ZQXmuTglkp13iAVnVSUt+gR//3pUtgao9oX9xLW2D3lH9kHa4E5ethsJoKj2C7wZvNpHwC2WZH/bwyjTZAuddtnYCHGt2NoT5tTdd2jRZI50ZegkQmRjQp1PWNDqLV2CbrhkwM5ImlRyxLtmx3mqHVV4CE0W1117gmaSqmz7MDF2L6bmZszsVznHNjAtW2XzTxzfeJHMwSPIzBGvSpChuqsILJO/81hePUzf1lSxv0oz4r0Oj6NW44xBp6cHv/f1sGOnjEsZAmruYpU1itWytzgBvgmMVLmk20aSCXzmPLblNcUBvIYGlc3I2S1X7lru4l2TklV+oYGAXiPQdcKYJGORX3vxqt5rDssDwO5h7ZnNAd6mhhMyxwB2cDtuutu68VhmI42lJR1asGel6AcFSyWaMyc7lH99flVrsy/t6q0tkv5MowMv2mhKBxxby5TVpgjJdqLLxKdtq29JkRoad+4sEi2xT+nFNSjYHgYQbrwXfTnvmfs3GcLmlATwoYI52V6ZYx/5YWZXnRkB4EGNDeDGLBGQMvRY5JZagh0fTJQKA6IWeA22AYLWHezskHPAykGtkLMHWjAuynT36BKn4wGWZt+8eaf1FNsujE7FR1xhUD0T90vFL3Y0WOYBrj+qQP7pzL4IYV++r/b8yF9s9QXmQsFmC7LzaFk+EXEj1RI/IrfOCgFTqHqrWIwVPPGFf/IR4Hi29hkO79G2Yldcrk+cjrEiMV24Pg8naeOzxlq9F8JOGmw3V3iGuqmURL47RLqUlTrYpFDfBJGxqDKIW9sQNz/KTilq5CqtpSQYKi3BpMkCKiOiW2mCVh+wJa75k238RAf/H9J9glP/5Nbbu/nm4dUyKYH+5AOQvGPckt3m8K3oFSUz6kNNkKmm4Ip1SLpP1JU6MzxmOo9rMplSbBoPvYrqAN4MNJ/GiXQXdmcRlgD6PRInQWEXIKO3DFdcvcS1eH8hh99LKv7xdVD+RIYKqYTxuUryTfI55b3UHRdghC2uqTAGYldQCfkJhZirBsgqYtFI4J96ppJe53rxfEO5ElwqTkrOqh5Om4GzWZ5Wutx0HZbPaVrPEB2J/hXyBpzX16FFPlPHqy81OfTC6+kBct8kYa0Pd8bXs12i6lkEz0V5YPz6iXEjtA775nt46onUW4kR2efzfb/+XM1YdFqnB9KZ3hEBC3Ydg89fRIsgceOXLrqbfz3QXgbw/37z2p3nBcBrJTiH1L/amlDe9XDY6q7if8WnNCy/dbixdjuNAxouhq7HBErB4WwxAx6RO0g8MvPO0MES8MTOy6n+Dsdxh2859v+nLD//tvzig8ReIiSOat6NgYxAXrODzlQK5Dt4dH793mRnT+/1L9T9X9rXfxVQgCWOc+K0MQ+v71auvSWPPNoiunTK1l/REHVTcRCPG3ph5qTLuWRqiDCzePuG3zbfb1tn48eHNuVsORAKu3V6nbw5wzZchCjLuGfmVBUgl6LBMa0i7k7pxoug6rNN1fIMDZORt25h+6mlnsR+3tUSAc64in17odDOgl4IQbUwBYgokaj6aPx3w3wxIvXVzN3jv9kng7v6QkrghWN3VPZi9BzsAWlAALtQbNRhEBIInoH0bnIf9595eZbgfOlxPBiYUHgVfo/DEh3uJIFmoNbz6EuC1rMhN8ObPfY3/nPGgvxE/855e8dyh1PwvLONgI/JL3tP600ueu9TqcckIvs5cMVJwFvGi9t6ND45LxnCNhsqhorOxLxv94psrWm7+txnh4496LlmYm8st7Qk/dV55TfmPT7n4y5Z2Il0lzmhktwzrR1fhHrB1BUGNPf7TiSwH1YNQkXFGJj6zwioqy2CjG1RUv1zHnvebTucoXScw3GTCkGc+Q1JkiS0hYhQEYoa4ikpNKcN26didOhtndcDyYg4MH6KNnUZMvAufmA6pjQVrwTZK/9gvbE82Vz78rfKDT2uVP3zWqCy8ImosQxKzwtfUGcYD2y/VqIz9zf1C/PRVjAYH//RrFYYfG1tmw+SV8ZOcUbvno/HIH7GpD8m92x/WldaVgaiwXv2p93bbsO0GHP/r2u2g/VdTPC5R2MY0GQx8D4qrSzqYMHxi++sfng4h1ROO2MgwSFs+ZW4MMVUV6c/PmrkZMwW5WghtQ0LbAmLH35GU2llOZvj5Xw4Zc7WnIaF94PIOMfN4Y2PmR7Ln/UNrPAXLksuoIAGKtlpAfkYH/LWAhy5jDzGqp3jS0fACouF3gAqlt3iryLWkqjryfOJlpUtWl/ob2L1dqbnUVZv5lvJSX9d5loneH92d3jfmRBCl41LTct4r9WK820HkMX3I9wbN/QnB/eCKDiFzvbnu0IcVz7cPb/C1xdZcRhkJIAuUBJef49jWwtbDeqJf2/+Xw9hRFNlzSIGRiniuI31xc0KT1uOg1lBljYTF+IuVLmld6s/gpi1V1ZXWDs6OoWcPYrxTc511Qk7fou5fuPXkEBTY3zLu4/WjOYlDzLiJNFRTlO8NdKtOgmPTudQOkeUY5Mh3L1472mEenl/KElpSKGpVeerPxS3CHaqsXK2dxJcnsw8wqyM1b4fbIoS7VMSFO4rJrMod0J/PGBAqFQnb8ffgeC2wPmiKRHeKTMpZaQY1YTtJ3yAdRMD5OFkBNDD4mj6Ot2/poDDEQctTFgi6pODPDJI6SdGwBBVB0kpIkagidQZFnOgkpoUTaa+h88PWw9ZLx9wRFZEV1wEak3GQXiFxF5DcMmQgv29o6fjI1nxLFJPB47NXNb1vJ57VfgrPB40zjsvPC/CLgBQuKu5EfBL6ZiqeTA3u+i6JGGgY6HkUhyKi08tBpOCaj9aCb/3EVnNGWrjwnP8gC/uSM+8+hQrGha2HbXS5w/VJY9BKwx5o7O13Lls5rnwfsOjjdcEMeYdnt8OAuP7cdENeA2C1pk6GpKa+44Brf7O9epApaenpaT8EEJ4aWNoY2+oPIMaQ6cXsbGeeqUa8Bak3/W995OxAACmKTuSzs6tzzfXlV6PbtJ9isKCLxWOQV3cJTaZBhrTMQyC7S9ODZDUjC1tjF/rPwWhsOot5TN3zZtJp3afQXw96L+kUN1oNmAflF/29Z7hm30V9TzfbdOj7ZZ+EszxVT6EdK1WRBhMvWYmYRi1XTKvLkxkJQ/Gn5O0tw8Gs/59v03KTm8yPefN4wvhaEpTTytW1046FCE2/QwrBmkmkZ5a3nCsROzA4fg6KK8BTkjlpxtIcA61K2rPOdqiPox9l+3EdqWVVNjEzObAkn5ZMQdoEBBPXrB2/wYE5wdZhgw+xn9Hp05w4yLlErf9KnfNHNMQLadWZz8EzsaSCZEqQxdeniYC3gYVNBaSGMjRQ0Dx8dGP8gjuAFE1ncPnsVW3/u4lntZ+sgvyMnujXDgjNpgEGfHX3HsZKaOUuy54zeft/Q9sy7Bx003lk1U7W7hs7Wft3Yty4nhj6X5mbiNcZdxL1CTuUS18BwfHiNHkMEdUIzfv+8MN7GetEQJKgVp+r4XQD/OINduYBYuDk3s60fc9ym4u6BhiG86gv9mWrHZ095GhEhAO1Uv4ZxDMD8af9mxoZ5YHg3ghOeAeJzqJgkeUJOR+OJ91HorGUTGjorsic54CgW+8Y0MVGge3xzTApi19RJuU3h/K+g0bs1mDHgnPZUdXJGA6KsE913oyvgwkorEKysg0XXJtP3d6ETxB0b8NgY9HVsELExDeqVy7Fv9Kmd41dFqEknb1TiNGpgamI+3Ow7WPHjrIQb/NNpQNnsPTD16wBp6F2JZec17lmlUxt/9SuNcee19poWMskYSUYySi+PgK9D0dCjf9PHxtYbUT9/1b6ytT1+kPFkrG8RoNsOCD93SKG1WCsYH69mLTe4D78iez51sFFnpSqyCVUxAOIWxbETA7nhMJlXWr2CTl9C7pfcOvonShwe8tER3H/IXbcKCdhManMvi5ClsZO26Nf3Z9Ftuqb8yN78uwElat4LrLid4ASpS/3CghOUmUteSFhW1nDrbP9AvW9gfZpRWRuUT63X2Q9Rplma7i1/WHxPp4B86DMNP5Y8JsTd5laNOyG9p9hPRQ96nHp5bahMwILy5Owc8f2O7AyJaU3aVOf6K0GuO+LIJdXQC0dLHgerT5Prif3JaxJUQBqMuD+cxA4AC7vFLHWm+owH5a/0DZ8vETLteewykiA/P0EAEUO8dVHeTyJ19aSr41DPJPBNe/5c93emaFI7+S68PHzArPBY6PFKt2Epbjhyjos9N8VyVc5Wq6AmKdWCW4vpS7a1DQDLpEYF7EGNnduO9Zcvkpknj00BEhAWdgbsJ7r2b9uxK/vuZxfT2J/vQHteR6UiD01sjk3shkIps8d/m4uMT949b0ZmGcceW095Zoe6tGECuMHom0dB0RG8yBDKmkqInpkyUDuYu/g8aFjc0NRbHYJn7mm638n8YzitdTAQMDutuBAfsbGkYiD3NSBD/dA453rZy0aAACBRNYdzsbbntQC1OCTw6v/6ckz8V5QvVmImILhvAIXFWd43Ax4OW59eLOZkaV/3Tt5Kxrme/mg5ZAwyLx36GsGII2gz2AZggXwz+8pSEDyYGOYPetyjyZnn6Pre6cj+6BjIApgBb4Mpl6CdtaeOMmDQ75L+m564MR8XBoRk14eRArEMuYPEGEUFpfPWtX0hRjvuMt8L9RG0wCjQuwuINeVpQeK+gLJzDBV8XALF8HEpYBAFTkcP7QSF9MLM/+cLJnPXxwktBc5uBLnBNuGDD7EAYYO/WFvdHMvLsA9mvpW/RfS/D/Mx07SRaEcCArCEQb+Je36LumPhoEZC4JYWR1ZG9KRCeuSzw4R1dnGyCC09xotOCm/JCVLESwIeYMSaStZaBUG+75LJgR2D8w0xxFkzvBq4Gu3hgIpjwpgY9HdisVRshZriPgb5X1ADk4uVSmi2xDTP0CafwR+9qaetWTeJ0C40NnAHggjXdPqrFB6qlWFOZXXAVlfreW/8utvcrZhPBm/jxnUz9l8n9KXwr7emk0oyskhFmVlkp2U/wX8tM8LJgjL+NI3nmk9tld65SXx92IrR6zmqtwOtbbVIa1qhpn/QstkmWRiFo5ScDibUIDLwhN3TIQShaU86evPNG/aK31yRR4AAACALr4TkGE3W1yPjmLxFoK6G2LokuXQxu94NFoIPPEdcL65SDsF0a7Lsun+t3yaGltAkcNsdX0QDtK8B+2Mg3YC40TvMBzYIjUzcG+gdv+7dERBVRXtD1Pc0JonNCI7AFmFyjzCzonR5EDxFCoQQXlX4XZoNT57hbLJrtJ7HFXybGJRTg6pKOswGQs/ApVd52iK//09hberdw1JeUVVfyorYyP9CabOdSBI836IoMhZkYfHcOOpmJdg6Kwogj5cQHSW5+enMuMp6cT4eBTOEplIeQdClxgFtpunwtgsfnlZJd+yufDNi8B8E56MhbZZX78dd8y1KiybNVv5a3MWZ5QxcuzorIl4weu/zKyrmaSXNdO2ZOIWnESJ8lC9ndNHafB+TkV7ulicUkeXmVos2qZK6gxYGnjBlTKViSzDR2j/hRcTeZwtyqkI2oVaBFOyqlzLYAJ3Bl/cnwWPW0uFpy7f6l2mvf/9z4cCLu4NW8EFnYv2nAOFpT1GTKQ5IfsQE3sPfwaP8sDzg+KiovtZwQYOuTVM9hLUezvu7IMY792Mz6Nc5mPnxF7dVqaC0A6cPMSqa/FF1aEeO2Fee9JZZ7TXGcLDujh8z/uIKQwO3LH9ZPR6RcWq00W7Odr9MXP2iJsw9xRVv4CXaZHNxKaexr6c1Et5liqbIDZI8rjYNA4qXqaqbukPvf3EoOWxsHGwJRL1CJnwz0xrkBiM1YBFfRThTOvPHythfzgL5DFPf+Dnd3l5Wp6TVtgh96vfPbvsyIiylDSWcQyKgFrNHgtttp3/xx8JpPa3JwkwsRtVnKMvj43VPI5S5lmyXX8sgl+l2spqrwMQ/nfCn1HsZXUnK6F8nCnL9WckAACYTFA12DTqBoeqst2h1PrsVVWZhMLs7BxkZr1d7lnQY+ZvihMfOAmmsviS4WD7pdq47rmzg7k5ES2sJ89Kd5+/hdjWuJmMX9nC1BoA/UJdWLmgt12jiN8PKsfeka4PNYOnHsi1l1qTgJqlZ8jPg/9ooAjh7h2ZqV8R6U9BfcALFzbS7rAFpPzGIOn5jhA+s9Wi7CHwQd3+uOX+r7+Ngd5CntEkTQHyn5oYyWLw3uVov0lIymsMkp2vC+GzWy3K3iL+wUBs8X3lH2JqwudXwi+8I4DPx6Y8zIZrf1F13Y43NPFKBE6ZPDzaGm4EX2s7Q9NCe060cvtRxUmDrDVQuuZNlexKawf7wtzv6nmfh1VH+t68AOflshkQAOBa+J/He2D1agIVtUBAncoq53ahNWJcE88x1T5btLPJLYdwaoTWxvUq7emoGuDY9jpw7Frs3MCPP6VtVg6m60vJjQdZZXhV4ESlcN5mZJzra71LT/78G+fXoVXi3hhmCBJ8Ognh+1kSniaQMzPagRLqnV0fXk1dGTevh5jz7ZzoPLLnG/5BjFTFPTR0sEqYkDymig/5DvLWsrv7BZp2pFpTMjWuUIce0EI7xt2TIw/+0q7G6b/zNwPrNmjSHq2xq2PuZ3j/78r5fJm7StNqHHs39hHsOB65fjcHvX6Fo+UIWYqV2jKFQsoZJyaWxIddBJs676hXrwH9mCdb3wCbZlG7RPnyHcZbMkNZmsNXb7pt3epjxkck4VdpEgeTiWfnxOgiIHgSNUB/K1qQZ8qq/nMh7CWKrbT2IejfG5OmgSvPBxmmizSDUbVBrh9nc37McNPDV7yXzzPv21rDKl84Y4vfz+xqFs52eaSkKHOD1RUVcgmbVKL0I0Andh1hyuXpHYWJJXHhF3ebOrd1tVQwKwgAKUBfzBKgwnrnuArkFtkfaqdfv4HjofERZCCwYGu9OQx+j+rTbBbKu72JH1OoXnxJA2PfALNZ3CFlSfWyd4iTOWzcGjQ25eNya3pnJMxBvzGsS2TZ76fslyEHMp4G4pqt1qprJZkXA2X2Y5JGUemMqk9F2Z/e0P9C9gApjRHsp+Qh9xAgkYHbC1cahBGpg0CkxrTf59c/RYEmw6oHfkbhgwpeXCnKY4qrz19Sf9/PeIjDY/D4oVKTWbWvvzGgs3g1cMTC7AFM3jgD6yZL3cBZfuHiDqt4iAB6pqa73kIQB6U3B391kOZSZpBKhAylaYnZOHo9J3evC2tM4eHW5p6373X/68Ue/3j6fxRTJcPwaswgoUoIxqAn58OiYNAjZZFMZZW5AWtVznrlJy9TNZcYaczR6VRDKhrz+owsR3I3jpiCWnTIVVqwqiNrRB8t/Km39SRZYJBgexvV+0ss1LKZc4e83aus17HauwwcO2YTyFRjkDI1XnZaNYK269VqxntSf230qFV49t6iKcbh7FHrplftkSz7UiD73Jf9SZD9/pCDaZKDvqaRyDIRQ/+csJQfPeQzBIKgFXuHAW2qWmzIaQedautgdeEl2jMmOwQ0OLulECOWA2mSA1FIMlcHXtsb6ZRvXHfTwsimC23GZZebHlKq6rHYzWo5qwiDUnes/aeb3Vg6jG/SYShJ+yTP2TvqzEXQ9dDrPoIvb7L2JVVGGP+R29SXr1XpajgZcIZ2ZIhRZ/tL7uyfhz27NeuytYfck3NWV2ryw2VWGog6JqmRe6xXqyZ4QtV8QFfN8ZQ9slqfGf7IcrU+QxCt55spoOC27CkdRE8Mq7SOuWHUGp8IUedwLq87kV/tnxEKRs+kWNbieKdntntd4hmuSZYnrgPTCJvpo7Fpf/mS4ty5PzDMf9P7epiepncR5uvPpwCAySsgVpWcsF+yfwnabsHOJ0/iTEF/dVGZ3T/3kfb2GzUFCRFm9H9xWRd3dxSt87qa113XYFkzMMcHpB6I4F62ZrGtDlaXFEcElpzbtMaWAK07v/vBeqLzOgfXXeOg8J6TE3dxCpVDi810f13mMNzD/Pb1JMyDNv/Ao21NThTXLmgR+fMBYbO/2vUkLt5d6c646bp1skPJB7A+jQa+mEFcwwrdZErPWF3dLMoEtNczY+fhHy0I4sw/Yjj+Mah96ZNx/G60jFpR/LiIuTKFTbF3Obd/l5iL7Oz9NRvaY3RnW9vdmTBeXZ7/um5s24zJyPY4smaXmHEHwqm4xoGnEDPEpNQULNPFPbcUbS8g/mLerJdccqJ+S9BLQO07X3/SJdslQ43F1SBzABblgMZmckjfneUx97knvFwB/69o1v0SS29MhXmpEIt1sdq9zDhiY02aMqV1cx8ii7SSpW0HnvbVZR2W9L21Ui/QlLT9u2JLW4XWtKsgugte61ZryXccWIL2nR95Ev7QWqldx3dJ583i+geFjNVlHJRgrr3aJhUSOBYKKFIMsEFM3F8vcISWWHZglqOSvjdyqrik87qT111dLMZR1DkF1J1dUrm3YguKy7+bp3ePMrM72OURJcsT/XZLQ0RyQbhteFmKvKDJk2hU3Mw1C8ntltsdnUGlTXfe/37VTQHMEeNYbVtdqbl2F5E7Xl4bdt1i3aJ5fD8uxVZwhEUk5gmDI/Uw+g/RMD13tq0lR8bInEDirJheZNy3XZBV+9zDqz7QLdVKRNKgL1iX9DJtMbFKyBmMbAs3q0iDc19f9AoFvYLv+zLlmlJAliHADcyaWXCwPrjYveRcILApwFmUjZapHVaAmc5PMZtzIBFHNpTCkqVXVhX4zuB0J8/7R7MtFmcZujAlhoUA+iC4PNNnQMw+xmkVYwB18xMsPSkwIzZQMukwPRjkWRzG6LXLxYHGO89Hm9gkl9KoiT41VTt4wLlKYpMsDze5judpDTmtk4yp8NzIV3N/Mx5T6OUDOrNRFzqMG2pZ2MKYqXlIn2vxWOejfc0+rTDKh9ykCllnPVioGCLY4uPZmdetRzEmlkGMAUeJJ/M8fwIQ1OuzCbFXwgMEUD/YFGsM461ImGVb47nucCiYiZMkz0GOxJ69ODPJaiwsMYqkLTE0T6fPMMvzbrdgqaowhKnjttrsNX+rs3aWJTdN1VVXU7u1s8VGo3sSdgi8Hv7xRUinBxcXwKAs3uOMdTpqAQKTgDgy9FjQLkkQNTXB7OJl3MlDFVyGxPpd7HsukwQEHX2SprcBKkQgLF7vMlVSzgnG83nl+5w5zWVgku0sbDgmKNrtEpxlPWqDE4AqxXisoHZrTDyvHwMJcNuWvtz0xlGfQpkyw0Dqx2t1Hc59XwpNTdrYtxbGbCZMi+PF8qLwfa4zpf7JKxpgVIyFyTSi/45yCyFDArlw+JZrjk4fSMydohAqrhYGLdixCWkXCs8ELoPvPKg76iCMwoREke/a3C0UWN+gUpooAjOoaxrdhv1C3OlYVQVt+6kvMR1rfu96vlV7IamsnRlRCKDXcUzg+43C3iHTBAvM9u/AeFfsjEbXd7vJTJrwttt0mE43X3rpM7ikafbtAwSQokod1+e3rWttzKbbgctliaCQpvY9yQip5olZWP+p0BDlxWrHtmCVq919gR/+/d4M/Vt91tobA8BdMNuzbFfCFGnajWORWWKyrsnZ/d54DNzFsxMKFD5m8JRis3XmnKDq5stg78ZG62jFONvZ8WDVwjBRXLBgwfFFWc3tyMjBbN8LfipB6OWSmof8sWPhjQ4Q0PFGJWHMRWkYx37EHdvyGTOLixrL+nkkmDFLCNtzh8OIGhtMx0htNcs/ixKE0JdkzLdGnC9wNpEdBNHjqV4iVB8hCmu7g6upMBz0hArEJU9RNGFY5TSSCOD8/38E4qbSHZ358ZaBhbAgzOEc7GBjWa7jN7c4LOHMLAJNiVcyW7EKN/Qa00xpG8rEMjEPpYlzz6DTDsMeM/lgJrwG4yHk3b0lcftUVKymTu8v8eXtuUFnX8GK3qqq2t3k+Ik5T9lOjm3n3lCpEXpvOx9Labku87gRlLJQbJsK1KcRyzKRrGQcB9rj+8F5qAK58dZRICjWqgazb+dWd81pX7v6EJdF5yzUThD6nB25p6WV+mep0xt9wS9vdoOiYyQ7JqrDsdpLlTqd1KDcKUhXqyAnqLrsXMtD0QKOew2t+v2yhCLCTXZhmd3bEUdbezbZsIt0vit2gmDHU1VRm3SOwi3TjvWuX5e46mbe4ubAtpd/pJIY2J4r758uaGouq9ldU9x9l0+7jyjcfkDmLaVQyo9V0QhF04tiXZ7nFoJ4mK5imNmCdqdOo++IcE/p8ZVKnaYFvu4Y0u+U1ShOBeM7xjarLkVLkVXueAEKsIFZ1G3msji2wxVyXfBylNfbOgM+vZNNUWSJNHo0Gg5hbiMDroFZFslCHFa7CemoUhWFt3vGl9fcVKUYLpWyWtOwnXQsgQjDnNsAde1R7uAjpBG+fZugT9GUYPudbHWUcoa23eOV40AW2AZNQSWqliO2k6WV264ajyeT4QD3N1VxINrNtckQVPhEKzmQKdfrtyF0uK3yMYXtwDa9Xhc0Wq/2SQUn7ZWEulhPXZWW7D0ODwNObm0fXBo7B0/tEdMhClYhhXqxdnk6CtwWuKexHjgpv3ex3tBps2APSt5it50OIMnc7WI8GQkTfQ6mSNIyaibjNI0S4dsyiJIz4jvISnnf6Vcii/oJFR+NwGsxU2XNlaXon0UNO3q1l6qi/228jILJJBz3fB+SnpEq+J8S5/jVlrlw+zDNLRMUEt2bTPJeZBmqMX5zHlrUAd9xjbVeVZUlSuKIb6DQq9YJAJXIqU/DwiBaezbTRNYvpm0y2n4w3L+/ZGZzYz7XADSW61qzyFjQ04jmZEt0l6J6h43HLiRDWL6BTjW7tglRiJvZFbMlGVq/8QCh4VAExLTbGAP4KvPrf702p+QbNR/VsLJccH5TwHDZ9wuS9x/2jvybhRzuY3+5MDoFG/7jJXfLf8S/bjqXeAJYQCUKOsD63xR9xxjGT/aL4qdwCbZvMcJkDSMk9v95nAapfQ/cRQZwl/1Mc49n4R5r1sCa/G+Q1+Au/Md8T/QkbLe/mvsJpOTzuI8chyn+n9J+Er6lvwkQd6YqDMxl/VIWvXo4xn6mE24lRLNYUlb/yW1adxkF5g+Sevz+R8/MHeREfTO/t/GMmUS02Zq/hVDByu3nj27Q6hW6NfcC5fU9QvPP0PQypb21xJ0zu6xe4/zrOOFMMtMCDld2BFvQUBUxy9nbBLuCTtiH1mpG9jJ4BDtVMfyDVUohPvPyfEkY3WQwzdQjt2RB1fAc/sB3eMS+ncvr8lEr0+ktbB1XSLallOKBl+V5ZI69MzU/PnhdlhEp/LdoZ/e1iBmRVMVnwX9rG+XWab3afq1O2eQCEZ4QQoYQN3KEyO08IfpyoyN66fEHnhAjD8gBgCzYuj5Z2l5s2rEf5zwe92OcgFCYVwzyqmu0xeON7+Ws6guHtUfldLzXa5eYbciV6clxevbTmTB3mgncrg8Kl+drVKgHspzQ80GNuu6fYdKZTbTkKhYGQeDXb/hHc3ZZfvTTLKa5/VYwys2LZtPtpzlLZPV810b8069jR5w4FDI5Oey7xcdEvWDJRD8jrpabXkGqyUVo+Kz8/BkAPGueeQntkkIACAcJXeFIwECDszMANzqfAgcEAKpQdkOVJBSn7gZwOgItDadjoAKDp+Mw08TpBNB+n06CYTinU8DJ3NPUYGb494UAVFD26QiUkNQjUgOIYTsqed+MqaEGKwQIFCWYFw+eQtGmc5EZ2vZKc8vwBIr0R2abw5Ahk9zszwTw7jnCeWaZMJGetRPsUzaJ6CQDVWY+52vWg5eXeuYEnAgn5WehIgPSnC837sd4f6FCOPPDeSHs/GxPQK6DPDx0sBehGZy4FLEF1uDJNS8eb7M6R6iYU6lP8hMycbxOqZZOX31KO2uLyZAK19YJzMpxSiV9BVdJeli5PKu52smJ6y93siPizqYIxy+p2GrSJMNe8nA9hwMwH/NzK6jpxLv5Xfj8eye+v/93DPiZbXwPa2QIw8MZOhI3eGJ4e+P6ew4v/Z3RGxeeso3HELrC6swq7h6CvwKlVBiu9z9a6xRf/aPFx/H6icfPavanceLluL2k0UMaPDEcuPvYd7Nq3aTGKcCO80e1kzjFcLh8u6vfwOYKYs1BLPYxw2z3TTYyjLZ3w2D7obelsWL9obUSjXUbE6scY3Ptj8zkKyxoILdwqkxEZoJRafSlOp9RofPLDRRXZrhUql8iCZJej5paGSK1L1SbcQJ1HyWNz9fmBjwth6sxIaf6+BwlDLbCYEl9ptTrM+T9OLqc0GTvCTUaQ8BXgN9Xh8sZg93Wh80oYbrW2ftXl8Vch3lRzHRNYhOMDA8GXQF6nQg6hqA1LJTaB7VeJOyqRAtQgiCFacildsikMkiFJMHEoCNyC2MdcRXCd7yACQjpRqaF2rypgeXxxVCG7dqWmNeWxGnO8hXsMVuCrqhAjaS2IZa1FTHOQWMnj3OR/6+lTSD/wDw2X4BA/wMrDUa1NTGtLYhVTvIV5DFZarrSUO+X8Q9+CnU/amQlYCManQK+DvZww79b+hDbWwzi+kwy4of8+/fvAd4xwqdj8guFtwiUJtnYjsFo4fNPzE7YudN/IsDgdLIsHGqLghmgILmT2TB2DQK3haXZ1Ea20aaRwsalI3UdAA==) format('woff2'); + unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; +} + +/* open-sans-latin-400-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEVoABIAAAAAgzQAAET9AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoECG4kOHIVUBmA/U1RBVFoAghwIgjgJnxQREAqBtWCBn0MLhCoAATYCJAOIUAQgBYRcByAMhhYbtHQVY1vWMGwcAJh3m/FRlIzWp4mifhLNRPb/1wMqMtYO030/KIoKUSUKTRGtbp/ZaxWzLY4hKnSO0DEU1Lrb2ympWi16+b7y2PG2+CgOCohlKIKCCr42RcqxMXS+o8f4AfjsvZaFULzeJXzof9/7saSF0J0YBYYBhngTgE2c4uRylz3qFCleW0WMD1CcgeN81Fz4r/eP/9be3X3uF0bK6AhA5QKCbGI5hyr/6YCMHm4PT9v8d5QMEQuj8OyY42MiBm7O6K2tCZiBNmIlZmA1umpj9V1EWavSo7mq6u5qwHTCQ8nc7sByDoCNPqFKP7kX6sDJM/aV+AYX8TZpD9f6Aim8mMvuTxUptMSL/PxPW6V6CXsv2irdnb/qmzVzMfAAHg2e1GuQhswc4neWPBl7Q1PsKPQAbLP/xW0iOqeiUioWMgUjATGIbCkTDFRU0GaYWHNRRs2FLlzf9epqu92u/v4uMt5vutf33hkoigsYuuh6VwA6ySH2/1Id9neBwAW64thlq7tFXZcMo4/ZlE83qLlsMT2OijrbUtNl6irGk6STzef2eoTDzrjDNOL8lARqVK+vm/u06LimHxm2Tp8/bN3SsS0zc+Z9SWf6/lm6Sz5Tadw7ydYZEoegBOeouNrthkwKbLNlQuvQxLpdVLdh6UpU21LclH7gkAvRoP9natrOYADeElAgHpQSFOnMc6rPziUdYumm2vkzO7szs0ssFqAPC5C6A3kJUAIYsmQsoEDyTu/RKZ9VOYRAUFTgnROlTDndc6Xnyurs6tQ5pKpz0Wqe+5n+pFWCjmxvwht4UFFE4Z9F4tpGA5pA1HVTB0bS6QGe2QGeWVGkH5iewEEsUeXBkTqWq/rI0tkKobIc2MqArWAIYiOIKyF7iGQlJ0H9VpehamUQPj/kERcjJE7/NoxpVj24udM0w8FYygwgkvxPRSAgYPRlt83qWANBW2tIHDiAjCANkZRGwq5B5FC6pauoTzcymz7KBfmegRAfWAPBOrW+Db5Sf1kkgO0AbICKIY0kNLAPvgoLnEAff6KrD4AvTo2LqBdcHhcafsEVoUFxF1wTmBA1AxQAFhU8xzzAXpQDqhVMVJN9AluNBvCE47h+aFw/GnRC5LV5D2Q7sSD2xAUzTuUHElhngyRS+MxPS1iXTaEgHCQmaSlKNYjSlqHdZN5OBUV2cpKrvBSggwoRSzFKcktgofRYVK4KVV661Ya8mtQhvoZlnUnN6ZQu6I5CeWNrfqQXeqc17f5Vvw0QA4FHSFhWdidZ3bo2tsXuVrY33W726bbXh33EEY5zinTPNMfFrnSdW9wl2X6Penr3Yz7jS77i5d3v+Ylf+YM3nux3/w0EEoskIIkhH3Bohn7ciMUwBQokWkBML+VvsZFUTMRSUnqun0YxIzcLSKv+e0tEtECR84Qde5ZM/ZRP6EWQV+Fc0lPprEFU2Qgcr5P6V9X1ekZso5AYQl92pJ5cJA4x+ar+lgOxC6mwI05aD8QqrVBn++Tq5sURNlXg8nTAtCvtN1H7kqdHhcR1oHOh92SRPZpO65iU/DJBDYhU4vQfDvJL82n9tIw8Jde0UaSFiLTOUK4oDRWH4bQI+nFaGL2cNhkcfappHYXM66GCYXWLDvQoSuphUktjoTxITMBR8N9c8levaPWBLlggkNauSbS1TMqriBAx5UwtO3h1C4W0aFevCa2S3YxyHMqg55AWmjiMOpSZryBALAgNVoNGz69adQJbUz5dNmxSwyFN0FqnQEcbEMCUw1wHPiVPvqw3ERE+VpHIKaVYt28sDYm8BATa1vMkcqZDdN0uik0b6WYtorclhSdpdYgn2wDiuGN8YFRP8HeEsVhM3jiV6IsWihLT0ZD7CdTDwF5yXXQkML0sLjAYkK9hhgWC386rRAC6m+d2XWJkHPC54VQGe2+BPlwK8roBFmoRRwBBEhQRruEhQJqan00HKyxyj/C3yOtsDzGUDWZYk3EgkEBzb9QId46aSQHqNXQbiYk77IliLeFBuedo2O9MJc4KVgBGaMzqrX3hK5+qhPoHcuEDH1lhlbWsz4co5UWQxnCRcdtxhcX3vuBdYFQVJOHZy6RX5ubuphK66VUgvuAbmwDuoFfwbrQNkiC8GyRRTDUxvQWZXamPNFIhg56MkymiijarIHHBlTWfdecDCPkR7cq80j0Tf8Lr+DNexxuZdb6QrwoqpfsTo9JLlaABdXBe7ac0+RINbsebuhrjPEB2dwCr8R5/LE46y90ZygH0vxVly/2AFbNLAHoCAHlyCQDsBko6jK0AtnJb7gPi9ksSGBAEwO2XMxIg2G+gFiDUrI1IoLr1XCh5QkDy3RFSVCXAb2NVgJJW3NqsGvIaJaI+suqfngRgLZlMM8MWdEfePuFLfuBHuxleCa+Gt4LlYRKsCmvCZjAFdoBvgV81qUqoSm12L3dDaRqmAwtenddVm2FZWPEtmcL//Z9P/a2/63OY9dme69hZe7mX//i38uzxs7vP7jwTmDJpzLBOLWqE0Xz12uefbEIveQOEWTC2QrgESNvdkg4R0B/Uiq/O0r05klK30kdAyWt7qN550Hl6V1zX10MWpVZENVN98wE6qaS4NnOoZxGWbp1JDs3wSaWPRsrIz6xfQwl83aVAaGC3UYPisJ7WKc6RZpO/VSVNtNHDCGlwqQi3280gi4QSRSpZFNPAEZLIDrqVUUsLHfAZKmERVWbOYb5cUlmT0kl1m5vJgENxslsj7fRxmU+6uw/zKMx3axIaomNHCgVdyKMl/ksaLhwgjnOR1mS3Rd/RqcZfswf8gwP9fb093V0XGenstNSU5KTEhPi42JjoqMiIcFvhzTdef221XMxnMbz6yssvnRXePZlOxqPB40cPH9zv97qdduv5p/K93T1ZCoOE68u9vRWVgnDJxd/fS1wFJ4G7E0xagh440x+6ZkMb4zUbaFiy+XEoLqQ46vhMqSoCOPj31h9xf1A4aspyQ4OV4x0+NHS1W2xKoKQNMWDb1hsyaAM8FGnQMG+6MgGmxFxMwGRsXOuEv1vbyU8ZJq1ntCwbdsu8ecmDg95xqLueqFtGbVBCZQwze9P8CZfYzCsc+PLKdzLHgSTep4xKOMqfbx9VAC+I4EiePXbSW+Ey69300PHGuZZeYcj7sj7LvTKXU1KtJIJaEvjDdNLZl7RwZQzgXxruZ0JKQs2nbXEzgjjRMQIAVzGeVaPZ6DDm7fe61Gmk1NYeA+NFiXBIPHRuIMTJjbnEFI1iiltDGhFbcS9eJnZgLxZPOgdCwB1/DRI45UR392y9o3f1AbVRR8J9+bNe9z+C8hF+ibANKVSS4f4VLP/lFXTJxBs+4hIOScmekwStVBy/8Ukvayq/uFm4XyI4xI4vKqra6/epVpqJJiz7tGlLIEkgHAte87+ISVJj0COHVg3a+IvvG3UQWA+RHC81+7R+vdxtpjiu9yUZFGHGXqamfEsFK/4GXlbi/LqaBya7c24Fvsqw5EV2z6X5lLTTyqSvOuUtGQgIFVsfNq6Pm8mElsxuq9sJyYmqQCxrCEWt85w76k7MQe4IcKPBn+YmN+n0DSl4RgT92L2mVz6CF9AcYYmaThbUjPGnWbVCzQQTtlGt9AdJP7KPz1yA8AoS00f1DRXn8Xpaw2g2cvx40dfwyE5T+ZXOkUE0mp7Rkkxs2c+RFtADWJIAKb+CokB/KuPCSXSRFzxySd+VnOZR09xryebG3t+oVrILUss2M5MFFMV7KOer69SSwyzwbA8is+3hqq+1cpURaQPu8WI/BGsyws2FCB9OxCUsGTpDC+8vAUzljNs5Yk8cJzBJ+XqJT+8kkGrafwKproBdV1XrIxtgySsMBIqovo/BdY2b3vZvFFG2SHjM1/mTYeI2akv7WS6LmJiUE3b0hHtzyc208bBU4ZAEm6mpbwv5WNy29Fg6nYgNZ0ByKg0opyj4iwwRNO0b/cB2mVbRsyDlqsdzofd04SiMktYFkMVPFW7DJZWWbDw41N6k4BTgu1UPkDpAhxhhKswC2UqcR7AVHNW9w92Cu5bjEnxZlMMByGiKK4YBRkd0k40nqQEzgtbGSoLZ5/bnInLCQrCw5YmsNfykXDiHhVwl3Nt8GiwbyqlFdvaj9kADqtv4/gbwUYYvGSl7v5XCLZsWtuWBaIp37Mikp2YSYMZhql+7LbKde0FIm64yMPExnCmc5pWTEaDP74YapAOjCccJ1Gg960l18Vx9YOFAw1KuMq9CVRJaHLXzTiLkI8+/bcEssfqUOxXBDrYgMUdHzL0nPVwBH486Y7YO/wCWWnbzpRCkB6eXdeSPBl3WZwrOBYEbUwFv7XEBZEZXyzVMFh6O7ukBOu33WKi78keO6aDVrrrQzaez0ta6MFylrM8YjV/zO+gcZfL7iLRiDl1CV90FgbeVvUOieV+h+aDSmHfmjGGzrQlMUyMhtVLMy/3eoG4vM1B3G8parFqwwQLYqACik33uVxyIPkjtyhbwzwSZJ67eIn9iInQr3JiIGvLDA1PwpRgWi3TzYwc4oW/SoAnlX4Fb1eO0NKnhNjs2vL+YgfvEnlp9Qa8N1JN4HHKNqLzunEDQIsPUDgP4gvboOwQfAeNxQp4O35XfsEz0YaidR3fdOm7PVsXeGlPZs3AH8RyISWvltHAUnWGkTmLNFxDIa3AtKMjMUn9pAVN8tXfAboOxm4QX2iwv90mZ5+k//Zq+xy5ytEaAu0pZb6nMELkGoIUXeOd9ghACE1rpUbU+ZFhVq7GiyNuP0JVRxrdpIx/e2/TkmBIs8i4zs3b8hOpkY7fRsekRKMrB5HVTVtU+XN+XU+yZrorZiK4XE+Z+ADecA2i1svyEkMnejwOvbLUixmvrXHWnQx9Cy8He4Q8/Yp0K9SBBmNQuUJaUb/1JV2DLb/7NN2CA6LzZvtm/Gnb9Kbycp4KMLMgSCl1OXG1/lR67b8BI4b/wA2O5lPlQWm8giIX38B27ylXfOFa++yj4GsjpjQgryUSwHLYhzymT9izBhWJyQsW//BzGOcWgP6yMNxsVjnPKbqqb+lzGusRocARLOmLhNQ9cLuv33FzFFj7V/mgaC+f5CW0+Jq0F5vioW6tb86F5G4WjEKijS9EYFFB8wQGZ0REsdTHm7KHcQ/vs6kP+s7tPEelCoCjhKn9uzGC66iJ/YagmBucvuZQugBUYv+jF8F2JC6ni1H1BD0J0AFYka8oWKupayXsoehZSYV7WQ7nCiNz1Fj+BzZA8mOY1XwF/C3Dui70XtEEbPwEQUtCzJbZZ5mWWDTOK3+LFUgV2EQNMkCb2y/6nckODI6K7WQ9UW33l+R4Oya8LY0xvDHzREMcbVWC9ag5DgbSrqzPkuOdKi0wRiDKG9hBUNN2ZFo6z2Pt3rBDDaqwNpj+3m9QQxaXbCN8x6EwOEgI4o8Tdi9JXE8Jbgr86Ljpgtp38sG8Z4IsIZFXR/PauN90yIK7xYC1WMn+PFtg0dvBHf4iuYdM97Pd739gW6bymwUeNqMfwtTCudu5WYKDbBayiGtpTy9yytf1ds8q7xDqDRmNY1Lm7lbslOT71vG0Yq1ji/dFzs/dnenBSFHyfjG7Gu0sY96e7PIT4tAixWXmBMLRKtmlgDhhW17QdaM6GHkPGnMk2pey+PPTIsYYhjDGOdSoWDmliCEvE4L23T9gXqDXebU309kQvQ8CwrnnJpnQLv36FcdnuEmQPaLPR2fxh7MxZcSclZIqJ5iqMNZsU2hRpA2KZHq7T4H9yqr8mj13qySNhwUj3jQ76JLR/fwaQEgoo/j/A2NnQziD+45NyNIEJujTPphqwIodSwSJ/kKcDojnA3T0ajk9pwR1aLlB2zhLFA/4QApxhX1fw3onP+HANE9Wh6k690XwnAoAQcvvfp2NFI06DxnYIm6N20GtyI/Zti5qhGC8WAZNamUm0/4XJJfh1IWZDvi4PUEEnozUP9my/2JDDUpycbk674MKtk/x66JB7g2vdwfTmtj1Rn0YuVL4Z8mETi8BbhroCgOcJ3DghLrGgQwK7zrilsQCGUdsoLvS6mdgPs9Iylex9/LxaS2AzKIjfN+U2Eow6HAF87R4ANqjWHvBPGnD2WIkrYADuqNW+QUsfcMv0zfUwNMFEOHnEqj4qVxLwIhyisrS0EqhQTRSgjhMB5BZmtrDg8kO3tNosOtxVjpV4KUeiKrRZqfFRphYQ2+qWAcCOnD7Fo9yfTNH5x+AVhUzaAsK3LXPgsKq9985C2obMDr7wXnL8vjc+N4t7pYIZRNqOTPSP0T0BinGvT5sBtMwXxIZbzq157uP0SYgAc5iY3T/LjkKXf2iAY92YMfABalHCtrHkuJW7/jGMyD8vIrOy5QuVMHMwb2KKDtJSEu/IVsq513ngf+6fwUW8GTdkMCQI9H3M7LhxIGFpPiaP4QgUuC59msg63KcKXTDC9Yf4s0TUMtNAtygKSaqTbyGL9pj0DoNPDTpdCM0BqELtxoLsNNzjo4cUo7pmWUXE/sw40VwB/ARqJSLsjswR06wTN8bsJM1cHJtlywC7Y38B2Esdonv76A5gfEzagBsABzLE6gg3DKDWN+l4e8AlwNG3QZmsGAKHRGe+ZRRg49K2CsO+FZ89+5l0vRI+SbPOM51cfhNmIgdRB8Y9Q5y2AEzggmbwAWlnLzUbdE7ZArZGQECPjtshf48ub15xdtqfawti7jazKNA1sGy85oAd2HL5IVAhBPtU75rqMjBHM09lMT6CgEDzei5GS+LR4gbZyjFMIfQbpcH40EUWwkT/D0DeSed90OCt26yqQba867u+Ka4eFCaylCxoIGbZWPWSCdojx/JcQ03LTXDp8eg2ABsPjZJfjJ3Nt0WOJVttOzyifXAy0XBJJiZjewA1bGpFenb5jy0kngNss2Ojd5ZJWKazhQHyZpVBCmAR5iNfogW5NjwcSlvxYdAFab1D0B1laO8W9W5YlxF/08XU0s6TEEBiwQBxULNrzktyUJD6wBIkQzo54HtMucNbHOBwjXASlbYHOmzFVUXiz2gYwa7ZVAqx/d6rPvSK9KLaKYVNfDh9GNUw7GG/ClHb5pty1eufijGBUrwdzFRn0VyOV7ejYIGbja+4GIBefKR1L9icX8wktcveljytmZrUaqW+k1NIPGFNa6SmexCkN1ut4FfhrXkMlkPeGTvoQQ9sWdiGn6fWWrza+5i37IpdAepAwO+HHGjd2IWuR/cK6seF9Af2MknwhHW9n/z42bMz8Aj85+OcPgjoqoyHe/2gwqPgWpurUYctGBo0HpC2WZOVWZxxaryRq9vxUbDG9cn9go7dFODhtzsh4gy8U5H5ZLJoPHyL3eb7j1g/yt/6O8tAUZcmfvFC/Qzn4WVrAVoAtnGAbUtZuCEP/THxpmiGhOslM9GyBd922PheIlMwuaD42cWn2R5CBBOTml13lOioKBTS+yp55aWR3JL4eFWhfU1r5uoWBfkwBXfgF7yiV4aGZeRolTEN3qAzuE7ZXo+UpHqujzQguME21rlW6IzNxfynlDMQyOIAt+XToDGkGNEG6em84MypkvxaAQjonVea3FiTg17E4eLN78BLzgUt9U3OX3cpEbRuvDJnIb2PSqW+mVuKdXtkUsCLw3g76qFHkRjS4rc71G0HvS53/CAarGeHW/1SOaviy7US1/R8d5IozxKYDVvqkrNtDPoQJaplwoH7S/YqvlQBRR2QOFn87Fdg78BjgyjIIh0W8WOiEgmKHiBg0Gz7JT63s4TaDPls/UXhmm71gC+pm4+yr/WvdygJto3qE6qCRev6mUzW3sa3x/GAX0n6eR726WbZGPa2KH3fMDthgLj5UplhVYfbCO5AoUnCkehqeE1b2fXf5w6w2FaIgK24wOTT7Kw34pvYOtfOGivIZSeBmqitFgAHH7r+h3IXb5FaNPybX0eicvguHTfthRVPgROj8YZbY+xfATsuJEvPZPCNNY1ySZOzf8UgNMdQGrmHPnqnI9fLcjwyR0fYT1Eux91ILBur2WZgPByd59xF6ncfGZ5C9YB/kqlaKr2dHUxjNcUpmNyZ58B+qMFREiJMgyp7FOUrj6tDaB5hggTURT6dlxxAZfYRhi23Lt9XVornu7oD2VjxpEm8fuNyAyjC17wX+5t0/lkz8tnQn380lszlRGcY9+1ciou+mI/uAIZILhV0O+Wk1pzlllWYSK28nMIYECN5RcAvcVej+S43csV9vlNdAi9UOw0Pnbn6u0Or3WMy69/lFEvpvecIk9VkVftcontsWNXXC4UvLwIQ7Y5a7KvLJ7wYqZ40uZlHzyujGjgYWj6OYolN7Vtm793i7b2wS3Srbi9hIXVsl3CGklUeG9au13Ep4L2U13Wpp+MSAJ+mYpbHh3nNO88Fes/l+c7NZ+Xp5Tklqpbcx3LUusbjQ66oaxjJdtNFb5JHRHLLm+sOX5c1h6aPdKae5e4a13i9LD+zK4O2U39ck+IVVtSLWhrnnlcnh+c+4YWTQ2rJJCNl3380U5nkpmScsrtqe4mehkomkfIzv6TcFvDs/iOYR3kOjJfFzBWsKMYHlLqmtnE/Lm6+6IzqQL+e58UJBcXepKGIVDUllleEFbGK3Un+iAx9WZE0L/+OM3V6vDx2Pn9FOd6v1DV7xgfx4DJU3aMQ25k0HJGiqsTxi7ECVtHbEd2ToScrkCGvg5YeXB5z6ZY3BrwlmeSyQzKHZumsqdM0Tuf3qKrqJi85a4vBgxRC5clkyUqKRDFl6127HX4xodckfMzIDPC8GXUMTu45ASqgk/ToGWWOWuytPyEsnJaBU5ewFRohrRJbZGNV7GtE7fmZ74B5wz2nGYhJN5Lvu2YpjB7ktdCk1CN1rVt78nWYtE037H7hHFICPEyrP1M4ugws9LWCY0hxXwFQwX69cZYMpM1ncirwv6j40e274pry41wtRVPOa5jRhSR31xw45Ag3fbMdipbEHd1/dDWwevvn81Qgwl8I6cXaIK1BGRdbkpjyJeNSDguIvZvc+FFSI6BcIacwt4Ju5GYW5BNolUCd6a+CwfxHW7gXkhPX/l2xKXxc+tJwhdt+TuPUB8rULejTzo7EP2zfmue5vDNSxSi9iasbpG1k34lbtjRbFhzUZo6hn7me9zx0Xj9gvxC5GB7f8yQ+K9659OSHwKk2Xucd1WrQzFYcIKHsnVOByslhU2duF9fQ5K4urUmy4GL4DXLKXf8sz4pEMWVu091ZuN1V7iCELCvOxp4BtV7L5KfN0VH3S8NlfZlqfraTJmc0DxJMg/BAgDeSUScsd3ONbQ6DcZ4kwPLcsrL74sK2JaEsaKzSrKw6m2NCm4nT8/3K8rke710XZQVLPBU/Uyh57TT+/I3XyjWfM72SPvvSgx3JQR1Hjb4e0u/b9EClCURqjapKvTrHwKxjtdWHcZWWnH5u90ywj1gbQ4mkF9863Y6Y3Zs9q1TvIaRu6Ezrrcaya/6DTzQq20GJpyt1t3jhyG94H5NueLitT0jOZdqKzGElKuMw8R4c5wPPYIjJnZBgpqAni3Pw4rNnmeX3fD03Tc5hvocqbkFPC1rrfS5hD01RmdA8VwjHQaqKJapcxJlcWeobCdU9kN5cWQHoV8niS2bVoqXWsLjp8WBoQmVWA7e1cf15bWrfvJozIa01Hjhu16YzMqqsJf0aV831/2uoCzj2c6mdDFpurUnFRBkTDkvVvRbnaMfX1w+p9UupLq6m2WHmNJZU1HD1eg9MBCrviqo4LPJA6dZFRk/Q8BjmhYoFsT2ZDNdRpehUuzprUT7caTuK13nWbMo71RHIH+grYVeozm8wnBuy2mLmrzM8+Vo9jHgf72kqyeuuZHEEnUSpEzMpaXf2I0CV+mxKNiaRScTko/MKymimiJ/TwrLzSHNImhdrg7wGYWzZvLg8atGWU4ATFElL+tlK5ZTB+h9PG3/YoBvxJEJf2Ftwyl8yd6jHhFfk5/64CxTxtazUkLRx0TtmCHvJfcZ6Np6U12ikNwu1DruJO5VLSSJ0idHPFR+Ye3r+uJ4609evo/FwakmOLpLl38ymyoXjoF/B4Lykawf/2De5Yfxfz7QEMvfju0s61gtv7u3NjVmqy3iGe7Smoa+U41LX7uZgMW7jVTbX4GSgsvCUMdBtPFQgMfSmFeqsUcQoaRpxAFOowNJMeT7oOHvI/MFDjiD4s9cZXsGr9O9FE93//fBP1L9nvDel0575ISYjzFZwDjVG3a6035vh0kU0NBUf1mjokqKm/NitzTCeYAX/4M/fHzAZs+nS3SzRDcgRg9glXMZIoXKQbKt9/7P00IlGi2h22lgZHWpVGJhuPzBx719rz85KfFI/XROwVvkHjvygVPpXYEuJrl1v6amaeg/RDFr4zM/+a6SwIsK3cfLYP+GtjtMozj7yyPGhfaqOFwKqDxvvGr9oPnPuyYj/fDIXOs2DLyZFcpu7DIghZRxghI7ef71VXLZ6aGKx/xGza6B+C/u4482TayemEep/iuCVWt6RVZyCNsWXHXLo4T5M4JW7oFDEDKzPCb4O2pmiumveJXHom+eHNvaX9N3O2osiTnFTNnMdPY8bex5q4LNt0mvr1X2iAGSv8SQGMfXo0Dmtyv1MZSVItrXWX3+0r37Z2VeCG0cuAVA5yL21jMMJ783Ole6pQk383InLsLMVsOqiaDJtdS3sevxg08oqN1yOsa0efN2bx+a8mpsVByq+inr9AredCX8MibImliFmI3yOhfw+lHMSoHPhJlISvTUYjiwVFyWPx7dcfcoAvTcfF0oAkCV8kLE9VDyIBx9b53z8L/O7AqX64cHQKZxqcxIc0oS0l3dRCTqJutjGS8Cb5jIboI0fSlL/N+LFfCm7kTm84L3lkPAb0XivR+szwfXk4RPe245x0/IJQkuNeqLsLOI56/yJxyt+UziPQztecTbphSqO7OaC1bi3LuvIMzrFWpNHeP1EzzfklhkP8eDrwcLneYzjHt+oa2IZXPKc9pFL9geAUbAmaf+N8uu5Q/cryXLmyFKnPTHCevVRQDW48qOaKD2bCIF/TIgfPJ2bqWVtzHf1pX4/OPfQtJVtOv7jROhMtlmW6+F0Be2TiwleUN0Cgpa08v2auYvmRZgpuCoWIV9dJ1XmcjBtZlq/wcY52l99utjUtJbFTyeOe4/myitqk0SkLCORlCvT02j7lAV+G2fQVs9dHK19zkKREGVNOoiYeS+BdzDKnQSygg7c1gVf6E0NM/WFvUwdCPuSOxIWDHum/MGOBbnlFMwXfmF6Nfz8OZWu8S++ZYsZgbGCld1qszJAPbKK8JSNYWVx3b+k81vHc1/akkzc+auAvwNZg/BEnUa5Y+J3c5/XDYDtbBvacTMRrUHeBl8w0VoutHsI8nBsKsO9dXonckEPaQALOrvRZp5MXTzoDjwC2bcLPT70Mv4U/ir6CvifyXs9b3vkcS3IvamVa1tffPvutFbljCsJHAPtLaEemULM6sH9JYWHbibOQqMo4Ft/jZD2fxsj9fn3pKKIoyKvBfXtRS9cTYMHvotBf76mVDgCfuuvCKF6fN9RY3zl0Wnjl8HvCUdt4L0oeC8Arn1X7u9kN7Biz/9oxMRaT0Ojh0GqARlrxePJf193un98SWBk12KZajKwYqIrop8+kPAQsBTPDJAgAd4BV9uzyil/4cx69lqfnuIm61soR9Mum5p0LRkIEM9VzFJRQknjvpjlmGVB6x6yci9EjQX8E8XoJwq0fil7qaMl+4nqdE9wVeQK0Jtp2jbiieQLumatW5trztbI+E0lw8lHRFXVvow/JdO2tJZLfnf+26aZYf95djVjBLY/e3iqAUHSTGuq5/EPWn0J7S6SgNWN+r+x8JHUyBGQekDCWu5syXmiPt0XXBVaeXVYppIM1AnLxVTnuPVLMcsxAdjDkH8xzIEKcCDHmKWRCppK9dUsqbZ6XbRmms5DPJ5yUdukacn4QZK9adZf6Rngbvt1/x47c/bIYIuEO3zc9hOZnx6FBvV3TXcLRjDctHFW8kwmugPS/QiTY5PjOAw+bUBaOwe1fa1FDdtfttaZxBa5Ic4Ii8Mze5wWrWSq4qzEIYW4OZWb74iLyMx8jya2T2bUw7shdd/IZH5L6PEH14mOdomTS79+7n51fk3w6IlCSe0+aqVZlfHD7izJthZ14ar7AEGVzgllxYEt70hFxUl2mKnHbhnrCrXbOn4/ZsrRaKj4bf+N1brDW0Vm7RkN0mrTYU0uLXULaW/TjCEShDhdGTws8pg9WbD7hKi3uIuON5WJ/RrQxw6/FnlFUI6OI1vlZDC6ojKXKktrIGXGkugP9Skv6rooptrj1GD1dWAIq2qMoZa3l5HbdagwYcn4iZWJzaNdEBZTIOQsWobeSRu1fqREiZimr+iWhH+K1XZDJ6+lIDE3MwgUWqT/ayQ1zFEWeCVZj4TJVkWQxZrf7xV78XtiMHeii59Q/IuWzWOBM9On0kC4mOWYVX97rB05Bdc6noLDL717RzPmyjeAtmyBPz6Q3qrGrZjwTT00+6EPgWah1YNMeXPrQGi8UGd04xhL3hUI9OUAJUOjJ1anNkcAVBKFweMUNeCrm2Wb0Nbq3/hVZ0cB9rIMkpBT1IitaVVdhfVaPzIwi7i4ewr6xg5vVvUYU6P0Eintiuw9uoSJY5tTF0bOxdM5DDZrrjLwFnLY9pHCT1HfjM14o8eRdU813T90hl/TfbHnuNlrw9xVbtRZgTlQ7izQmMljaZfqSFkeK19Gb8HrqojjKeuGvq5gJPrLmO+mhbA3Q1ZjGIMVQvWAlL3cOTE361RvcEVo5dUXs1WS0EKxFn/lW82H5gcw4aQCSHxIar4Muh5OlIJVfYBHMawBolAzKGUtd7hznqjPcKpWRTZuLZalKgCSJryxcfkcQ64xWyPnNxOGkw8LzdaBOpqbpvOQXg1WdQtK1N/cDYeq2ynCxLdW1KaXkHBuD9/WR5+LklT/JWcDshxAeQ8L5rFymSsLJyxG88UEajo3s0pR7KDrNYFljqtyBfNKEQc3kKHU18tY6WEiCj2diqoXE6v5NdbpG9z4BlBd0NGNCGFyuy1re11naK2fB1v8LS/ng/bYas4l5BeQy9Kpe2qzhy1xCb0gSUcZuU2JCRenB0+uTl9oB5DlGUy+kLNoHXkvbdT6YQ+BQw/AHoZ6h1ePMhM+AzjQV8kt0tABTCJpt5DSSWivEbnOI6VM0OJOFL07WrujFnXmv5A/9aNynVxMx3mUfjsbeQPaKbTdIA0XSGT8azqOeJN5ST0sdZsJXLEGRKrKMg2JJLQHznlstgrqP3eMd+y5u/L/9AefuaC/AMN/k7d0p4BPAiK93HashbsfyPFd5eSHkoQPoLm6u+/vSK/wjzId59Gf7t4e7BoMUGCIOBd6QfWxXMYhaH/mz44yEC/0MiU4U9OUFEZKKPjEkABh2Oi2xEDriDK2mkKNq1L6prGulPiAvoYcV0knxTka/U2gp7iS9Bo+DEDJynmizI4hyjK4w3GQb7cZKgJYwrrRthmqCV7G2EN2JsXZGwebondxpWhVPHgoOTrvg6osENGAVkADEUF52WQTHwEkcQo+09dAmFU0a+KQoBHJkEXQaTSwS+edzXNBxBN0hAmSg/dRUmdi2otY5c0wBZKZaIBmEbwU0NTPqWR2qRsKj26O/CQpJkwKAy1XjU1ziXQjG5OWj0xgPpG8BNJ95FOevbMQnXVPNto5eFSuC0/q96StXnBBPs4uXnAlkjTTmpq5koetWYOTLYwe5KtjpSPJ8u0Zl2KkYSOPHTRuS7Q6+707chl3nb3j+9pPnGVUO1byN4h9oYWmMs2kLSFIKXXCvM6cdyGZDs//7qhPJjwHy+t94FQvL2tMv9+TI1f29CYg6ypKkU5EX59S3dP3Q4xmWXl9+gd9eSplX99/WjHlFenOPb25V0xMN4XayGBSm91UJr2JSmlmMiiNTZTCavwelKIvLWUJFd/1lQgNuTD74bfPZ1Ve2Lkmn5WZvJQJ86EIe7JUpsKxRVhs7W9cAIcPwtrq0j8P7p/PlwyMaWUps0osM4mV5OJX1PAElKY64Xu2jmaWWNOzzvYY5pFP8pPJsIFkarE9gULB4bSM6hwGooFDsnPopa12PTH5O1IA3WAKPiv0wFFSq9uFWdkUe7kk5RUlpURByM9h1pNguEeRau+i9AupBShVavGTaY27KP0Caj48egfY4unw7XYxC9HOewtREvMLzuh7dyWi549Ful5djBefnw/XuQd57+Wf9wcOvzKX0E/uQYxgm6AmWE7X8Mbhk771QH4jtLB9l13B9szAF4axs5XflHH1Xw5NfWUpHfnKMHxWL2zdV8OTf0IUYn+WNBUX5NjYCvSSpM/DE5CYZX9jU/crhg9p9roxLUEcpC2LmY3lInXR+owyLJOQJyDgKxM7SfQiCqrQ/fE0jpspEmE4a76wvLtB4bh6JSOp5pgeRn0oLTpYgN0fYaPg3bXQ3NtvMrv+WBnqea2y2PJetLdeROcpKNo6ANWsy2LmrO1PWy38NyKpex+iG6AQrDGO84QjWh1/ZJxvNgT5ohGdttUP8rQNZlOtUmupNVj93FqlsTYy6H/BL/cx/Ks1jyQc8IKPjAP4sbdzbV2hCVv4PcHciIKUqD8sMhV6q3t4tHx3Q4ee/850Bbg5GvICg9YW/4X3QAeqrLpKIyKrKAoDuEpPNKUV0/II1HLidtfB1NcK9z0VMJGJagqLNKV6p9MADaGKcS1UEdd7mAGPePG+nLOsSlz/6kmihi1UKzXCzuhfkbR3TljMwQNFNU24G/6x8meb4ucKLJnbQjbHbHM+3tXnRELwtYL0TovZVCSWA2lMz+KiibvNkzWElngxlV1OMfXiIiEScX3Iokr39RzABSa5UJV6uSVsIQIKmwJVjwwMiDJnZR4fXdLVNNUgTD8k6vCxeJYiflGxBtZULmfyy4vFBVglvJEoZUsjPkj0FGWxTnU35X20hf8XvYeebD9ubsx7a5IEc65+8U6rY5fwbBLhTz7TYEBH5eNV4lzdXuHOKZyvWCAQJ4wXSaTQtjYSZoi2dxQVp2CN8eWImS/N/8+oPugNa5q6LEUnZHhVOT/u0CxicnZ09svZiPrdHHiSjQjjxlr7HNAZTabfEL2x0qA1mI13wu06ZkMl5B0hSzF6poCRd63uc6261gUsBT+4VCef3fr+OLXmM71OUx1L+eQCeZZ8ktD6+d4wraKrfjesGV30oH+/kN09e701hyefwqdUuuBnYi5qTHPWkxeff25XC/93cuQZjWq10Sd9erHrO7umUSrR9KCMc4sdecznHasPnkLs/zrtD6NiqAZBlunjqqLcqfGDreevK3qPXxvpZuPr1NLYfxl7CEmfv+q1s0LXa+yuX7zMr9cMIs8e3vAX0X1dnbpsOOXMI5Edt5bEwJmU7B+uCmxzeQXUarZK3ERguKPkUUXQuDrRsR4JGAjE4fAikZLCVhl5ua0970Pd6Z6x4wINzYglqlOApIlaxKFi7pqxqe5EZ7eEO3zM9iOZj9mOluzrmhngjeRwkie5qceRSueyFKVIOuiEvRFiTquzd5aAA3gn0dzEOwJW/4Uz6dlVPjGxgax1U46lbpma+S31PypkP8JkW6UUfkUJf0RaN0d9iY/AE8mUszrdRqeb8WZB7zOGNs+4PYEu2t5m/ZEiAji5w/pt7grjv3V1w/eBO29uqyi1fpO7uasBfcPtRn4t+Z/b87wuOSBsJyjM2FZoR3EWVIVj6zA07SBX3ptxUtpQO5EG7HhEFWX7X9j/PGj4Thn1oaH+Q5L1O+iTd5AdQOwP0sCx8N0jMSndAkfWPeXHyEMi7EzbUZ1l4bT1/aBYRLWjX1XM9o6fEdeyvanbty2fq0Bnog4hN+xpvkZg+4KP3OWFiKx8dgKe3oo32CnDqUsaNJCm+Sxno/ceLvQf370lWpZ+EIj9F80YqBAEFp654s76/y/Nrm5FZOU2FHNVktBosbZPMg8z90ij9xYp/QzwgFFVlQ8ZviG+8UNx6n8jvIrYjq8mxz4zlXDrQ/9ZTuARre8okKZgDfHEpJlNLC80rTb18yuiCaXVpjBc2Lqwf1L9ouFbL0d2Y8GS9d3e2Zsfnfuk+bEeGNrg188u9qdZWc4HWZk9S51dEvbIEdsPZH72doJkX89ML29/Di9l2wQv7QhSLR/Lt9rg3ArbHXZmgN2KV1eVBRM3KlsbJlvpbrzWQRxJXtUOd0wGv03IeSsru0qVT6FRBEGh82ROxMX7AOPomtqmVzrMCLXEyv1Qh19XTJ++5Q2xQuOKAKiD6PxSTnGipRhOoNLCEQ7vHU5zWS3dTrWpw2m2e116QxGporiYXFGYR/GNeD+CEPJI3KuiQY0nZPFTaFnPx+sXQoj2WDGpQVVSksFKoWaTUlLQuFow9t3kBlziQYC3uz4AUw3Dmp21wiz54jc4R9y1just6svtTAsPmTqb5s7dpK7H0S+4EY96My3lssJNQqnunE3KaQj96/tUxZIpFIF8Lh9mKRfNdxJvBHCB9SxJfJToxL7G7E3yOpi+5U5kKRYrJctXmzBEh4QciADBMKJENuvrqvshcuWvfcn1Xjm2xpRfXmrIxtplUlytqQAAmOLvFBW47QWaJ348hufmiEQY0VpbpNktFmGEa57GvI/ObRN7S3ktaGg/yPguycFbDeFfTA1CvYfRx67SZmBdx/Crl37b8FfbhnLv8LhPnAYs/arKfyF74Ay460bbnSb97nhvdT95qZdvYHYjVqeUk8noiU8eTF0sWCoYfdDeBt5pwocsmx25Y4aNRkiJqzFVDxhKjodMHd/I8PFhgNJ5qc49l5TlE/vCtmJfrKs3416a5ReZ5y5K2e9f3nn4LBzys5NVNeRKT6ITWUI35RaoShk6JiOVDETrehbOgluIpA/NfyjFdnsbCKhGqdZfjIho8nv0Z0zOlRitTaiMjIRT6E1jzRZ9Y0/DvrQSCZNCdXQRNC3NbpGktkWP+JwVxGVx3KMUuUOwbdaHUkSXsgTwWjkbzyOPLD6y09k5JFwxncPEYs/FVXxYQVlYK1k4VfLCKavzMzhxOZMrLsWVCku5TGF50aE3ckyPkQsUdEWHNXBjdkF+EU9FiTYpyb4sbMW7OZRCOqWQU0p2CSPhP9N219BwQw4meKHwhKLXy5e1tU9NymEb2JNKXweL0VKm0uFn4RtSVam0FC9XEMYTT0lMWFNEfDetxr9/xFvyYdvYFWtXGgVwWdHVSglN9+3iSEdiDABdIIlnbOqoIaZ3CMytJbQ6gqBin41QUUovYwmZCF0SqdQAjQHRUiiA5dQALxJlChjE0xHuaCSrgGBo9NSR0tv5/1oIUa3fP95Z9mHH2GUL/iJWXJijxpIIWipBWL7PRiCWUeCYL5NXnR88fwxAlaGzRALWvHn0nfSJqo+7CT10P+Rh6BFmdYCmKpPmT4W4iZrETAYiHvGtiKRvzQhcrrVCu7DvyMXEWSoCDwA3WMiRlXmNGokC43v9Tj7zW0KtP7hOeLRbbEBSvq3R1dHkcrUd4o2wOLzzLZ07mbdRvTTqm5uTvhIx/W0YWANKvZ80Gv7pOPK+ieGv2vmdfytmuzL84cJXx2jmbso9Epq7VCYqznZFgT0uEUNoI7BuKEt4fqGvyTvf29Vrd8EgBmBCnAwHocVd8wBeS+uz88/RVQ/NWBp91fpMgp/WE3t+/k4ZIc5yf/WDpWFrog7QBGiCFR0MTtL1wRdZGzzPi8Es/LOXtV0BSBORTbUhwNNmJ1IJbXIuoe2+gcVHPIj+x9J6A4OTEAy+2I8yrLYnJpl5ZRPTwTSdGZzkyMEXVTZ4XrkZFj88MgNpSJAJLUF2Q2GVkOueVaek1nXQh3kA0IOTlDv4Ivzz56k7bgDW+mTmMmuuk8gpRcXpRbqUhdxuOINl190mWR+R929EezyVdLQl7poQdIY1X/E8GyM9nldFMp3wWn5YnX+RnOMGmL91L8n6wwsoJi8SAaQ0EeCOKl4Q247sTyfxSSDD6kxkhOh3SYPLYcTdL+TdcqoWn40RcQvNUiFFwvRN7XeGq9wLrwBS2oX8WFdnBAl3sjHYNf8l3Feul/SsM5993W5Lw9m09l0a9RLCSmIHIvOwgzOPOiDzpl3lY/AQfgIl5G0Fg2SrIfHZzS0t9TFJ6feSMp2U/TQp921S/v2kws9FxR/a0AvrwV4TQV/0AAq0oZZAkYsA5HUA8gYAeQGA8z9fxBgggZkoCu6j00faHUEb7Hb3b23134AjdM9WjmPATmqKXWPtUo+VgHHAWGmYeQXoLV12cW43VSYuzhw7VWRemVxHT56oOd0eUTcTi4Bewk+cG7LtVKIiRi36gtRwnAr3AKo3DkY+XerFyZW6XqlcaYNEhcA5VHragVQAsicBuQUF31MeGCog8Miheowza3k9DiEzMcZyP6GSj1NZUInnmXMDlvPUKACXgUq8L18HIN8BmXXJa+sxIb2RsLQBgYdsQLO12F7Jg7TRcdikX1vOm1OCg2ZBsu3fUwLIAL85iOj3q9LlPRXBj87REXacNcpepmXmrbJpKKM+mOThaQfEdwcKwDBQodfNDS55de8cEb0yu98RWSD6iwsju3/VrR6MeIj92TURjVp/sq3Y2AL5dET1Zv/v7KwkjHD69tm9ki51lWugQ6eO9zNArkEvAURiVIr02ZNqFs2aegkIQdoazpHnKXaoWddVHMES3etsGRB6mXXvdFFU87Sr1wmZtvXwCoH99t/Xabi2CTT6OHxbh3RdZtZusUOcJO3nn7VAleGtYndLuIObYtIJ4Rx6YpygqhrR1qdnA0BJVWpm5cnLzM0yWE2l7b0xslsmCkOEuJLTAAyvmolqV7diDdYcXUDRqfX840vWer6sN7t9WWfPdqvTU1d44Ek8c1cVTth9PQTn/tnhDVWcRepgnBiLctM31Q1fuaRPbDfcMpfLcLs8Co8D466Bp0zQHlijNDphJ9r6bi0soQ85X6RdQjBXBLWNUf3QJGfBR6eRWam4iGCY5934h72zUwXmVu6x306hiqZrOGcAc6OqSwX+W6AdEQwpLZi2TlIHYhfczJfEGicRvKSIKfnEFiBXSWLr9SHol43z7QthsSMEWG1rpPEtLQZOh35SrnqleFVaFl0gREamYBpQTbW9p++5nMdZBgYfksFmDVAfuBhOTvIcNHTPvfV4syU5FyrqxlZz2dlgzggPeTLZcp0Cm4ExnJ8LAe6nr17fZqqjJzAmHZRGXx2W9mB3wcQkFyiUFoM/qFWWKHWq1wP9UQouQMXbTSXebHZ3C0y+EuyYT+5EJrUfxQ8eZE+ePz/c87O9vcxX4Qnm9I4NzTALnXpTYvLwxsOvTkxUyh8qCIaSIxJ0ZxrfO1PNMnCIkzqi/RlT6QQtPYv6sk/pCcAyK40BXGHJQHJxlAEbbG6PUwmyJWgdx1ssmR9IhwNaWeEcqFdjcgMV8zD6oPU0uezjQqNEJ1Y4So5BQoBDx0UZxRgvs7VtKjG5ws2JT9uYfE8LY754CgH62ZTwrhjry0gBvPPXbexlHrNFESMs2pVep8ynT59c5yNvT4dtrJKOWwjGqjakeo9HiNnMmDrDKSOw2zWQVGDMurKsJsEWpyb1hOZTI6LMnM5SH1DZOHlJyIrgRhTrcgVYrIRATkzrscw1SlgAbKmk0UEB3QsPeVWRhpA9bMagUDKRM/1zADDRxAnlP6gAhMrnJsmmjzBwEWWdipROT5GmxvfjGHhhcMO+VDWK8n2Hg3u6Bkg7Qik3m8atbligYk08Y47CZAN6j0dnMIDVqW0mU+WAo8XzPtuxJxY0hJMTNilaeQppKAbgxuL3SGWURpH/5IB8/KTfnq0Lvdu9842nKFPvtl0ddm0UgqeexGi9XhNNDKgF7o+t9g0emaIjQbVubrYWFVHC+P5CbiftEdzA7onMjaMDA0woDg9CvL9GIa6vS85NnWn2xUN0zbnBnZDoRoZiGEYsL+8BqNEhEV2a2BBmmYMpfUTs9zAAxlFoUxS7OYlOi+jgwIPpUqnNBnkUG/S21U1UYFHQSCCe0f8efF7s6y0dxtAgDd5j75dZY3LGLirqO3OzcY8MjjoTvmCRJJw72atOGcFHNH2TKl9huUc0UKZejYMVcaLzgqXzlbuwjWjsqCFqTwfp5aWnLcPrmyjcCOp2LCunqsa51dkRWYQ+jiA7KW3W1K7q/jGUyv1yXElm1DaaOEd0mgTMzNX3Arxot1ZOG+LiqoJm6rnwDbB2rRS0LGTb7QfTRpRGADtK0yQRjrMDwK4wTJ+4vHZjs9tBvOr4mX3ohF3PVzNuAx4ONialstRaxiqUEsJKrC6ApVpLJ97Y8mYAC/5eEbNg4b2n94JKh10eR/YsoaIIKsILAmwzerLqkKAz79ec71RS+bDbh+HQME1WXQWBEMCuS1YY0uEMzInxYwEwUSHj0tj1TcEJLqbIKhvQmZTAi+jf7hCTBHTKg1sqOfin6nnBc8uaZ/KYATpTegfP+IsTxmi1c2xQCW1ba4BN2TCAX1b+CXfbC20dIYe9XaCjqTPC0S6th7X8R8mIaiVkPkOsUwkwa172ZFlV/W0zS9rpE79CG2MtIvxCP8Hd/2a+YcgwmMYwDRiAmrwSQPVaj01BWqsKbIzC3F4XltWScQzrjT9y3ISx72+gutxXYwfFwiRg7I9ul6UP65ozadKuoBTvDWHxKIuuq0cs/xleBqqdNyN9GCB0EOzYAtKZmGGuC8V6vTFNYKUVypWmCgST1lvG2L9KHlheeEHaYQPTNC48+XbxxUMsWKLaSEtuvGUGXFZo8dXjj49ru8KJ31zCwAC2mUUl5w0RdQ2cDGYaC/HiyijdeTPSr44QOlKWw5xqOS1E2nNQ7m1Dgmftv9xhSoguTFSdc+V0503Pi0p/9RhajjSuXPyvR7F3im52uw/z3K8wVS9e+MZC3fvmzXu+0zRXr1p2VrWD5V3MXFrdeVPpLx9BqyWqcwtNj/r5Lg137wqH526i99b2RwWcerayFK3KzeSw5N/OTe6xDs4+3ruNtNBBx3lUO99Q86X3YQb5xtnlwUIw40cGS0wzt722sWo+6ERNZjSq82akHy8g60iEk0gvjorCw6TV8YjXBi1LKgO6xesh/zsZCc+j7WBSppym7W0kaExTYBec1vrlscbFHqaXUQTsiYWm8OCBpel8sXCc9QHVN69xkVM5JaVrVodtMv9PgfuQSlL0uLBSvwPPVxtK1AX8J7ZFyUpktkTZidP+Ge+Zl5ejsM0oh9ELzOlTYK6T+YybJcevq0rXyuIADWPQwmI029XnWa3lbBfQmyTjKEVMrewBZ12HlJC4O20QgRjWSY/Hh8ejsduw5P12CxaORpdnfPalPE/hj8ZLg0D1hRh0SgAtZGxYoburcsdCz54rWwssDsEyBr845vyWc9J1WFUKlvplYjCpoNYgT1RNknP1S6X0xe4cibe1fsBl3hmLyOb0SujKk1QDHtSr5QAwmAtP49C4YViCX7ZhzbJFY/DTZBc6evZ+z2W6X+E6lu09lYjSyk6sBkFryCXUPz+VnU3X+wrdxx8+0JTu1MeAZVWOc8rXTx7q9BUl+zQg7Wil2m8rr7vujt23fJqbVQV/JvOHAAcmuAkfBrVVVCJWl3iVA395uKgRnWYKXSg3NyricUR7ZSHQTwiCt8/+rf5qP//feAMEk/1vdS74uAm2/OL2nf1XdfnzbbdXZIEA0wDU+P+Z8FfeFBhLW31+vOM2+nm1VV7lLMPeyj6da4B+iPO01LFJBjvHfnorBEfN8dTOeNi5QzOEe1lDpf72i86BbATQ97XuzjrJGNLtBYsNMAG74lw8gvfrwygjtlrLqaoWv80Ip31cIjLTuyyv4pfT1FWAO6pqxM18xfRXxBJgvSZrzu8me4TuNI1JfKpTnQvReBbg51HNKUss0IpNjlYkPXmE02OZp2nYtSkCTia1V+zba77GQ99+ZJbjGertZAPpJZfgbIcSHYT4QwmOv4Q6q2VSq7uyBYrRdsDmQryHbHR1/IIyKptlTm6hb+U7Ovt5EQ/e3Rxg57ExRlAdJSHu9kyMtWWU9XPPo5ChlvN8T/TOZW/YWk0GD1u9P2QEUqoM+mHFG3Zkgq6OfkI8yWAcxTO/nAk5fpkgcz0iSQwXKW0P3mlxVsqaRSPAgDrbiyYZ+iiTcycWq6uMjv2MDzuYEd735O6ox0ZFl4wA5I8oQASHKgAnRMHHIEddRY0gogEwqvHsmP/K3UkboxY0yB9RgAgOZQl70RYgB3VlPoKIBsCowMM2dMrsCnm8om58ISQk+ahoYRBMyYUnb+Iu5GkEsgJIbwPZetttvki6eTPCe1uBALeHKNDXcUpChgpb4sn2xCS8uX0ysBuKKGcEWV6kruET+G3/yQQAnS/25q0AnK+9sMfyquK79TPZ1zf7m1JgSybz0DshELqfswjIf2dMkGkUlEtnpAIoL98PHCPwL0kEq0nbHm9uTchs2NHGtQzqZ8kAgEWw5vyQuE5OsnDAc2wZr2NPyQQHYi7m41mcpKrmPwBaKDumEmmSQINADCOaALHj+jyQQADW0nWdz2313FcB10BIMHwNAjynrkFizuI1KGA2r0EjL9I1GEgiX03AXH4vAgGwRsXXQACnOo3i5kDyZ6rjqSlC0DA0ookhlTiYhMEgARhTjG0I47PDoaE7MS6jCL0JRMbX0IO4Ocka6eCCkEqiS8Zex1FKm4lWGdOFFIzWchhMkmZqQRgSXFVkgrqMLrUIQjlykVFxGI8RvJ4Xv3c0nQakC7VAImB+3GCGIcYXWUuccZfOF5Ev9lYYoGNPUUr6FehEM1taBvPfEU7RNdujgQ6WVsd0pQ25ZISDSDIsanbHCVf8Tcgv/U2H7Gu3DB3JGnoRGsnEiwzc15CA/tq+RAumgL0neHTXfXgP7/3//qrHb3fwU0ZVCcGyxq/3G7tRvD/9Rs4SXs86Q3HiOTt4iv35+sPgZg33m9A/wvqGiJu1pWeGZM+WLi/L5yNeHyPdl8Kph9XuIR43aXNHcejq4cDFSHSRZgcPu45fcQ7SgBHj9J3OcUOUM4B1u/artbFqbH61VY0qq++wxg1h1hRmFh4k1EIslh2MLTKMTNZvaCJGs28w5wy90dcZ1dAafI0WY6/WV+mtn1J/xV83Rx4gnR1VVWf4qHyJKuznpeqhqPaFmraOQMPiq43IKm8+V4HBkRtsic+SZH26bNyPISN06YPQIlH4vXn4vDU4HdbNZu3BahALO5bFv0azqQbTqujzGWEUGWEQcqDX5qHTCqAVEoyaoafyQqUT8DtKwQoUICh+CjKJDVKJFBI+STUK0Ra4+NG26DqGv3qe0M+n3zWuVJeNk8wnF3zuDw8dTDYPbUwOso3s2HqzsZrRXjO+f2hvsn1oa5ItqeZRtpdtZf+pv4bBv6feqL+g6X+Fscr8QzuT9UNrk51sLTumN2urjlit67ubuIK/q4btl279YhT+1BnwSyVTd0QPCjinbUOzOHMJ8Wf27Y8f0FXr43fqfmZwbfCJKBk8MCw2VvtI7f6cSX7koGGfVp6wsDy7YPeAB2s9yFJwqJVi+7bhUXSXYyjb2VNFVfRAnQIAAAA=) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} + +/*!*************************************************************************************************************!*\ + !*** css ../../node_modules/css-loader/dist/cjs.js!../../node_modules/@fontsource/open-sans/700-italic.css ***! + \*************************************************************************************************************/ +/* open-sans-cyrillic-ext-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEa8ABIAAAAAiTwAAEZUAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlobinYcPAZgP1NUQVRWAFwIgjgJnxQREAqByVCBrXELgzAAATYCJAOGVAQgBYUGByAMhhYbdHgV45ilwMYBgL21CRhFfdazElEEGwcACv1Osv+/HtAhQ8LWgkz1D5kV1ZVcFaakEBUjU9TIiU0rPyfEliGKopKB6YlWOLlXDg76ekJsZ2/U2rAc34tSVO6VwQ89h1U4osuLZpuGdz1UjDPb6af9T4e8+S8a3ujkCI19kgv//u/3/84kK9nnvo9FJAdMEm1VFaoqAlmWyLqjwvzPJ/Pqqle2Zg0ySGyCwR3PrufkIx/OB4QOCMufOq9P0X2CMuXthlqioknqDMA2xYmJCgoGoiIoIBJlNC2iIhjQBqiIgYkRMXNO56KcTp2fK5ff3Fz9d35f1Ht363+Rj13/U80klSJ1lWZwtj/mO2P3aqVEbnLYdDqAcgCWu6uTiyrXd/PdNC7KB0fKXSx6+8T+6u2e6LTz05mZRKIUpeRDVY20tytilN6GJdMKEScdLKSLNtMKSSRfVul/c1Fq68jOs8I+ba/7ng7InnMI9UeRJiWSDAjnCxBcgFSldFGlNHRVpk+a/iZ1rT225FUx1wj49CMm/U4r+IaPYpoGMxOX/SvLtizL3vXeXm2vtJ9SCkoHKIAPQEdhYGoBsBQCj+YWct2HPhfM5ATJAAJuC5mQ9jtiVhL4n8tmk/+oCS2oXYmSWLfb7/LoH3Olq5OU5s5InATHnAPjQDj+L6fVtWTZbXVnKJMeZPcSnZMs0eB9gQ5H1a8ql1SSYkl2Xiwp6IbtOAN20+s4A5E7Pc9xeiCDcJu9ITlu4nRngWEQbst4uMxp71fg87612M/PDLBiaejd4StIXUi+0q8xrVswpZvicHlNQUMQcEVUTvnahjWtlgRjSp1WMyoiAioqIM3yvHuMYRISd09+fWYzIxIzroX/GW6iPLxFTXif7vC51bt/4A7mGDIAduRqdr6BawA1+XqJsyRhcfa58SkA71uqSwt0ckdpdn5yZ7auNLlXayq8Aaj5utcpAixF5acAh/vuMbcAmIoiKVEOLI0IvjUcDM1gJ/prBHBLzADAHR4QQvR9NTvnvbEs2uItyRSWZsWWZXlRY/93hdVZi3VZv22KmmiyCdtlU3bADtsJO2sX7Vu7bnfsJ3vo9+JB/GZP7S97b/84wCwyM5nT3bzU3dzLfd3fL/uKUz3II5wTNR7jCZ7iKs9wvRfEYy/1Km/wNu/xG/LzG77ZB8/lNt/j+zO9r/xoY/+ULynIxd/c8198zZ/7a//o/8UGKnoqVirucA/vwAYx6BESUcGL2JCELDShC0MUhgn9j6Mj+mI4xmNHTMZsLMRinIkLcRX5IlbjFvudx/Ey3sbn+F9AakZqdrnIQ2j5iawAhYmlaMUrSQqlKUt5KsYsZpXWBb1cPGKmkVNZpIzgmYDcQ4hsX/kqcqBPlmfhXq8RljNLqFOx0nJG5lQ9prg3NqrlES2thJsoOjgptYi4pwoaIz3nYoJiqgNfwaiR0lsI8xUiWkhDigUUSbijCYBAAll5OIxWxOvWPOYCj4iTRnqBlxKfKVK4Kwch0dCYSkHL6oTXNyIyU+MYRxywSf29AOudPBRKyxvsUogyhCenXlkoiW0qXBBp1A9NT6OAeTjgE06QoSuc9aErRcEcS1KnlnnEDJmzClD/otKSipWOOijkAUrIgSK0PgTYAdg+pqZzKHkxJ/U+G/1UOO9wkaA+RWKaL+z4Yg7Z1NBSLU1O9N4XjU0hWqa4hAoqDWcpZ2FRB7zsKn/hGIGz3Dp1qJgJeiqPkD71P5ByHwoi4r2L5zxLPLSEYAYKXz0fX7xXsAKlld2yuz3srnf3xmw+W2mfOAbn212WQBCksevh9l4shcAz4Ym8Nrm2YAH3dBj84Q//bf+VeL1k42ewAORRuta/MsEab5rxvQbdh4Gnc3b4vMvEArPdykjotHHzfgDT7L0A7PUSvfNzUUCAN4yQrUMYWyfawSLhiVtNBjOz/ifuMJjMBPlNxbQZMJQHDC9LbDdYWcF/ANhufmaqmxsoYxXhCg2DNQK50VuOE683UbI6NKCDCbV0irpRrerSsA73+r9fA9j42cavN552WTLe0K/c4Sa3CgYoh3BZPJqSgAHo5+Il65td+v+Y7vzKvgDQLWCBiuEpBeKwz0ib95jUiNHfbdgRtziV3Qb16OI2Y74lT6y/gWZbTalm2hYbtXPWN6LX1Nylcyywo1OAtDdmexNV0VhL+/oGTdhh0rwaOgxkt3evWd+STSHVNNJjnJ4KmjITbbTJNrtMmeu8bkNSbZOm9O+EPsIyKswWb1VPmx7mRFvsNO0Kb+yu77Xq4k80MRYkI1hU0el4o7blv5MO1BaiLkRNh2zYEdOnx24ZH9vc2dHe1trS3NTYUF9XW1NdVVlRbiorLSkuKjQW5NsTXz28vJ/PptUk+C+/+Pyzu9LZF7fPx6NB/9NPPv6o1+20W8X7b2Ub6400psk1X882mo0kJulqbzYDRyBoR/jeYNgQ7MDq3tDmN0prp1jDwtP5cV6YSnlXc0w9aXARPL+y3oh7g9JSLiuAvYrxBS9KHfDZOQtu1x66jB4+k7t5VK0nb1rvhEzAiLhphNCx2VZFel2/3/7jLIaNY6wa1mxnvEExwlZj7K+nadlEKbXA7VTnmJynVC+4JhhUWsiVuWszZ4M1DouMapzmr9MpeciSCIHmSd9KY5NWWF02Di3XL5Q0lCbn6vq8i6rrR6TZiIyrqOj1aLTp6/HS1jkgf07Yn5kWrv2Vi0ficBYxEla4iAoq8iTpT3tDiaZO1bYMFb2rMlpUNWGHyDzuEDb4LNciJo9a3vAurKD1NqKNavOojSR/8AimBIsqvonolHUXG8sXaxfrF1sL2wsq0nX3Z/Xhn4QkpuSXjLbTkKkwnNZUbfFU1UrOh2tbFbeoyq1jrJbyR2hup7WueI5+6GRpf8mwTSrBWXEVv5FmI488ZLhPq1sWrAOIct4pziKhk8zBjqxYn1faHba7aQPPmiRZnil2cccOeZTHPL/uSfug9DOyWzQWK+96I/0NelmWsyM5CEJ3Ki58uo/h6UPv3LPVLSltlYmfecoK6fIIEYiNXdu7LN6J5L2TniVnkXhlC4maXSFVV9yZ58l5JEBhJ2iXwz/DOee0/yAlT4hg+/ZezV2ALGE5wFNXKnq40trtp80G5RFD5qbZ6A2i/dT076yH6FASd0P5pXdDFaaL3WjFWu5fV3XcOGEtl/bmBUf3WSV3pCydA+vt5EBT2AE8TcA4P92yFH9fxqWV7BpPeWSjvZCCqqCockpmK2f33jQb6YGSiuXAxCKxMNw9Xc0/Fq0lJp4nVzAwy+6q3hN9zggRl7u6CJOpX/o4n2bhqAU6nWgfWk1T11/SGAkZI3ugOc0mCF1yt+QXL2KEFR6uQDbvo/hLURwP8/D0MxK5hko9i8YdhXvO5NcLqCYkMucjPpEnpRZq6f7lV1UYmUTgd/gmdddIdqK0g2cKL96mKuxyI5fFA1MeGU8XpAmrwbouBaj65N2h+wgatbWyku/TPPQsGHPNvi1+v7QWe0HG2wTePP0K4YQtys5YO3BrOJdCp4De9XWBcQvsF8duM5319KJwEME3CEznCxYljwyHGeSKKU0C5HCJKY4BRfNVztoFcQduhEbL1YzJafsrUQVh0Rv4ek+2OXleZh6xmCUFK6tuvWFNGRXUznZQDjSA6IDtjkEfUmJNZMnhTAb3TVxcfeeGQeaheXBGZJYkYMxiJN8ICfK1x57Huw8SUPMcjZW24UUQECDP7vgWZF2tJGcTeIJY3kZ0nrPUDfKiARlzhY6TWOWUaTSCg5yhGEX2AwO1huWJsC5JdZBChak4EubjygMFPRZxI77lM76nZxv6vhAqD53u28DHAlXXS/XycD2DKkG3EWkBYVKuIVOoLazGjpoBuPwQSUWn+uF7RkJEiAr4rD6j/EbnjgvqeslpZMoWwO0S+tWAZEMOXUe3zKmEtRK8PaJqCKgafKIx6M5qzXpVBSTWQtOccSOlXeYrh5rdwIAfZ6K04KSAH5VgVwKodnrqTSSIbLCMpyX8MyON+GCO4gUj0ypo10hUkG1vSclHxk/fSxf3LXBOnYShIURMoVvFi3FpoQm7rJZcf1E982V7GiaBXB6Jl8OxLXSiiPgpmUAjkieNQAEkQMZek7gE3JomFBnpQcRAAtHFMGtrc7F1zG5bZboLSvXuCQsYzq64cc2PizuD08vMXqz4CRJ9iPAEhMQt+XcGGNFrRDdk7o5tLay0zRy9GdQznvFXv8bvUogCQwnAIqjrdcxEkDYAENjBgeUxSfBMILojURx1v4kC2CCyNgfo6Czg87JRDIcyOSkuCd7Lm6yMXdiR5MbGdkktOySGMgh95ErNjHro2nIhuWv4bsRH3C1uM/RDNPAI2OQjyyvErFy9NfDeNBvi1pq4Vdc4xvaEdXBqm8Ed9lbIJ+1I2z91gQ9LIm79xZ7B1z/8F27Ge9pucq0OrYjufUQhTyQBOSkXM+hG7FZ52ji2P4CTvP+wViK/Rh+FajYwRPy7/aH5KFf80LH65+8FyaNKegjw2lN2V3zqyYKYeCAjnCcuBER4Rz/LGEbbJ7c3DIxXNSotZ5SeJCdqLMOmGAWW4GkbKD10oJW6fuYyVcTyidZj0VikzPbCQ0RuAxX41rTsYPDvU5gQGAT8wGvGORTgvGRrQfpH8MxkTNsgfYP46Ooir5kkQbilIFXjFn+txVBUY4m/0aEihpSf2RIbWIsGnzpxZISaSKVv7TNJQISOgUdyvmqCig6O5h8ouwOymRZ1PZcrTTP+Cb0k721yULsnfhP6m0PzA31IK402+xygmMB3RrdYFmSONSfEoQvjBb6jZsgJzERGyEJ93TVsYBurdcO4un/t0bqCf/aunzZF/a/wH4X+K+zkOVigIsc2XvF3Grf5OLwey68rGCO0ApD8n4flIJ+wYoSFXzGgq4kzJ8qxOYVlrREn08lzecCoMRS6WjYof2XoHBCE5QZhtBCflNwIaJfnnqN8Oaud/TCX7po3Ba/8i+Bl6XfD5DPhh657PGyZFkUWlvB4R99INnlQm5Xy9nR76NdqMzSDJ3iAD/AO/vugDOrML4e8qstSyhuPU65pahFuctWsZP8IrlSrlLfnDIcdD/unpbodt1BKmPKgG0jYv6139BKuvxJ8J22rWbPINH7f/xR/5D/Mp6ssI6SelWmDj/6pRXYqS8YCu4Rv/NyZ/uDU2LaLeVmdPHFKsrDWqRQlAv7AJbVIcm4dpyC4CvEbu/Qq/vvlnMMeYvObQBf2rBDd7WM68BZgqJuasCFJDAYuipEiePUQ8P+fENKtvR9qDPKyqJCpfcVDOTvjVkWUfA2WgBYLsPBU67RmV3qEQo5GeZHfAyRAi55lCnJiED1+yoXB3TCQu40vJJz2ARjVwaDWaQE1cpkPA8vBMXDhiyNEBf6O/JEoF3l0IKk4AwAEgQCrPlSgNMizO+gL7+RNyiD6qbVkcqHxqXXpNVZUPHQImcDblKQcCyTjOsqopfp09tvUA8KUVnAnafddiAehjjMvKtlM1sB4/kIjoCpBIq8cFEGhbBMT4ieyL46jXGpceu1LkChQhNoE0vfbBXoFq2Da/Sy3TdjK0PiV9y2yddGUMoyztEcRLD9hqWV+4KJK63sT+Z/X89M3EggjPJza0G7eMUwjjvyOVV0igzLBOjsDln+JzofS9glQxN5I6yruqPBn1SN/gkqmF40upQ7eI7DqRx5X8dBYMGO/ws6WsPX+pDVdPHJ6dn2bW81PQIb3gPOBlAN7Z0gwtkhURGs2mRDhMjzprxoNl+RC7ak2ZEzvtwqOz2C1uGRCZcFuvW6IOd3RyrnHsOgkU0WWSEj/p4haZCrjErkonvgjgcVaPcJ+8PCnY331WJYF2WF9uF3uYEJfzx53byilcbHfKvmob3ZXtrMyfgf3IcvxcglMmdsOK2sf4qIn9e/P69uj4PXCMF6RdpwOgn9XSYXz5xtWH73/iH7vHSRDw2rgBhfZfzc6UypIdrpKEAxgUTPmwsl0kLWxXhW6DtUvwsA83RsSYt5zgqM2r/ZnqJwXn5iaXKikDdwYaqMVBEnYkM2OZ0OV52oJBrlmGxx5yAKm+2m3fS+GDFtktNq2T3I8Pmf6tR58Ps6R+ygn16CmBDkivIyw4vRRhyTjghdnQctOMWt/7b24SS1uegdy93ZPT/HpAzsEiuqRdwiyjflQDNWTvb1oyS2VOoIT2uGih7zBUeRCB8nwQpodxrNyZbmQBEvleFOoJzURo/6ocCgqpdeJxPgMcwSYX4dE453SLrD+l2ZraOi7Ep4bQdCN9q37k3JNSI/xqBHah/k4l6lQOg2QQYDt30jlyHmE1i+gtdGhcF5n8q9lVkfiLPKPPIj63T+3lf8VaLa62nLH8MllCdqdqvN+dHrTOT4q0E5gZTZ1g/Pp97Zs7rhd/G3jXHpiZwY0CERzj0LbB7H2KpUXT3P3xfetfV5DxYUr7J27uw9f6NIjv1JuzP6Dt9YLR3TaHzzxzUwYu2vJtaLDuUHKsDn/pr1zXIinltMD8dUVGWNBBlYkbsox53mUz1KWS2+0DEgYHT5wkHbUcr9GTK3VQpdCf8M9M8x9DqWi2CFEVXXQLj39wqBJXNKKKaGRx9NccqTeypAqtyrV1XbV4+ENWWVWmwFtBhwf7198a7muZdVSW5Yrqji9IZ3xYHCrGt1lj6W9V9eY+gy6XpOtyOJIoj6K0+xMNnrz9UBvrF12SeeZu1p+2QjZ9trLiSkL+0rjGe1Yb0Y1/USxnYTdXFR2wIFWklO9cs4qE5/pV99jRUBgtCKIkzTjJwENxH3rYjQi7eAOhWYCJ+wEapj0JgBwAXuZNbWNB4XNL0fscOH3GHzS+xh0Y8EHtHIJDUkvlGx5P9lzqI6tyYMwom2tSlcOWkZ+DoIdhdTGGdIsQp4qmSh7tEwCRRDAYCAphD4VFAzNbqIrg6cKEQisGPAsRh4RPTQdeTMUrI7a1ne5vdacsya6NQGLDSEMM/EufOh2Gt5VKUnl7UKR9Pb9MqQJdjfZ5M+BUskTpTx7Lvi7qokVFSwhuBD+1BJPFCjE0kAziwJBK9GCYIqscOYyYYo7QfTEJZJt97owmKm92frcDByrwtwuYriXWa8nQia+F40lUNtpUVO69Qlx250n44ZKCmOQm6Zmp7P3KWOInwcoquFjbMOik62j1gdaRc0YrQ71KAXSupCYxHtPtcNPRyyYxpP/Br2aDVUpJO36i76h/g26Ya6pbqZuzoWUCu2MdrcnckwSBrXWUt7mphKU2DapdJgCYHfO/YXiq+Y8wHoldQNyEFQ95WhB644wxCZdT4LUEcI7CV3d34VkAcUvLlGUO5w1GMn+TZwdrQUbsN3dIvMUi+bBDvpVsvMW922O/AEvSEi70nZlPOdQ35eHZ6FuHESnXvk9rkQDEa/J/WQeBGQsMXdjHPav9jnlz6hU9FuYs7Hk8Uhi7sRGi8OzNoY0Nz+V1SkwpMnBITR4lR/kLBky+NmWOp5BYQUboKJxmt6ww6uoF5xtVQjjqayyg5GKoD+JVXh2RYEZR9atMVaFmosybFRSw0FLD5sWoBQCdrYuUl37Yts8SiBZ53HJk+aEdOYU8aJO+1XQB6Bmlq7RLTUUN/z+VlUlgskJ87w/iBP9zhisq/EyXmReJgsvnPk5F6DEY5YcyyxDehvoZ2Q6OvreVNntkIcOaFRYEuFpoYhG6Ra1WH7B7l0kLi7lZjK0I53Pks2DRyENHUoLDyFwbNEfHlAADIAcLGYtyNDAEDU60PFEK1lfC7tJbCNpLIBFnovVqGCDa0PhT56Q6eudk6ZasN3TW9uDbFYuwtCMEi6P2cjSYPDC4esMkyw50ZxfZgmiZTXA8fY4CxRrlJiUyI+yR01SzRDMoThQVhiWB/CWdhljfTXtAW9G4JXatrlcQx+xkt6q9BnmwRvR4Y6n+DoEkVN1dqRwlGtQngs7XB3LUeLFphYoKMFvhrnu//4+Lln6OxY2nwn/AWnCytjd84o0C1ay5WEksWbVHBtt3XuJxpNUgyfx5S4qWLOGmY6rvSWv0NxqGeVYHqMIFMpmXi5R0xzTmqHdg0L81t0hvaV1Gyqntm4MpPB4+6vHpMTGfAhZQlT7FFXNcDf1u3CUfjInHJdU8R3ejRdCTxfET2fie7sPFIeP3KT5AKCDN29fdbI+1BJZEzBPpLl5nlX+Ud8TsyD/G6A8Wiy3CVzEu6rvz6n90kXwqnCraqQFlmb8Ez4MPfRnXxXgYHOYVeXrk6e/GPf2nmdkBJT/He23KViTuUVc2CWYRR+XTXXvGU2e8U9BAa+sBEACodJFeuAXQKH9OejLz+IqQGDbGdDyRTq0fdFuC/Tw6+7af/aX+v2RdLPh2Fzn/bh2Wzv/z5XYZ5LbdUdnOu7FFplHGAnpSQlVweNex3M763bXMktpGWpRffAWj/k0bXhbCQdCqSA7LHeGNInLxTLs3s4KsusoNHFArDo0Uki+q1hq2LRLmibI9YsTFluH9D91WEv73X7QujhVWIInv43KzYjbCpZVWkooglgNm5gQwtZRG+AbBXKuAv831HQmqfDoSDXtZ+3pgZ6TotKsHRgeSr0my0FxBIWJ8d24WQXTTxpPCIpvJvPQH/m+u/GQkvc6vMn4u5aSxtUQuMLt1pYWcSBdd1w2CTYFe+Q4aF2sEZbgA99S4ulhKf65iEK7HJwkNp0+iv4vAQptvZxWdG6oTwzcce1p5ZYzp2Y7FAkDO/VvgvYyQGYgVU5uumIApyX9Ifc/5v/rBMk0SOMkUqmF9BAjP7kWjoFNwUih9hu9TKjie9YtafFFeE5GUwJzIBMDUu9pqyN19ZXUwpnqIJ7RJFmGV2hXPS2gDUs5BUvtleR7aYv9HV/HVrZ8bci51FdKvKE+2ttxNjbjPT2RzlT5V7h0x4S6Kx4GBssimNn4elhbpFqYCumBZtSLIgd1GFDZ6QY1qatP21t4Ir/AlHjRrfybkORwK+0xbBXkz9br60M9LV4E8UAVrzfl+KTXFpKkg7a8NFywhQhoMMv2s/7BIxmrmzaHC/zb/g8v3jQyH+0euvY5WECNFCVIYhhCcqRQIFv5vh+61Qu/hF1t6L5FicTN+CXhE58gVM8+UDekRzbIJYR+qKZHIzrSVk75WfV1/cA2iYqvxcTE3AKF9J9xVH7YGiLd/VUTo9cPhgJADiBJakV1/Cydg/4jwfc4VWfsC3wBTj1jP2hbrBAa8ZS3xHhKVDK18NUB23SqhJ3OJyWEMHWkBteNgnShRD3dIYU8h4D7xBv5xzba4VLuw52TDElFr2iOKllSrionMZ/lPU+yIbFo/SOBDE07BJ7+Pj/9UK63tc6enXocl/WLptaDTRVnomMdbbnWHtN/l44pLRR1g1t59kN8oYWbKfvM7ra16DFn9SHUQ2jbFU5RS0ZGYt1IjBZszYVrCyQ1rUO3mDXNl4hxfuqfBT4bSUpZaSg3IIOS1Um8sUlk8mayKMGqSGnlVBAH/VHoex6PXHqhXf3FeeWH7b7WwpymdEJTji7fPV6tkAIdbzO9HS+FC0GVIlV3xKoX4gTpgBcnxXX3ffOusxDdKrIee8TOZYZiMzc0hxmac5uL4d/APoxwXB1b9d284r/ifR06egUbi7NKpa9SdPH17qpgqpKZNS0e20h/06j9yrtQmihIS0pLO8SWhxRcN8V+lB3rWNLoJzRVuTtPp1RbWetBXQp+e6JRfGBb1Yso5KCzHvjwkb2e9Z61520pF2Glt1qwwYPfwSs86sHcEvk1i3N/A6WVgX8FPc4BU8h8Tw6BxXa85cTYUsHcs9/f3UdyVV6VgJm0lA6PfnNGj7CsoMagFhka1WRkbl+lu7KoyJeWbx4kh7LEHKF4CM9H9vTTodmLrsPdR6KCijlwV591vKY2+fjOmoeRA9QvfEmBDzvSU0ySpqdoRec6SvQw7rcVYhpadd43iQTmYerxpeAA01xy5T5sNSLgC9gDbp8T0l0aLVP2+al9xR8y/H6lVh580Vb535G2INuyN0fP/GOEl0IJXKsy8l90nkuoKpCXSq526YlOF2jZ6Mbn75/LwBHTPzy47YDwmMq8jjqmtB2ek7HQ03okxkjkWLUx/kKnuIZgTNQtSI/RstDFz94/+1a7aCY1/et+B3fgV+kXUPjLPQ7PTjvQVX+Iz+iDllwirH7mok4EGgUmOD8qJFQerlgg3qiXlrh00Chcuow7RZCgBQ+0mPuUurJjwYaqrERevokjhFonueTlpxeVT7/TINuZ5H4X5bc2+cooPSpC3ZzAHdRhwGXf0V+TItHaXjfmr6F8nVp4DNHh3kByWEtDvIKOzMoEw2p3m+yVjiKS9lKV3i5C3RcjaVMbMk/fMY384Dt9yojxO1qNRz6NOVaK43BDUr5uAsx/8zy9oLFtHjb/hVRhRdwiQrLBRWXy/zbLDWYrICXF+5BCNcge8U9C3ylifvFJRdGlPeXkW+kLQy2XBHDS0fvTh1XcfpE9Dm4LNgcJlWyJpijRLQfinl+264bCicPo5Ms9mh0HfZbCXPbDQsxcnJ6CFTagwPLQytQTJeYxoFJYJTiB5jGMwlshYRZuhfbqjTtjO3sCX9Ai3E+uGxez1wgecuIVz++s1GYCLyeMgWnli7OkIYd9vI9a+Lg/t8+wzIouxY+8jQXvcswiuG8Dw8D/OVVbszJq3pfgqLN42vJ41o+G8e8sXVn4EeSYLefzQa9G+/eQX6mPfsaeownNeK3S6NnDPXBXn328pjZFHpvEX7IlD5SmJr8ahdDhg1LRSCrGTrMo7XtJWXvlf5VEvIokr6Gov83m2XLLt4nFXTJd9smnFVt/oPDhL2pQIWxOsney9Ylj+z3prHh8PAT21cveyi9zzv4Wl9sraIqwkaqIM+jKujtH971OG2ta8Ri+Nvh+W4NlKR1hWVpBZbxTwBcIA+c+0T9RFW6EVKJj3IAZuAu+OPZ1mOlMcuGxEUdf8HfaVYrD+zSqZv4crnnsuwemvqztbliKvjGFpgcINX05lN/0dpYgJl4qIgTFNZP56I/RvrvwuFr66Jly0KUz7twKWkMFvKOCElPhsZx100aJt2RbCC3ioZG0XKLmJ1Q9HpaWD7qY5hKyDyPeB87Yh3+2T2c61euQaSsP+fFPNA+fiNLsV4KvjEiL4hQnue2MsIKjrLBsqwgwz7ppq0yy2woU7P5+0TAOt9Ic1fOaL/N5oFtprlErcOmKQ86Kx5eVAIcVa90KzWlhxOsRTfavBzEjp65bkAr55R6ia5d7//Hfkt2ydYztVkXepwkul30cJQ0Y67qaoJYaa9/fg+MOXljxzSwx54wS9MdLSRpVoTFM6LBc4JzzEyxHW/xYIPdttJH5Rv3vQqe5n+WqL4D0l3//hgbcmXxx+uRjH0xgp3wP/7t+BNG1C95/4rcEZLYseJN1fUkocOo2vucChecuXY+6dVUbolm1ba+IhJaYcUYolVpw8SDfOedHKL29o+WYR6QgvudqLth6DnviWB/jDboVRun+U499omhDP6wL3UKCOszbzBmLc1MVdXnDz5JPIwwOLcToUDgfnzUtHPbfqLDLsYDAFEXEN1Zp8EK8ETwaUx0QB596HS0ix6eMlud6++FG38Nc4NviOEqVc0MGpzm2Knf3aVm1lXU2qDuZ3yKtS9s3pf8xpM4+w9YED/HBbIpkpQMVwAAe3/lG8J3rr+NdA2STVqnGYb6wRRVPLzfI9gQVggpAHciXwQHyUPP2MluTCmEdjDPeacDwbDSR2l4uIsk76hq8GWjhghZTflEgSioNibw8E1sItR34fvT3bRmz4k85Zdhk4ugEgXckf8CGxWPD/gjyhP8kZFfQ9TpxH1zZbu/trI1oK+VUNVRbIhw7G3bXskppOk1CI9x3+3/tX/ho1Ndk+Yd2gNWkFmuxS43W9lZqXokkWBnJMcCDrT4s4swZEh9AAeWE27zE5eDSXz36LaKh7MR4Zik5HvLdZ7mtO+41MxEj9F4Dwl9bT6bhiEI/QN15G6fAmpAuN3qubmNzTDr232t/hQhdPV8irri3QhB2dofqIliRwf3wi3uy/9szIkLt+vhpZsbtFjeEFc4KA250P78j88OOOsqbzHsT87fKuqCX2eGaltZMkcQY1uc1lSHBNMekCprfEgmTvx/LSpKUBPd6bpeq/DrjVNH9Dwl+LfigwsDLyD2oS3+dyvE7JdlV0zCZlAO+fYlOnB7Zj7zw6VwmZjFhe2X93mQD5NytHn3hAB5P+4l9iijy0jgYQqKx+S8VV4n4ztvScC4hyUNjn06JJesxYdMxkOTY/GK6IDIfZSAVo1hw9yYncQVKS0pFBZM5QQ8CIh3iGkn9YEfxI0WNNwZKDuWywxkhKcUsDDZg591xo/muRt/nwlXjzFD1MU5B7rawrYW/PdJSeFQFOV4eWUkYcp1UbKnYnUtLwBKTewjJPVolipbcKtZ1s454f6NXUUwJoRSyDrMs+J1Hm8Xzm842GZ5uq8e/Tfyx+vjOzouxpuhmjIGD5/P2ibjEj66QpLjcYkZ0lBFlIBWhWHCPBkcJr/8AWcH3w5iQuPrIAYhjySNVpZdvMDGcyw+lB6eUsFHtZkUzmrRDgEaMBLzWLXbVzURplTV+itSH+zlQz0h1BDMLV+1YzciTGITeErIyGIQNsz+TTKNQEiiRcv9K535AwrQwLRQ7eT/knq7UX5Y/I9Md7ttIfZG62NYwxc4sPaLFcMSpu6LZtrZ/v8i+v8P6br/x42RrGKjyzckzX4x7m1amlHtMBMt+6UsKuwUH0Wc1E70TA6RE6yTwg93rPORF3o9q0GiafK5pZPbh4vlLE7BBoTpX4O5PULFFk/BImPtefo3X3ktKxN7oOo+9x0IaYo6Fu7awJqZd8ffYF13zC2QnXT4MVGTl5ugKCiykEkWcFyOSjVDH3/wxtt84q4RMQ05mfv6+4pw4ZBHLI49xxLZMMkTy94z3ol9Y9mPcC+UmE8yUvgMqNEs0GOKumx9wE0gHRzBUbLud4t24Vot8YAwspXN53OgEegJDQBNM4l8nC0l78k///bkuoYGRJBO2jBykTYGew8bY9nq+i4am4M7ZxPTOb0akIGVoqYt0/jd+HjfrrlZrRsOJcSk+yU8E3H/M6LgEUMDh/8bL422/y0lvnevr4JUulr0PlCkIOVKK1rIuqOZvYMvIpkwtNAV71lZoHa6dtZh5E2pXr/TH3/rgWwdowUeccXe9qx82uIOD9wYXoUesJ7JVNTRhRqOINajDQEaWb33QH43/QYrAU3nkJokJdPBFbQ76MozcTPfe/Dn4ywfvrdz5YB0Co+iOUVnAL0CZASl+XSD5Ym/nDr9Lu8i/kKi/UK5+WtadU7mIbY8/mxizyPIK8U6yvlq2kwHTwsfmfhWOH76Tl3GucVf//crwYNN8Irv7eLo1fVuBlS3Xst5hYSnANJMYXkfBKEI1GXLtIJN+fQ8LtMfABLFpR5z1sY8hMzYUtbw8KCZxQKw8PGok35lleC92pqTzUv1ZwnlrCwm0CxIvSOZ/SxSHsHWUZYQbg4Il51ATaOHJBAOiyC4HL47NoAU2JI8FfRltyiQHfgFUXg8M/hJYl+yJUe7upT7v1V5fC/h0nHzPkvrcUr7b3W2djLpnA5+2wuO4xSS5NLLcezBpcmiu0yfG0teEJkGliwQ+S3jtkxpEVC9EDLRJ70yU0X7JujAxejMF1fYhtAW2D1xY4BLK0RH4CXg91BSZn9Kohj15JG5YDABKH1LAR4toEKF+pkx6rVOFOic+1Nn/TZJPUsmseiZmnDiGbBL5fbH88of+nVi1dkjd0QCfWD0OcgUdGLOck4IR0utF0Yw2/Vx/vEMiLZ8eDW7qGgwMYs9qZo6AV8dWvdwP49Ccx5yCf+PyS5+Bncg3g+mDveu1yZvk8D6NXGh13ErxC3WM/qGrB/lp6b6oYRAMNCQu5fkIYed0+TdEDzXuq2OrPiowMI1UaLVkJfmD6kaMtUKb0HKlHWNb+7kun0AHHq054EszooPu0dF+Be1MLD0f+zCJhQlxGAjwwB7/y3vQu0iHKgNSg7RUH0ZM4qMm/i/w2lFegFnl4ByiJsJbOWR18yriNuiPaiF1rZJFjrgWBMtsVj2DbK+4G8Rrd4ep0CC+Sx79O5GB7KHUwQ3pKyrtil9eI1U5TwKNZD3s7knwrEP0AWbB4LWjdAIdnhikIa3UNRnoZjUpd6mnZA9A+tuFBZeuQ+O5RWRF7QrkQGIZf1O9IIXwmEf9FAjw6OkTmPi9gOjZfEUDIisPRgy2ye5MZPqcFczmDwwYjoT6MM9/DG2BHQM39DMklaELgvZWR4OWq7n19+T+JWtnSdvISa+mTmXH/01iYopTEntpIneBvdASN/2upfWfI91h4Ko3x09+ytsRW+68OfmVh8SRoR5OMHYLD/peyEjxH1CoeBvA7949R46qRqN/rx3bE6fJGRInbC2RY2djd+b1coM/XvRE8+0J7zxz7f7bOhptZDQi2pneP+13Rp8k5roNyYNhqf4R12NiaqluaUUugo6TBenf9ucRVzRH+juXRfX0GlhJ9IOrXFsfbnaoIINU5dwUkYDMLmUvtSx7eZWz5IQxeWk7W920s3tAFrorrWl0zzAUfbrqh6Dn+htSUbAWWcRAd8PhWdvt4/E+DgrflRn1DBK8djQjyOxtkJnWbu9Zj/6drvLEofTB1uTsbA9jFpO8LFgfRAuQswXlQVsdlenXlwrJ70MZcq6gIuOkmM1Dax99a3+OIbspLKGsrgqaZ43n5GW3hon6euY3YUDKPWEeZLwd2gsBP87v6qH0vTC8sAEGjF9ZOIv6UGsYrTrYL5GL9U3LeeEayJ5Vz4zNefV6yZj//nmSNW6RZ6HwvnXouXX/Tu+lwdTBXXVSK2naLxG/ebNLRe9EuhvUNrptV4+34E2V+UNlat4MMOPZZR5egQCPUr0tHfhh5IhniONQ+iD7A4K32Yqsqyme2aMOgJQviqv+oa55Hmv8LJ/WWnNdw2JpMUWuJL37X6b39XA7LvUxEUPKsNzzQD96IAFLnv07UfShofRBIJNcCU+fswlj98eq5jmo7jxwT8sKaokK/YLPHWKRs+Yj82isOozFOcYTDHPDTyqQe+ecvkeM8Shyr6v6tHXg4i+9gX93k2/t2DO/6TifGkugrsWG3rsbnR283cXgbnAtykJVIEQdq4ti6FVU6bdIeoF5tADKTmDHigfx0cjefmTYb7DLr7fkAyac8ZYG4Fi4JF8UgTN6/EdExWLRrTRbfF/Xw1O7X8j6e0+kavaXlqqOfd2A5azkgcwdt7fOTegO+SchN6T4XsFBk6s0iu3O1QF8JRf3dJXEqmQY0sWtmKeL3L9egjzMlMAGFjeHSfdQXb39yZ1DxBPQPt3bf37VvGvu+27j0zaTerDGd2wH7349zxLhBE7ufv40QMhdyfHa4aO2kG4BPXLg+7uDfzioHk6C1+SxJ4tBUJDatp7J0u1OGu0j9s7io3pxSVbiJqtNbvwviLO1Fa1Xj5rFfU80wpN8kiLF8d6+ZAOrvz02jySxdy+wsj2T95/XQQ5XF/88nUe6q13eMn5HgfrzQ3AVpNoYTi4kUOUVE8lQI6riCky9FWie/YQod/XVRzJanbRS3HBOc2wvFByuMRDPqyb7as/yUIyhWYsZOwjwKMTDFPF7xLWQeTiL81XXmWlBGT7G/pv/q557EsW+4iJCsZy6MXA+7Hv2W5+eVAjQq3vwAr86eG/wPWi5/OGaY6Q0IMoQuhWdjdLzjii6muMzyFxb4ueYClfcGDmDUO8WTevLuN7aeZkzbjjuMwriqv4HFyG91slGFxbcsUHiogGFKZrjlLvgjXl/26KfsdNovd+F7f++qkb89CGuHj5gGVeAZMZoWVF1Tir5PscE84B13Gtlp+sapqI8A/zTqmDLVgJeO0ALOoL8lu3ye/ddI0evjf6ZkZ0u3DD9vyEhlOtJWwpej5dqxps4ONbz7nKfa/aO8cnrAwZzyYPecbx9PD8MHtnj1YZqdddLbXw2GeHmt4zW4eB851bXtiP901CodHETEMa3QafwpwPpbUZxE4fuDf5Z4wcR+Q5ds3RvDUZtuBkMtNE3rg57Vr6Hs8PFjJ0bjjhYwn0cDthBm8GQIh9bWzs7W9t1PnpJk7G/VJ+wcKwjIO5xPsLJadPGfQPGI4Qk5IZk36t+dVfeby4239sUalnx+viZ/4w7zeIbGPo0cQtCPJG7GZURQUqmEw0v4DPQ06dlHPVLrxGiUZ1jyGG15DUV9Stbryi5v1FsDvH9rDN33As18lNqIBKfD4xwu/jG1AQtvYgR+Vn900xscw8U1XopIiiqyGSjftMW4kqN+vug9Vb/5Vv7Zp2+Pj1Zozyxr3Yt0sfrVelp/1hf29QavMmZrG6jSlPwhVGsoMzSUFUn8U5/0yPqU5nf8m9LJpu9etleQ4fi3r4tj5PqzyB5PuXdjHoG8QntHxjVVxc8+nc6Xh1MHwQ63Ep7SP90vCX/964eRzu7B68oGQ7/vt5yyhPzE0Voz4GICZ86b817K07UAm/R752IQzHevBaOvLxisHjre7qFth/Cy+fcl3nvva+o6ZE8C8qrT7z362jCLlfhU34j91HAl3++FZXknRV9dPyHuXEaVuGdVXPhHHXtyrFjUtnCY1dE7trlC9HKNuyN2fJAXXa8Z9+Ou9Dcw3oTdUDcWPlfYpO74hPq/GO0STJ9sgdXAtPuZ/fzQgd4RfVzGvl00Vc73rs0HsuooFLsb8ECIx1CnwdHJ+rdipL7ArU3PPvqFs4nLa/j2F5U3omAL4HyzlCRSUlHsb73WYWeOvXjlXTcinipemK3Ws/VEYTC7dZOFjEg5fdI/2GDgXkhSmjwF4ZEaIDXBHymcaKINx+eOdk8mYGJsfMojq1Cgd4SBP6hsUStR5FDSZCEky6kSEJYOlKD20aBPE5B4BTDGg7FpY0a4ZxoT6q/MA0vfkx+sCN7C1WmT2JKRGLFDl5ZyQ1l5OvE8aYTCt3WTL1863a9AW5jRJQ1FiLcoM7BB5iC+BznwuS+IN0Nj77aheUkDNMbVn2In9GdDYKClHmhhUPEG63SElgHg/JQzT3wnY/4zX3ZBSXcydpowdK8RJCzTRA7gBYbp3bWR8BpnKjy0NIkqL/PqmewCQW54/BkY4rxMePVD7wkI0p9jaOqPcuDRie/qlKtm4W8CpGbJWsAlokY2On9y2D64LugvzUNsJjUsLQfySQyc03sBJjtnZelS4QEplf83tXjnQgN6jvtzo86Ff2X2Ic4n2pf9k9jjgv9+zB+st6lfWWPnW+vOxmbM1qMBSV8s/kKxCWVukidpUwQ2xjvKX588BRSYb1HUuSjOg+5RvvtwzXHJF1q3AlS1/uCC+zq9wLoVd8PS0k+SQuwuuOi7PESAjjdjgfThfEB+7J/iiqRNqbonXcN0i2EFjbBeo9W5frTRLpmhL+fQzNpQbAgTnCQQKR3K9L05w59Egpi4J2H+ZDu5ysL9rrpputBCYTSf94MBBZmTcY0NEqnCUtZo+3zo4ZeWfKwo8oYbLaAPuY5kfN+cuaNAh4E7bmbVnNxvCbkXuHCnqbb/FbjBRoHU/CosMkvJcZElqeEmzx7EzSZxem1VXVQOZD8RzByu9/yzKO3WvgHaONuYPyKLsjs/yCzoh2fGo2QuvGhRuF7h/gW2ntELhvX+dvLLyc3RZPXvqauxaevxjTggz06N8rZIBmr1G4nIdjQ0ccpzfvr2gonL6oaHa1N6LpNZaXp23ZknCWkF+zDdDHv9v32/2FmNiPZ5YwDPqlevbeX/qZWMu5YS4lRxWq6RLWFKxFstF1wO3bSBRn1+2tqeBOUjx+2ju5jvQ1fCZvx4DPHu+Ym+fkvk4z3j9VjVdn03qD5iNv8/7GjqeC2TkL4k7Kv2D2IPWIKwqcUZ2cfWsx2mYGLbwmpPyfeLwKEDjNHv1F7MoYCAmkZJ45KYhoSkmMNDTQ78CtdHYkNoXhn7Nze/4Gdc5KTHOWlc9Gu+la+PvmeekJh98dT8xKLGpwR86hsgqEZ7nb5nT4ER0Gylmush03pouw8WUQ21hPX3lndp90R0yAHqaPPaz6zd7JCbAHB1v7ZEt9cPFsZzxNFF29iOxCeq6USiKGCJNaJB8M0+vvuRJaSd+Jz20rG1vf9LriEZjjKkMPYLESotr2gBuYfvejuYKn8Idr1z4nBQlyfu9xpgyUEAEhqj30JGWQDv9eUKeZY6L4wACALRFOYx1G7tLpkZN+m39lhCwMGkG+4kabf2KKFJEYJmBugwQ1R67TNojGsRPaoEuSKLJhangHL66KyvTBq1kCtZIWqYiX32JjPXbyblEFkZRozl/FR28ia2Ij8WXRTxb+I9sYWQy7McruZRHBgSUAg8okMb2J2VrZvYtyPwjPGyqcQOUC2aML817RbowoKpy2Qz1hBAo0/T1I0WPzveMuTGIBroi/SLaKWOxoZKDmgqriWHhtz79Pgt47NDTCDX2khxOVfRr0jk+VhmZxhoiizGokRwW+5a4nhJkjS+Eay/OTDAZYYL7kHzP+e9Pq2CeAA+ACgfs5FKmdYeZYTJwDyi1GNHoDeLBS1M2zJkNdQzbAFU2XMAYwPBpNOgPoqn4CfhRbyO+CziP9UJrpLBk+Pt+hUX56Wi//RswJ0X8FgaK+4SrcWjJfHWL80Lx/LxeShdiVvVVAp+gTkAH06NHvuKKA9HuAAFNUVlRHIjW2JfrXhCSetITEQgpmIaTwg9sWhC0MG3I7/XJCdpbYeQLzUdTgPQFSDc9p7tj3HTbel0F3yGgYtistQ5mhKIKQSrcBWm+0D+F82wzSUByCqYbRp46gOHhXK9dp9cJiE+QY2Z+zmanlwKhYnFzPRuO1F+qdg4OzHhKKy07dOfe1EyDEmpACd7ujYj8P2xHcUeaQg32paqkWHRVUKMVfXhKF/cyeR3lUolddCriq54FkVFrNiJxpDk1QcgVjAfX+dogQhZZKAkmvTwbDE6EZlQErRArlQNEOA6Y/LFxonSVEM2vlHxsCjmyZJnNON7rCmtMv9BIMggZ0JDtRXlIwML0vBqzelHEGSpoTQgOI3EW5QGSe09gU2tViwqpV+ZdHo0/vDkH+wnEw5CaP2RpDgMrXGWTp0pJLoC8NvGFOYb9F7s9ktRSE7D+zuu6XdQNN/vOqFnND69GlKQvT5tctU+rXRyBH1j5W7vjDNxN74sdH31NbGOqIP5Z3pkS5rjSTi3Lg3mQ4KtZ+hmwiyQM3vUNZ9UddgSWwsm9BlYwsuTQnnxskDXfZIHDFwbtiRcx1mJBuCIJS73cI1FjqJdP8Dxc8rSgkB6xrCpkyYMF6oEzYhc20AmWDJcTVrf6pwpFXA//h935tNWoPVhHf36oIV9LQxGEnIAb9f6PddR4tijTr8OPnsRoTKQlMU1998MzhcLklk48ylS3YjkPqRJ0AkXQBMJTwtCcFNqexliKpGENaJm+lIrS2FdlTI2uPtTZVBR8+OQALSjxO6Wmmet7BBMbqdW9jWbnpltxlSS5l5L3RCkbGozRwWjcPeztnLQw848wIELbBVBScvpOTM4qKBzL5a04/1ZvlqPpdh6bpSVCdMKlzwR328IT2YwKnIlENUQXdxNBeGq1ixoBIlFekKZMJsFEqcsiBJWe8KgxJi5VyrToemjGoM93EeK77RXWKBYqCGAFhz8E7HqO9HAf3IDK21tamDZC86JkKYJhnHpJlnGQhHUE+a7JgicZwodFIwxnR04IpcbNJMLVORcg9mJIpkHKMD6+Q9Qm3zmlQ3U58eNZEwP8C7Gdh0fFpZDINRRZio19pMqRCsSDFss1UjaN3tzM3eX1rjihcqz6eoad/4YAkUTpgwLzNLRMJugPnepQ/Y/qth6A5WN1wfx+HfUQS/2zYriEcgvS/d0MzuOErvKeRI6z7P5JNR6/Vmee01SYJ/Uwp+09dL+59777WgGCiNH4YL1bOES5aBZ681+Sr8U5qCR7PLlVajzB4nkX0J2Dj2irMGCyyJWnN6pPUkRhB8vS471jk+fh20yg2Z2k5cGEfg/TF3sen7fcZw9R2UVGRzAPb24IEzQxNmTVlmwPNDTvQFMnwMpnc85+KhJyHcUiaTmxBTJS+cgrj1ppteuv7mm6+/fl09ohZEkgv+rK/oPj3JF8L/7Whve8rD/Y/ZQPk3cf6kjWdvvvbGG2+49tq1BwEscxN8tdmrJH7MXO1J6c4dPY8MOMr6URH9GUnxUvqV54yo70dLtd/znkUFova+uDcoAqo+if3q40VsT9DMY0iTyZS0OejdwPhnnR4ZhNrD/rYtiQW4ioEKvzINsExqT2AbMSlgjuBCwPDD6qnX9zqhoBIWcgPSwjKQHl4/imOWKMU5Y8TV4Tc9eGYDASfDzI9FbyDhkzed26Z1DbxfeHDS876fsCeY9FhEvPAEO5r5DobZ+8pMGoumCUv71bkcQmdEdDd1+c8ahBOSFgVYqxokha2u4XwmS0QSWW3IZwifNigtP+KaRSehMfiEg2TDY2JWbtuLm4yCExZ24+jU+nHf02ZlA8Q0YiJdSB0XCJJNDWkhLOqjiYJ6pWJ7UnI8KSqt2RwWWPrvsZYMOTL8YJHBg2HJRa54X6oRZCyv2CFb7StMs9vVTyClRF1kkEASABNAqaJh8dQJsmKWE0nJlnS2lNTSYdHovVWFz54jiML3I9ZStoBzCFITI2AmaQS6HpYUlVbNDX34RhxICnFedUiQpDXbAhWUFnWdxpkJlUrHKB1JfJa8qpIorUiicIa8uOngIDaLdebw0u7GEZCt7MQ0JyXZ/IBa7rrNJvLelrx0+jSgxlKsSpqe9zSEGNIbLATYEI3ZUH8Y9h/bWC7yvLMx80sGrgg7Ax9QuNbQIOp2uuS5NQQsfn4JhVVyiKWhlylxPE2W8oeiUEOosVJk3jigly3ziPOZsGDFQwmsoOML53m0ZpIoBUV4GzJy/JAg64Zpg4xPzAJojBdXHGLn3qUiTaM4jiLbhZBEUqIjNggSQz25kTfIXj+axEOZ5XmW+aWE+h133EZBZojYGSIT8wYWrh03v6uyMxc2brk7orV9PwffZBCd26RlggAfMJ7LvrcvLfg8sbECJZ3KyxYJiaJTp5yHhfF9DjFsLES1gYzLCa0C5zo1vkoxG2z3jXi8Poq7v2Km42m4w48086PkuaBUZVGFGvzirI/EWTa0yxSUT7wdQTiYEEFG3Uls4FqjyF1jIwKDh7mV4S286mAa9oOiJogDhyDX5IQx6NqcVGBNCqv5OSAj8CTSBvAmiqBIz3RwdqEorvPry0dDTVaKk2xSZKNBFyRb6kjTWLtvlEa++lkqTWSAucziHk2OJX8bOReeSRJeUAtYdQnY6HuZVA7ogmnGzA1K7V+Xd+DTOnuC1JSPtmvn3pk7Pz8uwRBBNAFZgt7NQFu0UnlfX9gujHDTmU5RinFTPNIj2GfPJV2jzjzfV6TmaxNCsjgmBMzN0dcw/xSS68VSKp4klIKFNaneQMdXoj5dpSN1f5paWOt7EB18eu35g5cDSg3nDllthoF9hmWxt17kPV8VAb1pvtg/cxD3K9fr5t0+y8zf+6Ch/neWH9M6rH9i3JMfkijOIkdABRmcU1YzIolrCto6IUoFc2a5lcpe/d9lGi6pmLQ5M4E10SpQ+n64oi/bd5ZGMPHodc00BJ/DRt4rtRTCEDjXJo4eNZ1lU5cqwxGhVqXe1zhnsv/+322MunNG32s7zhyjt8Q780oHeGmtMmvjDn3oQNaDo6rKZh44qF3DZ6fdhNVyswFeMn0C1wYVKVrMcaufGDK1n7Y1WEFsOl7MZlNk3YcyS7NMioNt+QwIr9qvOfM0g9gAHjsFGGZp7rWdgKrYN7Wxbt16dzmJhx50ZLaCaRJQ39IwAC3laW4jEx76f8mFBdJmTt6ZrA3+1Il0hZ26zGA4FQmy1svt9A9VBQbXI9FwfpfPsYWnXQUx6FRNWSI7Y4bcjwSSxAsayHJR8bmZzcCa/p4oTmi/2qA9m6hiFza9Sl7StB8aTuhh5zWpN/a8H1iCoVU8b9Otp6kP+Wz4n4D3vJiRTv89voFA59E4Ts+pJGYXyqdSsjd+DHB1df6LbFni4G8YuIkD6Ih/DHaQEe8X/xqJ0ASM40O+NfeFcm9EJ7mZFHBEANJPr/3iHa/95n9KgwfEh/35zZc/M+G/T2Al/6E3/3Fxe2rk+BYmByTofzSyFw9nlE3iFeIpt4m392dd43xa/rfrEbWSEegDMPLuq14rp3IeVfyMik1X+RG3weirWkXCdZmKbNfAtzn1D+c7xwH/kB3+U50cDgJcVVJZr7tVl8CXLU7pG5Cp48TDCNQTEOOrfikacC0zeUby4meQKrLI4crcVdJZS3ykm0QOOIEFAPukqts12a0jy5UWHv1uz2pPT4zf0a4SXeoF0XrSNJgF/IDzTMngRNLQM3vxf0yZbtvlACUhZ5rgtN4zlCbBBcTebfsVw3gGfkyBryEC0xrP6oycRb2U6feJl/uMLFHE0X6fKe6Cm8EMVbfaBBTscrIxhh45eiKyR1Hxsa29C0zWsr8UYgslizIGTOGBFpSJo9Qzghs94Tg0Jnf2G8B0x3sDR5+d3aujva0Os7/laPI/6noy6dp0bjMp8AkxFU5kxgKDbgUK+Jzshv4+PxjWyxndl3JCdP8FBg9Rg5adH4J/GJIc+Aj4QZIlux18BnwDt+g828RIQdIMd0WJSvo/ZfSUL4D/JBnvpjAQ2yWEQPoN+FpZmsSnxDIXR8H4FfgR7xJwEfrO0X0rMf1JIjHb9QzTB+Bz8TuXqpPucmjNTQ7/7V4ehL40fiVwUMDkH9SmHR7OWfZXR5pOwPNrLZCjZO/nyKY62mWdoR1mALDpxs0vN1/b9GjT95gB+J1BLlRggQmBwgRA7LSqFfMCfwW/Ojti0Hu9BXCUAePAUSaKs0dBLnDrqAlrgxy1R2phR1ksLOXIkJNW83AkgOXWdRQJyMZ06lhsQRdEbOd9E8PaLuBSRDHVlJJLDgZMeEOHevS8SfGkbE9MsdUL4SWjhV6mPQmlbXpezMiU8NiUW93gG6VFwk8R1nqx44VBMX4OuYWY06+DTKYWRg62elHXX0A2+sUrxMTWKaDmrLLpWHgEHoeiFj3L04Wzrn0NzSUTBmSo+8PCESDWBTOT5NM2EoRgmVaOxEAgIxuMXLyV3gaX3wh3DJ3qZR643yi23CCr1AssOFLPyRWLiSYeuUx2kS6XImsWVmgkCAvjJTd4l5kD+j1Jb4NO/G6e3ptPHpWOKjfxKcgRfilymD+HHOKvIwf516oBnk3o5/GRG7kJfRwIspfzndHDDkV2s0uRXex1ZCd7DtnBzkG2s9aRbZEg5LORMGQLc/2had7maNrWadyu0bCvU7/PUbfHUrteo2Zdp3pZp2rhUzmnUTHPUT6vYxo9kWXjCKXjOiVWKZ7soileo3BiYRzWKejblPzezuuEktvZhi5fkNPFom+xjux2nay2lMwWi9TVfoK2XiejsdMbnpJW2amVUDSlrc6gqDJbWcgERdGEPF9Kdq6Tc5DGjpIS28lxNiEpTiMxsSXpYovTpoKEhIYURVDiQzvOw441Z4HQNBHj4rbASSXaroP/8pHMSDFRkTJCQ14TBQWmEUj1QWla84+vroYugw5FozQVmoakohBICkkMmeSNJKHWIRLmIPhHIv3J3l6ayNsJ6YdcB+cVC9Y3CInxxSB9vdbxoaGQahHmxf/R6wg3ek8U02v94zQnaUCLJETqpIQo7enLpUmXdLlSylXABL2SOdu/Q2MZfUk66CW1dKQrlUvKUn5vvaoNeOgBQCMHsXZ/BQCuxmyhOUmD7tJJ6cpVGxL8lZuzY3766RZmIzb4Xgoh7oTVetJFCzaSaxbMut7DJK/msxJVC5a03QDp1WrFITOz/KvaN24EeJ4ZtzCYrDhsDngWKA9t2KB7RUIBmuc4ZQDCN0b1MgsUZjAjrwwqzfbkDjA4slzCg4UBIGTGY3bDJ5y0ma1bA3ASngs3AAAA) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} + +/* open-sans-cyrillic-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACw4ABIAAAAAUzgAACvTAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGj4bIByBIgZgP1NUQVRWAIECCII4CZ8UERAK6kzcVQuCJAABNgIkA4REBCAFhQYHIAyGFhviSSXsmCFuB6g2/v65i6Jm7lGnC/7/0wEnY+c20GcJjV3uXCimLLHuiJVT4wy48rpCXerUncgtl3XquDXdsbtTLFqTT+OihYZ12ogbVpDd+KZB93nraBihSJTIyB5SQ4RlRyI+Cy+LVmh5+mvPAuiIH3/v/q/MDkoBfda/h47Q2Ce5/n+6Xu97Q6KFT6xvZSYANOfITDIwrh2WMR1hSRvAOhVRl+63oZ40ANsUZyE6ZWKhKKCgRCtG09KCkqUNRs7czF6XutK5/L59c3VdlPeRPvesTaJwSo7klfTs2SeBIbyi1gGqBZKKSBgKIc3x/bj5Gdh5CWRAgHAB/uZ+uQn/xu5cwtSY07XmtjG9E6qtcXX1e3OV8hB6lgIKlF4d1T3nBfTYjYGmTCRPQGrat+cAH7Fyu3wFPccQCLgtxV0MMSkJ/jenWs1O0v/xkEG1FEuxCziPwI5OubpvN0RMMkITp3mxbFke2d81BkUHUGhxu3BymN3RNgm5wZeGiE40uZxM8roKAkiiz2fTKq1WWTM9s2QterLxomaPg4whCS+IVL+qXV1V3VKrLa/V7fEatGBrSDLcWRpSG96zd3zAEAJJ8swyRgeI0YWccXiXXX55BJjfY5kOEW16ShUBiTtf+xlL/aFomp5ag4IcivAEBDyabf94WqrnjaTLoj4OUYIoJePx71wQGHU01A3SjhKZOG6qvcs8plddYpbbPgGgeTvFDbi6CMOiuE2+LsoHACEFhtV6KdnOWq6K55UjnjdWlQFwr6scpQDBG4e1Cvo+WGqcSf7L5zl32AgA+ImciQCEpSmn6xHjrF2fbWUA/1IHTSe12sPQ0EQrsDo7XzBoyLAR/dzq3Vson4KZTTUPubBf4wmoO7Ncn9jVLdvR+avT+riG5iIfEK9i2gMpz+1gAONnwKH/Jwy9//eBkF69byCnjwUApDw0NAGAprvTcJMNR1/UFLlB1tHXRTVuAP4/dQbdPAzY2SnKmAoNstegHBnr10gWQ7IzKyndUDfjgT1RL7By07WETGRNzktu9DFlLOcuhqyvo1tk1c8viyGjOXuL9o49ej+6I/e79xTgn7/+K3wSlC2NEyN0f1KL1hnEV30ipB1G7opi9R3o77sTR9N6o6tgqfwKoMxo9OT4pkRRdJRZ23qPaGMw3WfcnFxvcNCo/lrfabsHStJVt9pit2MaHbfTkC5/+wkDjrUVPc0TvmMISdF2ezcIeZkmXR++Ubvsc8SszbqN2O6wUx5wcGrUpt8OBeq0uzoNmbTHAcdMl6jPWMrtsI6pd5OaCJg6Hep3a9GpP9Rpp/2Ou+sXWtEQL53H7GqeNF22Bj1iNGWP99tpZoDQPd/ZNlcy79uOXxPs3LF9W093V2fH1i3tbTBbW5qbNjc21NfV1lRXVVa4nOVlpSXFRYUFDrvNajGbjAa9TqtRq5SK/DxZrlQiFgkF/BweFwPnFsgP9m/KUhzlfLE6uLmlUhQ/3cM8K4POYXrvDuZZgh87M5y4qtTGeM0GHtJW7UviUjZSuD6kVDiEFrXRcMrDce2oknWIKWtnRMFWuMviEMrgvEaYamvrjU6T2JqeQGSGQB2ZgPlSbkoQVq94nejBVav8lwLzrGdssGzYrSINKcDR+CxcCJuSThl1wTk1TTXnexbvc0OooXZIw9r3QhWwRXPOtMHd/CXpNgWkCyJoy/ORk3HQOtbkzMRx9/VaxtmQ901105QfJjbtVmIUKct+WpB89vSi2jVNhfSnxe5XJs5D4dM1npxKUupTDIyHqbRfzcpmTVLBuNeNX6EtI3s4rmxsCF80INc2oYe9psKUYw6Le2Tec1myJ+hppa+zglRz1jWYgLtohAkOurqnB8rv+X1/xDUeStSnfs1tvyCokPBbQjWakxadjH9Grfcjg7qR6E/erRaGaIt/bmW0CnR9Iyywaokh+y+p3W8Jjmmow5y6aLybdqtKPNeyf+d4GWynhCaD1/yYCEU4CT91PBNBG98GvtyBIBsnxyv/1frUfUv2VamZXwwlH9chxz1tblq/44IV34PHlTm/jw0Qtr/gTrBOMKRtVX9WXlxSjjYEO6pS3pGpwaEjV4De1x0WNpG02WP1OBHrpB1lqwJxVjCc+kQ9SWlidoJ6wf80V1zRyy9kI8+J4EfuuV77iHQBzxEyK3SSKIzxL2ftFlUJc23Zbg3Hyb9rR1dOIbSdpJxM1S0XF7GeVxrNRmheNStLz+lWGLS9XwWnXXkuVvF0agpHWjoax5CWgEU8Cuua957MaifJJl7y1CX/VNbTImpaeC3FAvjxst3KWqJWbWcpB2uO/cgu1m9zm1TNA897EKWLfl3m80Kt3Yki5IFa3qU0LTO5WjrRdiMdIPKJM7T0vhNifv5YJvUDU4UgrJILpfmAmCaW2fESpL0Vb96mO+3+AGnPOQ4dKTjMYIfGLm9pu0W0NpCkOd/nb1yI1SVdpQZxa2NMUlqHIJtYg4Xk5tp4SHdKXgIvl5ksJ3wx7LGikVpn0mJnwHZZNWjNp+BbFVSyIDC6t1RM6+hlSL/eyKx4VDvjoyiLdmhspGkNs9gtlFdsRAwZDy8chDlc1QBY5IAhKTNpU6GozlIDQTlo13/HvWmf5bhCGqZ1U4AMZvcEJEid0hUbb2AFkMKCkw1j/u2mLySLhNXBQtkz6ZT0niy/xupcmTdaXAbLhnLq0JoHUYuwhu6jwD8AMcIOLZfDm4c57LZp9a4dEKi0147aGrinJmChw3xabQp8ufuViPvummCFSVpYu1XQOjuALuiHOPGh0VIqBF5c+PJD90X4egDjBdK+kTIDetPYUW50kyYkJEGwx8JQ3106bZY1IBskzF7wEuHtXwhKqPSJIaX88DCWdvUh9kUsBAEQ+8jtGt1UN747IQyMcoh56EAhOIUKLTW3G96OHNgEDLKZinV/Kcl+ExXG6A4WmCVcIF8kiCNNdQNAUYs7GEaF/TE6nfgjm8k2b8nt72TyiGhxjNBifOlouHLGsNnVU4vnRsIiKxtN9H4E1xtkCSYcQlmHVQcKl9GreJz1smpcpSAqgseS0MS/MrIgu/tCwpmJybSpNynV5MdH5UZuS2G5Y9ePHHCffmiBVXRYwsX6SIqatdhtD21538kpQ0dtMKMDSon10djMG0B1wFKQChblQoyWhg6KI+9xvwDKQCkJTNzUIeJZ6flwe+/e5kp5g3UrDTYmUAOOO2I7lDLFxWn1SaRGiTvTa28gsvdguNAWEFVPWWD+HHQwIF7CmVuQH69f0R4aVB4xf/s4G1uGaKOZcY+bal1/wSWsgQJfaDp0jhQEKQrlSXfaKrx0B4mIYokkaCazv1RDQhSLUBVYKHZ8nyULYpAIr2nmtoa2PSJHOYS9D+uEO4SRA3nAeIJxKUX4QinjYwB41zXg1SnzJaKQnvcHTtt2S8qgxnCZe4PmuHKc7R93Ra+zLapRjji/xuCI0qEnzDiHst/9f9cKjCQEou85QNz1yy7Im9RwwV4rI+3IlvS2xcvMzH0HwKL/wb1FsXKmrbUNMSkP9aG99sSrv3OyOn8uOvdP9CJC5lkWrgukKI0UYgdPdpGU66c6PhI/Z9yXKRxOLslHm9aOc8oeqof6Z43zvFHjCNK6afM9D1rXVN+avMV3Qd1t180kpfzMsp+kN0Dr8YSdnTfDQ3uYoB0zE9izJCU7jGg64nLWFNI9mbkHpA5I/tB6np+7kU6TnGZQ1mAbf2kgqWuwhr8y8zpGSh84ewfgM8x5zUuZMp09VZUuXQdUhMhtOJ08S2sDHxlZyz0k+TGkTeubatqwmX7zOesoCHl5y5WHvBW+V6SVh2iyvwSeyn1ANiM2c3Sol1Wygg2b9OiXoxfIxJg/hGBmKfkfuLoGiFCDqSqnaGx5Vi9N0lgCxG8DdP6UyVc2vWVH7xbB4dXUsliSnPKIzCCLXlFVoi1qwYGSD5MuOoIPtaydcqCQk+SFDiwJTYWcJHvyY31bsbiOkgCewrK6LFJPMbkY+LtpeYZ8RKufCqXi/BzWupWMG+rbKXqt08QkmzXdp2175aptQr5crpN12KYDDOHUp+Sgojt04NAV35WLSnFylpasPrTJt21yktEtKLfjvRe5VNJdkwsj5/CxWMlK1p7Z7A48E5mLezvZPRuFGozABRmgu5860bPQnxmsw5y1wEduda/4F3VYHRdIligVt/GlMX3J7k90C7M+LOb5YgxNZC1ovUui6Ckw04AnJXKQNmcGNfoYgg9aCkJ5SjyUXOLIERuzOFPdiIPRLTS1nWgIGboTm7leGlOeZBlFbMP/xwGFbh0Z+kC5qFbl9N/3kVJtZkxK47mJ3JTFNw8muaF+LTmpf/jyrKChObn6TqEB1UBCSNd7mA5wTS14NeY25fsS3GUdHWBZdIMoJndjgoVU0LvwUZjl79FPYMkj1FrPBQW3l2uNsFDACewsorhR9TnY88zR1/GAqWji0AB25XCyKzm0ofU62TNBx2KjjDMN0BWDNe01+HsCt3lq9By4JLbyLjYK2HGKZAPSDgYGq0BaCltzh1rRE8K+VFQ+GAcsoRp0iGWyPpBsnXcYOZazXrMyWuVmOMmxbE0nH/VOF80jlEKFjsB044GHKfFpatLgVqRAaicGZTC9C3NWccqzDgoAE9gHUvFwi8qG3DFv64dW2n44M1QwgRw57H28TM3ZA4AqRtg88I8VMtMoBAPhUmHOnr9CIDdi7y/OXT9w/VJA9s87UUwjyTVc0VjscKRvQDUYUI0kSF0jtzUPL2PzVbjNk6HDBZVnFT19mWIIzNBKLHTpV9FAr0pEwVxYBRhgFPHixGorO6K2sDye1uC8AmgvaDVji4JKVSMMkbMHj34pqzWFTEmfFX7NlLBDpndcVF8GOJ9mahZjrY96/YarLtbgrwkLmlg0+1Ri4A4EMk8JdTDhor3wsX0mIQdi0TQccmQvAQocxf1Q9efMNjg04YSjfyj0y2B6k7evxRluFS6jkaq/yAmmG/j/aIRhJhu0GtpqxqvyTaB22rnVVEaOB4DP1dbQsPCiw6Iia9cXUgmYRFUnksLeIuaLWEm/DXA0jkHDGovoXfcnlV5A16dI2HMvrTFMpa2WDBCKF9+C1EPQk70p30R1IiUAh713oiO8Sx1ifwEXandJId1oUeWSeSBDbna+bvpMFkx6AKPRp3AzB3ijcmkyMZd2CHnecN4B06nzrGL3kYUASQm5gIvWncmR9DBfacwUSvbxql344dFed/Gpm3UkJGYYhEpQIQ39zcyM1urBD/EDsMAzAqypBc9X6VDvVYFHzXgMbo7zDIPkXmnaYWCmRBKVukeBrFSph6dGTyJkqbXem6hmTo3U9WW+7fG1DppbtU4u7jT9CONu2lZ7uB29OeaJBMq3KjAsjSXJh8lcncP4fb4joTdS1wc0MQ7LysQl5+d4wPxOCoQtr8DMV7x6p0+yPZwZvNdtOTyS9PREnvesB5cag5xqRZJ3ziTPYvEMELh5OgWWtwlC5fMi2Q6aDMotZNO7nZ9p9YDfDLu+LY0KB3LSBJsTePXKc0DiSFoFuxdp/aC94a1Lnk0wCvDK60k++moNxJdM4623rr8YLCcXMbIkPHb541awyy+QSjDJjH2EOpklWZ8CHSV+XDKLma3uw9rrBsLmbnzakykKWcfJa6WF2cLDzfDUpfECSFSMrTKXv9qwOUqQqUko8BTBctTnfhknW1Ycz48L4nWJ3d7jq+k+qJBLiwJ7c52sK9M3fbZPtNrDrbaVzGB6wpmSLRk/QJLV36CMaMRNv//5Jy/U+tAXsKG61WkdxiSGNqR5N8I9Y6nlP0DpEMXCqcFH2VXDtTbBjiG7Ixhog9YNOo9tf+phO3xofTB0UTMtPLE2X3+U9scUvyw2Tc5k57GVO+DjkHM/DDYAzpxL9a7/+fLV1+WHB27GmxNq/+FiJpP0tp1SZy/vVPRF5bG+Q1N5J3H5SI+7SwlgxddIo78GFP6jxNcfSRsA9NJD5Yb0lVZTCeWuuhUYh8ZDam8fEUjXgl/3bJYiQPs6VupHZVroLOcmZaDCTg38YyTmePfystFPSuOkRxDHJzqfc7x+N4SNzvmz0Xvjdv7nk02WQ92flwOFoVNRpzflDR+P2Ak5/3Nf078nqjBfyJ+1XpjuWRV2gfx6/l0f+23ui+b5k93vCVzu6eV4k1zSkLQj6mJxT/PBpqwqqlknbknaCZs1WtI6K5nGfKvuOP+yxPx221bTzZn2rzN795R5gyZ5teh600SVuXqzyjIaOghxLpC/DdTSTifr45WBf6VhUggiCYP+bpWLP2m3cg921F/Krqq8QdFSy74RowZRHCw7BHc1NgHHz83syk0oaUgYUlYrTm5z3UmEgQL+zZsT3X5tlUX4bwpSm/XfD5ezd3iWeKoRz30/FU5HDUSFI+dXdxhKZK7W4KS3kA580RZo4BRENiLVnptwklbUN1onDyiMvGKMkF8BTB7+xn/N+NnGUWCFgV+JJf2aWWwW7g5Q1nvlknkCPYMgSWZYKa3QIZ6Kpcb+A6m5JnfOTzRSP7JcHem/LK6y70Ozkbo1ZSGSyXPKRH1xp9RZGIUInyjaQmJH/8lBHcSCIZCOO0bX22ODUo99y9/U77x25VS3WjKyv+CXxMPxvm7MLSw2qUfiLMQvVLgLuE92EWtGqUwZheKkJZdz8pqgaP/nRiL/8wys+TZbmcRKxYllcSnp6nh2rsoK1ryiGP2//fXfAoZlR9OEVwKenyKBJ1eCHPoTh2wRdS84NUTs5+2roIc+OGahozVVUt3aACkBYpnFjq2p4sH+2Um0r+5QZzOxb7CyCZrlS01QMXi1ibs3aUyPib1D2+NVLF7dWwpUWx4S0TxzuyRrxCZL8C3UJbLLa3JvQevKV26EJ6T1RmHZja560nvGheHutwT1W98qKlwcrCI81c0PdF8XmH+nyWhZWlxdSF9OSrj6c3qSMj3LgW0J6szQ8Q1g1qvgAsFX4JM+ZJ2qNjFHNiLVnJ8qJ7107t3Yn29iG3DZ/Fmg53xIL1jEy+M8IEiTGVayG7+z1NkqJkVCTcvDF0W4/AqxUoEZ64CU7otkR/8twO0jKchyKB0L252TwEazY80yWiG3xrHvuqzLModX0KwvD3eSmVQxkRJ+hYkfYkUX5ac5Re3VM09VsH6IuUWcMWpF+1ZfbdURewctA4vP5pTVyG6H1XpEoL7hfXGMgoKWlEj7x+mfIhhV4t/E1qeU3wjcZoW3ItzzVSLbt+7nycIYU5OTqBgFsY1xSZ5ijyI3Bwb4BJYXaz3uDuXhOt+kVUxOzHLDU9b+TuJRMsSS3Jx4PimDz1MukbdFd0RhvxL8/NesQoMlRSLX+rtCmyd3aO2y0kB0wNrMIdydA9EHiIgDeNwd/EdRTqhqANihFzqxTEubJGvEigbpDzVkEpulq9gnpHOc5PZCxSjWP2GV8LS05UmniUR/DchzyZ80RYE4FqhUnF/m34FgAoTy8YWNT0c1z6t3lXx2Y9JTvMsTNQdDzc1sfN5redQ0Yvrs4j4fxSk3yqeXHm0tyvXoTDAaaF0qNrnMkVW6QenZlaQ3k7ryWZQSR5bEDeGXmh0UXxC49c2XbDCCkA0jcpc3cjhOaGKz+NuRg1SwR2Ig6F+OyeSAX69dvTAZmSELrgvrMh87LkKC0vQJ7UvfzbuSlPLO5CKbcCtUEJzwOqCetCvS+1q5tqQKSGV0rcc/7dFdAVA/GQSbs/H+m4bvIglSlNSFrwjnZF7h/iiNIcyK6ijsmRWHfa62Le/q/ubPM0YWAtbm38Bq0j9LX06ehWYzT/deO85LZwTW8x0xGdkwJU1gzLWUw1N+TR1lrIFC7f44lIcfW2xnG9rzru9r/jhj4EZv90Rf9z+vzxorMmlFWVKj3FIeAzT2w/LZrVtzB2AgzfG8g3TbyxwRiJ7IMa6OHIwEgVIndSe3QBQLCTG1xLFCbttMByv+e59Ifw30NNbMSoHj4uam/Iv7N3+eMSJ5bS9tyqA70hSmfEsZ9PbJkekt4ooJwIDrUmTffgP2mL8yOk3WnQTrT9KnT/gdPn8vpkDzY8l/Tb9FtcTO+YWcJPtMj02jx6bDpnM4T2M/T9/0cPtD1LYl3BLiMWTqbqwgzttAe0i2ilrCtUkUTZb9uHT7EO2XNstphFMh4xnlRuM5hiq57HGN4E/lhe4b+oJd+obi/VfzG72BVb69ak6XrFw6s6fhVab1rgI6Pnc4siWy6SaIfDuoatIuaPTMu9A6WEsAq5JG4sJBAFfHpmHTaq22yAPWC3Vk1QDpWiB779FCDJQFyinyLkJn/Or9SQT/AqFWB3zi+1VhAJnEiWTisxmbngfG76zLOnQCFx6Te0/VIEEf8VKMT92/VhCRevCU7uSTFfiIg1E3Hg/vD/Wqo+QgF+L12iMZxYP14RqXC0UtdU9UQbKlTL50DMuB9w/TII6F0AWo1BNUC/fTuipFe19DrdRTupP2AwC2+WDUjSfD+yN2x/3G6yis2ZUCu5NT+x6M1PG/EnqG2svzhW6U15zcshhGRqSUeIvFb3errEAcCxF8SwpPoK+9stDjkIabKDkxgI1uwVYFJNRM59UfjW2MSHgdMAzdWJjcV8VVagYxOpT0DzPmE0r9mVed9f/PdSaCqn+Zv/ZvOVT6adDxtb7af0+EIjyDuuqo56GvMC9kY83L40c+Ngz+9+aGvzejXgle1Mzt61zKKXSnW/AKOaeBtiPiYnGP86Ar2U5V6jgtlJ3QWaOF3mlnIlvcRnWphVNNxTkzYy0fsie+ylP/Z6uj1O6jRD4jluX192SZYYxkZF6SrkkS6QNpveRwPD9WH/uL+POaxT3bLPjC3bFnYWdCBcAot7/3BG8PGdBvGpLaJuFNsgTGkeIqW4eacbi6jfPn8L0P6hr/xIuomSqCK7Q5MycxN51qSpZIx/v9i0jsCPtCXCJkx4ti5/3RCtpj27mpzkXB5oZ5rqPLnJ9ZUpbOAQNzAouLrcaCQy/sh56kSOIwbCJhpw4mHPcHsLDQkf7qfmpu1CyJwkigp9rTJKXwKUjBmYzSgWoDu7kyty+RHWJF6PC7Edg9WZw2DBvJfy5C3adVFJ5ItXe6jNnNlbLxNBnsDxX6Ogr/TW5qBbQE+8cX+djT+HAfyLbr1dq7rdXEd/J31pVOJCu4xRSRfBwIjgPdb7o8SHYGv5P5Q3bo/jD1pbU9JZG3a6LWsp455oe7Lwtsv8fLyJl5JBei3Yf1LoXNjSOTxegMLs4W3MxXC63IKgie5V1N+pHGDknR0tkGUmNIP9fEszCi2777/TtlQPrxJ++/8I+AHbM9Rtoe74UWms/2d8zllBOY3p3xP0bnhyZzd+rjmXIs2dEV3/7+7Ud710mD6a1h/3CP06Z3kO3/EDugDuNMb8s5TvwgpHIR//BvFvISvZxXA+VkJqeo0tRnCU9bFJUh3VQyi6ZkHcPnRvPet6BXyc3VF5KKGuwydmkNkw8BykNKSk2u2uO/6eEgtP/vRpLT+6K3+mNKEEG+TjUIqAZCYoEIf+fUhcZtJ5nxLWFc6qD5cUfPHeaOoosxU/4JKUTfW7Wfr22SWw3CS8ReZAF7Tt27RRRM9L9t3L9hzs+rRYzfTICHF7IZAxajRpa9wjvoyA3P6B4+C8I6N2aXwiLU/3WHop81aGaJ/mtGomlJa1mCHnxV+MUg+EaL5XajBr9gPrGn5xPlFFAzC9eceQh7759ruTEzimPbB78yHwKbVgeWRnZrPRuVvNaovlR2bKmQqQIKfEoYXD2mBFxMyIy1CRiNKApyzDTK+COCvQ24y6HdTOWb28TZo1Y0+AJzlw/+R8L6RUfBwi4qevsju7JIwyGaBz6lmswCZLpui4R1xv0FVL9L+5mYEd09LOuTFI5Vx78Q0R3eas6xI9ohAwMzk2g//Vhn8yS2L1VXnQrFuZIpOgJRLrGy9Y/7F5CHQByjqKAtRZKqivo3Lm/SB8soKdiaEqM8OGYelXnDuAXAPQXaxnh+dXMDpJjpGSuZUhi53R8Gvcj5Dox7HzJ+RiGaMKB9VQuqMTNlbdC6eKUYxKrdK5X2Kq2Oy9/W7X5C5kJfbUai72RHJSPkwHsXdkTSskXQnyATp5S8cV24j2Op20W0LDYU+KXrBnNyO3VFtqsvayaeoI5fKUdj5hux8G9yLlTFMVnJ+W85nPEw8q8ZWGLiV+yu21I8VfJM70l9s4lz/iREHvDShRNfO6FREEEnzOf/5IZYMcuFzysK0dbgHtjDgkA8olwUQ0zRw/ulH/JRxwilFZfVrsVDtaTnprNjWxd5UMbPQTff++yBP9T/kWWJHIJ3/ybUoj/S0TDLLO2aLzUs9lXhnqrmu7oXBMbfcTm0NC32Yt5RkewSUMTpqQ5MCyT/BeEYkFsheLHvB39/2RgCm/xtEZvEv1b6DjcNo8u2C0c6tafxtmf+80aSdn8mgy9Pbcexr/A5Duy9dkMqtI0qRhG4CUlcJtIv+mmGUIeGdl9BM+U10netGiUG3J45cH19yrF1EAOq0qfL2FxwseHkISsZ9Mz2U+Y5L0xU4N/TXhsce1vW/OtnmV4YL7KHCF24B4V+XmwSViGOe3KbD/XjZgdNnPaKW3xHM3bQ4iu3GHiXcL3wAuacpneryEx6PzP8hsN2E8xxLSE8woDuYVPfJVZ/0UKkMEJ74FKxH7t2jwcdd2mxgJ3u1y2U0aGNtS6RAzw8sm42TjNLtC5uL90o6+0ggkAxZDvjhwhZ45ura3vK0opQ/V8x1fQO8pifEcGgg2viL/Qa/ETXcTmLElKNuejbUQCGuq6FCEZFsQK7wreDJd3Nfj1XFknaaIPUBzce6qwZib0qaf9Ffb6pcaq/U4zZr+kZlRc2TG7rEeN3a9uHJcrDhDQGygK2IohpscQ0FsoWYEeQEqKJ86vHz2tZw+KNcVBQQILN0DBy9S5ZWCE4vLT6wFN1IAhEab/kjbAEN7jR/1ZPcru0VqqMPdxjjEtww6ZshA++SvLa0H9tg089L47AxwHMQz7B8Y1ajIwVizIGUtYCE71inp7/pvgF/wF58O3z84MFDxeG6nCPSqrtdm3HMflXpPDw/aCw17s2fhW8M0KIQUTVlXOlCTxSRUP2HkebfHnXxIrU+nuKMjFNG+VK1UhLeoXoSmfWsEIuMQSDul+1HkILkF6prth6SHZRhymioPUIzDQMzMgXFxO5st58+fkhJ3lFfaNlcq9Cx3fECfhuv3e45wHsRvSZ7Q9WFV4PcFxCqghvi3L6u+JzBaZMkjSZaSXnLe2E6lgQiHxcJTx1UVC8KuAGxwMgg2EpTS1SRGak7en1Qsw6SxMn6IPFJBiD+WkssyJB2aecx6ZkGNDUSK6fQqZvaEAVDc14oREVNKGTaI02aIcZELegROsLiOnFTU+lfbRJu+mQGWTTTeHwnPn5ngyZZvqB6SSbPsIpw8fftIuO+jquyZ96EVbIl4FwT6ljwkspx9FnPZtKaDtwcv5nzSoc+A/s7BG1jb2VtGSdMmbVFNfK1U725Sp6fmnbP8F8+i9A9SUKj+Tuinxp6WHn9mqEre+jHO+K3xK/NBZyIA77ao7rh7yfl5k/A1BnCTxrdK3thS0vcBl/Aqaf63kp0N0Jech0V/UWqCbI+c3y3H+h+L/jVpI6Ad6PtW7mjHdrwG8dd7VQyb5UQ4tpuU4+H2NlbNCP4lb+FBpA7oY5de0IShGvtP1atuhfrerpsRhrj999C4XstumB7mnWRAqN9RyY5EszKGeJbHr8/7vUR+ZDch10J1DU0szyf8Jq9BvlPaRdBpAbeWY54M6hMYMzICVquyzKH47xYK0qLEcXIZHtO3G0fTTs7D5nJe9VxqBzTzpRPY0P8uioHvAgImGJ0jFbq6PBDO7lQTBO9EvO8B9MqO6AN7eT7FvaHwCR+1nPYxkjYfq8MwplfnO7iR9Y7UC6WpHzJls7Tu/4Mp37GOkYDQZ+qvwcR6z6zol7HxTDR12OjfdQnV8hda/GVQttwAIi/+jLx/VWZgmQ+2RddzKFyFQprVGRZFUA08VkxQcqNQdSogs8pYWT2cKORDZKdLC1e2rGW5IqA7BNHF1lTku5c0XuNhvOw8jFcFGs+IugjZ0PcHWRl83itBFNNNxS18ZbrS3Msjw3RhJSrkZyNidolDpJLAuWzSJX7CwZZ+o8eBDy47FNYBYqdVlybpOkjS3dDGDo24Yy5bXJErW58SEptoehl/Y9BGohK5H69YDKidHlHHo32fFqHi5hxsK6XPf8LT+7DN+7vgLhq/2gx/vNYjdaR7kIJ0WRWcC4eKT5CDqQGBaJmMg+PYx0F4kxaCfPC5tpGGJyDsAwgvMAV+m61mi7bBoxK+Q+Epcb8vUqZC8lOuA2liP4HJtEIHKQpki6ytye2VkwOm4PNoPXcxh0cJd6qVUPYcIJVS16DmavQoBtPV68wgrd8sI2fnB84zi5gce19p3NgZrJi0fatqPB1EVaMQ+RV+AoGmY1bku98JLDr9aF4BxtjTakTCZQsiDaKF1As0Ng6Q2F1J5zo6Qi8BJJIpDejEwhFXi6U3z4Fp0zFlBEFJIP5g/jUHmiisnK9cdFc0lIMvRPFIiAK4yqtLVRxUja8jHYUow2MSgtQ0nHVUuVIgycMt/lzh27tkVWOWksULaMzNAm84kjGCu6Qnc7VjxYXYcEO1JgvW0WVLcjLXTv3G8Zg1acQ99wvqWdMB4U+QFw2CyXy+kUPaWyRVavzx/iNuC5i7YS6B9NxP2d87QLGcpYVC0TXP3ae2Djc1xVbz8KAOdtK6xycH4e3KGNnBPPp/i4/8uWc9ajaB5MgHB5cnWglj4ovOkasBRSnN0mRXuV7IFB7lxSnoT4mhM9nVobpOKSWJZxicxfXPOwu8Copw6lT882B+XC1kLS55ojv6VxQiMSv/zg/LVyDpyqwNC3szCmwCwj/Ex3Tqzda7XPKByHQT5CE+HpNIxa/LHmkPXA+fHiOSrox2MXwDpqsQyVikV3H2AQOFnMa2uFMlZMoBoaI+YSXYhWcKa5J8qfrCiB7GxeVeiy8B1IuurtwY04VqiuVDfGaD2ZVO1Cys7ncoZhQJnM8M5eN3Kz3ScBematFQUagTbJXLtJa1RYyuXca6+l859nnC03NlZ2Fv4m4gDH7ZUsFws8KRV3KUHQ4pLiVwpEJUpPpNi0nlYn6osj8VWbeqRv8fB3+YY9qCAOpNJTPJlozwHeruGhafMkpVImao1Pu12Go6Of20Pxl/ZrF3t1ESzJg3H4hub6QkpwIE5ulGtiUquzvtchJKi7aXnqE4F4/YLkUTiysl1YY+SeUoogw8XtbCeipW2fx85C0/w5xDfN1L9j2RUd+Bxugm1n5NMyt4GndDhEoAXpzD+ZrFb1bYKz62cbhx8+aCz8c9WFcSacsGf0lW+37y10tQB3vPzgj175Ab//Qmb40r+6tHxJHT+qd9//T17/xmiyP/Zho2CL/xkIfOiyZYe9+822b7zw5cPxbJbdHF7VE/kTPV9qihJ97ELvI+L7seP6AslqRSef3chkwCbLiazWQJ9o2Nyk3T7idmr7uhn6AY6/YwZ0XqjTUH+rrm33heLVu5JVexJX1XG1A33C19Q2mz8m4oW7xwgOzR4L8c9OYLAEXdiRZc+JarVRrVvxfXAJ7sO6Bi+QjW9VmmTj/Lk6sgg7E0Zwc7HBypu3yx9k4BG6yJCGJXgtjo+8260unQD1iUUyZq8grln9WsQJGIbVEUdWTivPtjnbC0F5FE3TOl2HChoDH49+ADrf1+IkIubHqBAH4kKciBBRFWcEILbyn0o8RUf0TiXLqGTY6We5Fm1RFMvA5+n4RK0JOVhARvTisYhHM64/1iIPUSusQItJuiSyqW0eekEVGlfLiA7FkT3UlQ6iQOuWZCXzmDC+KYIGexWA6ouX9JY/a1SIOp5gNJHtAhBDpx3cSXENb0yKMqynvQ1wDqHTzDmMXtfPEXjI83MkbmjgcxQGW+o5Gq7ln13HXW3zfRCQ0LvnECL6Qkk9/aUahPQP92wMkH7D4lKhUZVihYrUQKChjBFCvmI5IqmKXjkhymMBVV2jXFU7VIlubOyIobZXRZqpommMKKuqQoxSkVlcqJjI/NNWJLaqy1HWK1eZLuNQ8FBOr6rWfZe2X70cCWsmYnLFlV1R/LuySPsXs4lHQhn60/BIFU9wROSSJ+ZEXtrx0moVSo5siq2vRqivXFGGJBZVreBRmIoQDElelfUIVRX66qW4RFQ48LiUCrV9TYobCVOXz6X6tDtQ/c5f2x40X+6kr22Xpt6b0kxyyPCJqgo+Xk3Dx6p1+NVqmZGyz7pccuBDF1kXC/DbgQ/cV9J/pcD7rip477VOzxX58uy+CuFd5zqdmy8dWxB867HOlm2a9m2dtm2Z1n2dln2a5l1A07rM5nWdxmWdhoVD/Wykbp6mdl6nZoyEV48TVI3rVIJdMQWuydPGOWVTPqxT1u+wS/ugpEt2cRcUdd6awk5AQQuBo5Xb2NsqbG0s3FprgaWGwNxAYGoitrEKDFVv68tAl4GtzQJNgVnqoh1VvkB5rueFKGLRzo+DvNiZJY+NyJIgN+WBNN1QI0mocHEkBaIAttAHAgMB38SCHOfJ4rl1uPZKOC8HnpUhJTNDSUpy6pRIN0KnxCD1rfvbV1ZDU0KDRCP1VTQVTkFGwMlEKSQiAk5ErkPAT4PHZcBxJESUPkIEwjHwdeKiBMSiEuFoFBqOilonhoqE60RqFOePnqQoRyKzHN/JX0IlejpuT2fRLGp3JNQdUlLIoiHPyr8iGlUnviNi7tBoLRT1Iip08b3+NRl+rzac8fQv4SB8R0DcwYKCiwaf5b+6aEJU7J9u02d0tb3YDhtTTYYI51+Bnm7bKZjy4xqabjKW1FcuEV0uvr90CSPFEFcXuV8FRjU+Medjky1FY/GJulFZaz/pUbBiFd+IvDob+CEgRuckx7FrVcQqvwgk2UXOZ+3BKVmSm34ZAA==) format('woff2'); + unicode-range: U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} + +/* open-sans-greek-ext-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAA8MABIAAAAAG7gAAA6qAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjIbgS4cPAZgP1NUQVRWADwIgjgJnxQREAqCRIJKCwoAATYCJAMQBCAFhQYHIAyGFht5GjOj9pCzkg/wXyZwYwjUR3oj0EaIEKr2oWFH9QUOBucuH+kIUKnBFRy0VhX15KXlCY3z41D0nG7Dzr8RTqeEEZLM+r069N/pJGMSF3BSnisVgPTqIoEL5OLYuTNPE8LYZfZPdNq/CQpoNq3jbilvUpm5+5DzRQ0PwP3y/Qo8S/AATDuBqkWaTbABN5zpfZ9+bpPs+d/e3KpoGuqdSOq0QI0wBtxkqQ9OE+1/1tK6TTheIC181V/WTBgG0DAUW2o7iXp6YPFMcErqp/Z0f1ps7w1rpOo+nZ/trGSffUQ9YlFSd2XlmdXK3h3LJ++R1v58hP+zdKhDSriiil5PRNWlTZV0Keo6XV50iiyMjX2a+AO0qI/hanXRSgmKcdvHUBDW6cr9KQcYUct0oC8XcIQ4jOWPSU2RijuOjE8HatnJ1AO1ZSrqgNpVlDJAnUrkjUDhANCSMIBw5npA51xnm8GIyoAQ3cEYluLDSIyMo4VMYSChydKUpHLvABWFcno2uSTapTb5G2pQeB+nMNWeyFLFI8fr+vp8n+/zS/zTgveWOJV1H3BBDznK5gPYghMboX8kHS7BspHgcy9YJEWhQ5yA31eb/e8CIL6ypgHoTfGBOfcOAA8xlZl8zb2hzzMC66VcXo0Q4MK2Wo4A9A88FnG8pEo7HODAAsq9dwDUZ9131nxHsV8xr2pmgqdzDAFD0pQ3Kmuw7trtc0ibhWmBZnIHmMTNOFUctF+L+Rbu/d+EHNPGefINgA1AHpxo+HKlpQmnT7E27UQ/yr5JS26t9S9waMHU/r1HrHtGrSl9Bm070+ncplmj1iybdha8YTzgQjBuTYtbt9sd6JrebfTPtmDLnhPXdRkzb92xK8+o0KhTvykbKrUZMGbWih0Hzih0mrRozZ4z1z1r1rINbfb7b+s1Yqrj327TvnNP+one0GvYhEVbARdFQ7AO4xat2rHvWqIBvdNHoi7izdpjnwfHbm6sr42PjY4MDw0O9Pf19nR3dXa0t8FWuYxpaW5qbKivq62prrIs08k4G6X+8aOHJ8eJs0eHD4aDXvdgf2+30241G/X33yqsrRbjkKUVrkzWSsUopFmFK+ulYgxTIWJ8F6wwhNCzutO3tarS2inWCBBXi3enY9nDrDnVUaeFUfN6nQF3eomlmuycsXrpkBLKbLrGV1gCrrbDfLNPv8CC3HalhSLjFr0qE9CVZhww77AdQQVC3l1XzzZhhXGM3YY12wk/FWJsdA995T0uf7WYGuCK8iIa+UPZEec0pxIL66eu2bEDcw7RkEGOy/wl/qU8bEYE43jUtdIN2smKNr1v+bV3KelmTc7l7cNk/ZVYl4qBUQ5l/HRVCPHTNYnNiwj26Vr7C9NcxZddGIRXELB+8BinJHh2brQk7vS9uMepPND92hN2nx1ZTqD7MZyWCQWuF8Y8j6jggjRCCiGFuFAXh4jYKwadYo4i3ILABtTOe91bW7y3cm/13sbc5pwKRNa/zFf8ixAlFP2a02YMQe33e3Kq3/MPqZyAFdmipgfU4XsC43RlNfcICn/Jg1Icuy6xv+bYJAUhy5SDZygVa4GXG27aFZ+AHQDU551iEihN2ocwsPK9XmnnYlftpxb2GcnyRLELvV+Qk7VQFCodqXpJe5OfoWHX0rveSLOjxpZw4YamoFwr47qn9TLEOd0qJ9khTbfbm7SXCnWhtGyWpvhZeCmweieQvBPfie4E4qUNpOWkjKwsc2fdje56BqIOUF/P3+Ua1+iVj2UPj4gQunampi6FzRA4hZRlFQRlrd0rcalItYB9Uy0VO70QDkz32FaB5pA0Vdq/8G6apedhVa1YC/uRZbXqUqVqJO/upZlnlWtOqtQMvOs8TmmM0IM4Agac2iRJ932GiZV8L495YEO4J7soSxVlTsmmzOs91VIxdhBdsjhCqc3M9XvnsmkwNLfRyPOI+PCw/nbF2aynzNxiuW1Swj7tk8VcG7MorqXrOFX1raaxazZPF107cYJr0w6Ccga6pLhJKRJOPA8j72Zb6SNTj+d6iDsjN+tJ+SkahxWOOiP2WinqEYkt8A0GpALRgIbWSabOUrCDaX9YFO2xZEdKO4jXhrS6ysRa1dpDcdyofQ0m0Fqrwa5IadRd8o68R2BVrFUsdIumaQOjodd0y4Th9MSSS2VNv4XrR72I1lpyMmFdITo731LtkPlP0wYGFlDSsLyLN0FcvSFD0B7Gt0A8mZOG0wmst1mzQumRWhcPkcZ9qsba0Sw7f5Lz+nLGCPi9MilTwjZvoN2O9BR7XTae4mEhgvjs0BvWVKA6VXecqgo5wrTm2N2UQLicOKlDRqd4HDNh2/I71GDecsIkmBD7kQT0LVaKcbSA7nfKgPtdI5ADElqdXCyVZaFE4pbvhWC10rCDwGuXSF6mlTxSVJCCMS7wdJhnP1OG2UR+DgnE8XEjlVYlYqIihXolvnWlSQcqOlUIHGQuIq6nI09oiZvwg69EKgQM+hBSjo9SefvQxmbW82ydywLHxiiVVM9ypkLT4+qxO4hbjbyMW8XIsThdOMo34qpYl2vnhx5s5+1D3pNndSNup3JPeqbqe7APDtbHKaOlUdwRZadNWW+PI3VstWa9rADBQ1PCGiN7yld/4tl6e4TA7CSK6xzVobcMXooAbsZAT2RBKwZrKc7wL4w45mtXSAYGpmVQ3wHpqMLmhuxht8WPv6z7dy1wTd2CySGQiOS1Pc4bBoZ2US24y07jcaFa2UMkFG6I4hc0Im+aeC4J3eUMBoyEUK6+kvJ+aFYMQsxZxAm/KV6uY8Vcfb6S2m0IWJ/TrtueFurXVprhrRW2bfVSl/sdrP9zSN11RJ5yKv2z/6oBuuY5psqrHdrCRFnVNd06qAt8/rt5Y0lEYFhJ0s3lLfnvKoVyBA764FEiSgNxTLRot0w91v429TnoTTggpyg/8ldNQELLGQQ2sUL6sq+zVkWJA+n7De2CWnRIPRWg3A2f9vp1RLVYppEmR+96GrhLmvXvANoOnCIK0Q7mw8IJ8YXANVMqSrPSwb3iCoc3T6qmG5uwZKgusT+tkFX7MDrlmqQRDDsD7b77f9y5gzjnePoOUJyuVxCPfSYdmcP0RQ/7iwfPvE4f2u/IW+5/cCyopb2OjXIfWZTtfOsJs7Orv+Na3FKJ0ZpEH6eQKma70+POptSBRw50TpoUMCkaHMrUXlm2099DfoNBYrlA8a3o1gFRxMcaR1mCOAtkrzvQzrz9ioxZtFrXiPsNxVJhB06LfQ60C3fNKgoz/RATjJfEDD9bpJGlEmQ25mTJAOKPymprS6+t6kHWvX5hRAzpyILKHB/xl9of/XI84q801I9h6cRSXwXIsfe6k4aepjyi2nJoIRIAgnMtpd3+TDUNvHE5E2HjH8i7eFfeKghr26Wf4AuJNeRRsQ3PqNlZ2gLJaLPS8juuAZwZLCv7/WWrbGbNBPPmR+WJaLDVhviHt/zeUYx5rGANm1huCV0EEwRRjOklJs6JQuRilmb+a7L6vLjx4ufy/Xv80491mfWf/6P+ujl5Rqxg7e+pzBXZW+v/r3WjG60Ha8OrYf3TE+JVnn7pf+jPU+4rXxj4i9g0vOU/2f33BeP8Seorfbcrxt+KG9XQ4v/Z7r9Kfq3ntsuxN2Ob2P4NgqLUxA6vDeXO93jPYXcQ41qcl9DrtUmuv0r8Rj6hetri9LcsC51qbKvuVTF+cN2UUVv1lGENqq5JDOAnRTsLhVIH56TPS9lctvVrrjxwgoIzAMpAXe8jawQAPGu+VQ3kKt9pshljUL8HwUBAS13vZFkBmgjBeoKRe7COKpdrbWFhqDWAALaG0UM3CW2h9xyt70ZL3KSugADKnNfl4MkiXf/f1DTVAAB+/T7yCgDw78Ux+V/b/95NXsv7gc1gAEDwE7E4uWeU/zV6QvSl1wS/t8RKDydv6M56YT7eQ69AAPGciTZcrCCxBVRbdxjYc6vDS6wZq+/Zr8BC0tO1hayvBxYqM7y6UAwL9BZqAwPfhYYP0hd0mhB0rYQAeXDDQgRpcI/mYMXHtIUUX/x+GNSCd4Vp0qwTo0aVanIUmjR2lPSqqHBJmmPdKC5NiWjZ1sl9rkktxmUvF6I11tV1ZmSMs0bcurnifEmerSo1UsjdV0qsbJsGDsa6yfbVq1CZLdlITkai7Eay89VccuJCNfXuK0eJMV2SZ2uUcSMmDZfgJ0oSRg0/DdVzQzTn5rOX9uyWdshUMXNNvi+lLJ+/tdBD6tyWKasHbvYAi3W7emIVTFoiSaR4WRLWlc7KuNynOc2cmIobaKHlfWxof/WPtxPRrt8wNGu3Vo+rOSsRErw8MXhpUuDFieCFSYnnx3iJuTECzw5LzPR6eLr/a0x1PniyY/BER/B4p8BjXRUebQkeqTTxcGWEhxpisFJgoCL6A5S4L5DoDVSgJzAWd/srcZc/0elHdPhF4HbfQtzmq0CrLyH3tsYy72Uw3kRLXG72iZt88Fdo9AnGDV5EvWd/uc4zrvUY5RqPuNqDd1SVRyyudJf/VhXuRLk7g8vcHXEpHYtL9pQTviAeF0qPMuJhpnSSEsfRsiQiXELYZMBRTBy2RDxDhj9g6BMDf1nfL0RKQHRD4iBU2g9ccYJH7LpExyHaJtEyBzRtpYZN1C2iNkbgoIAkBAZkwsc7Ap4ehfCQ2vHyS7bu/ILOBG1oy8vPbF2xlGeJJaIkiEUUFvGIokDB8AMwX0zZ5HuUAXbGxHs2sXC098QO9g7Y3oZgVx7OU31tIu62Fw+JNS8I/TvX0NUgQ3LVy5BzxByOzmta5jmS08Xplx+ErUt0ZnQ6ok0qQoZOTppjcj6YHwwLXBP0w42CqR8iBeKEjiuaxzmc08Xq5x+YrYf5ELjorngBawVxv4ikxt2UJG+5iSbgBtDdCim5N5kJICM3L/tmQnNu9MkTWIfONz1fk32Lgsg69Hozs8JWZd8s7DkXKgMBGIFApvJmwQSKE0CXolAyMJaxEpI8uhlY1EUFipo/0ayYuZNA+TV/NWYA) format('woff2'); + unicode-range: U+1F00-1FFF; +} + +/* open-sans-greek-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACRcABIAAAAAQRAAACP3AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmQbhS4cgRoGYD9TVEFUVgCBDAiCOAmfFBEQCsMEukILgUgAATYCJAODDAQgBYUGByAMhhYbzToV41iTwMYBjDH9RRFFleoroqjPapOX/f/tgBsypIb+vSqYdCxX6NHSWtpb04MJQWkFn2RTHuEbCw5hwSHsFm5ueAoVjxnF98WufZI+iqbQ75rKebVHe9VWx4QuySltu1DQ9+k18b+42HX9ZUXNPVvof2sfKmgcGlLyrIyFi6O4YzQ0kpj+l67y/d/d4pnSAs7dubfkbgNQ12qBSCMDgQykILIzl1PUGCg6Z6GTaAZomx0THYJiACoW2FiAgdgooYABIlEiBjYGVk5Fe9orF2UvdW6/d+n2sUjz25+fLhuUbbtowdO33+udndkNALyiKv9aIHxJgUAiq9rquiQqqowKheyJUPnjv5q1mQsZmKM6yYRv/dK71CnORuLu6vgekr1RFF2ukT5d80z0laTmB1Dsvzin0HZGAsKBKElnTxDE3AgFz9xPXNMyXjspc7hWziTZ0CZLdAgPAEJV6fEF6Z+ELTtX1wRcuN5Xl59bZSkpzKsa64IFAF9UXJPXjfnzBoj1UeXz2bRKq7sMbXmpFz3ZLjvcCbIFCneCfCkIVb+aqqoll9r2TLfb2FqwPCQNtwY1kWYBMAIK4Ugaz4I9CwDRAUeA8SXZBeG9C5L4guyCMDg/fpsZC5GuF+ld9P1D40FIRDJJbFsIceb2XzIJ+3x7nK6kWxHrShCR9Lp/22VsRarTBiOPTYfefx9jao9iEjO3syLIUA4wSrt/SxBMm1ksxCRkcL0yiGFQ6DFaAzEOOtgdXOzr8LfvRWqfILcLUgUpBVQpgFTQE+0pCHgR6TvT0Z+3YGUH2F2Vrz6/HdqneeK5of2q7qtDh1Nef3EbwAD4KsK9uAYQwEpWbCJIEoZpegHxCAYVmG4H7NItFExNqB2lpjS2WPrpgq4BCgdMAYMu/Xba54hJJ82Zd7XX/OCORT/5w98ee+m9r4FBUJCFmHrbUWx/m3GCF38JlgiJklj5KDwRi0LaJF1ypFDKpEYapU22y6DslgMyKtNyWs4FgJ7INbkh92RZfpE/5V95Kq/lYwBA4R9TAFJpnHPmw0HLoWLqQqhMZZPTLKWbZCu8RDPPlBbqXKBK5QbTaVDvq5VoTg9qu0LCXB8MT5VRAwUnzBJ5sLlJQW1M6WhwYVueZqNHlhWazPZJGHqcPjUJg3KOzicOyQFkEqqBhKQXFZ/UQyge0+e03Py1oNoVBjcwd/rZ5gmsyEF5GpJshGZOzT0A5U0UrnhkTvM3xH0P0LxRqQf1oB79eO/QxLNXbSzAdHEoW72FXdmZ4MPHyucBpxQJkCv49YyHlxjB1m0k5yg+VJ9FovEjjATAxgvz6AM11W777+yWmJ3Dj+Mb+pkvWfme5leuz9NBbdbl0u7h8YCgGDoB6BEAIBfFOQBowGbsAKGGw1I3s+Xc7tefJhCAt/Y9/fpC0T/JRglsdnIQe+NVsSZ9wtU0C/PR4NAeOuB3VCQ2mLeTSUyzTxtph3bpgA7qQR3XCf1W5/WOPtBl10VcKRvb7SE9bEwee0Hvvyu9emz3nW5dTuoktONlag0EmrxGYHEOC7eS8UAC9P+Xj2WuaOFfWaBivAkwbSIkY/IvgyocPRrDxxxRz1Br128mbUzioF4drrHZDjfk0NJ1bLPHqErG7NJNq1lqQKfRVmhNH3C0EmtmarG3yelhV6NNe+3+6vl9OaaKFj12OGzSDSryqaSeDjtlUEaDFt0GjThg1JRK2vUZts+oY27qNmCnsrG1PWpp5u6DdtlvzPdetJInTdr03XanD2ISQQWtSTJkpP6HNH1QYDhd1SoPDPt0bNbgW37HcGuLtpm8qXFbQ31dbU11VWVFeVlpSbGmqLAgX52Xm5OdlZmhSk9LTVEmK5LkMqlELBIK+IkJXE58XGwMm8WMjsJhbINqL7y57MVRzvcWe7e0il4Uf7kO9s1mZePl8HM+C9YdwT0VOxxJfd9Y6w1bOEhTH66Ncy1zAx8pigcRvPqLDcc8fNoI1XqBWNA2SfhvlS8Xe7cYnKcJ5ly675TO+9hYaEHlxbKuTMCG1o8nCENVnUl0XVrlXw6x7jyj69iyLOJyKUAyNQn3ir6kW6m74Jxyiq5fXz7jTCjXCPTF0vciq2CD/RbjjHuyt48PFaBLIniGp09Epxq6YJO0R8IHL4xOZZa8z/3/bMNviW27lRjTKaOvNpMrv9puJKdo9Fc78pWJ83DXp2vpIkE0dSYD48nUpxTL5fLIDGa9yY5HKyVTHFfLTNjQgJxYhB4OUy6mZaTBPbLsCA3ZE/RUvdcbgZludgImNLGzjRKsstztPeV23K474BZ3EqXFV9PxXwJCwm8JtQgjFR3N/k1VL27U5EZKo6VRIUsrvi4w9mUSHLZOq9t2ld95t5FvCVrUObFLeXf7Iu1WnXjNsUsXfQw2CKEseMPPRAjSGdxYyOaCsd5pf/8ZetZ7JOGFYZ+Gh/XlOqXpvaHmT5t+xjdbpmLLBqfuBieLubqqcxCmP+NOOJ9jSONE/zWeHZNJusGtC1R1dK5HyEj4tTDaY2ESSVM+WjzaI/aSJsoWdxFndwuPf6x4zPSIPwkaBfynXHNNR2+05CkR3BNZmaWP0CUcR8jsrkkS09b6o/KWFtUJa+5+uzV8mtxj9+S5BIROJq1naGHDxlmcbHXfGraa/+hs5r4nDmqtGxcjwqVVe85KMDI/y5HmZP4ppCFgm9eoacg/z6QRTR7nOY8ludta0CwamnmjhzOwZ++3W6UjRdumZ3Kx5OGemNmy3zJrdANPU/cPfRFf7wqJZURLEPGAF79QqukS1/NLHIJodxH5SCzNvbs8U2zIwlc4J1UJwjCe1vShRC8xw+B+tHkK9z8tO4dTAqS5xHFkieleFs8aPO9d+cEiqi6pTvkqH3lNo0u6Qs0TVRlHJun1O/ZiDHYkmRrrIe3Nsva2omFHX8i98aJjx8fTTWlHLNi0JY9qg4KnEAiyqa2ZDDVBy+hYGHPlk66w0W6EkqjbzyIcDp85+DvCihdsD8gqDymsAr5LDYBtATp1ndUNHQaiw8wRlIVn+yPippcdxwX0hahAS9AxTqjAoKF5U7P1KEsAI7SWZUb3+O5LzQrCaXBQ5lAHa/2AHpzgtCoYi82Og2NLFXXIzDqaAzQg+0j7a9KpZIWG0/L9XhYvuHS6bTIOGnvJVSwEdlsCtgQb5coPiApeCRIeu3yClme01YjmpecRUKb74QlxkTWUVQLvBCW5kv16ocm4dYCk35rWU5XGLkfl7WlCQhLoF50s3nHLpN8Wrzk8ILFDTkT4ivQIwadEhaZS4Qm15KLYeS+E9GScwUU+1Jncv8qVJQqMIu95q4ALiDlbpRO0FosbDvSAQn9vxqovf0ueigLlq4tipz0HKK37wKW5fxU0PnFjFE4J83lAukOOPEGeDucUpS3vnRDNIKXZ0y8auediLdvtDmLwlpGw7bTsVvgZ0HDgGdiyB5VzXMxB4SaMokG2UB5nC92Q1WDdXzbxVwYF2eUZCTdNTH5DoyNRXXUqqUt2Y2H+Lt34RID7O9dxaEKGIewq3xyXNtuRzc7GobsUg/Atcyp7QqmHGcluln0QZYD6lM85Ul4DOCG44R2Ku6EOOJFAxXsZIu6J7oLdWYbrxkkHkOdwrVEx8AgwnCOtx7WJdHp6cCaJPaQazyIyV+B7KMhhWXjfARt8VZDhs2girSjFJquYfVRUceq3W7O94RNPGQLEae73VeaEjgYQYIO9U+ZRomciEN7KzkGERnaQM4iYIgn2rR7fZ01CBPspGWFGeJcf4caQ0In04Say0dk8RGSpgjBXoZyz+41/1Prg6ZG+NRXhaa1j3w+89gRwxSfL+8Whpn4Y+MC1W1oHrcLr3SlQpyLXwiOtC3LcV2EhyhHnX11EjJGh8Te5BGU+/Y+lAqC12076diDi6SMEPk9GHtmj67Xkyd6n9x/aE/kEkJL/CJNBE9HagzR6gyDev8dfcp9y5SfLik/ehdPZNb2JkHmZRRfhkeiCIhnwES7RukBkvDvfYYIjGw1HX4wPMW6EKyofLh7+JlTinxh1QpBGkOYrHnSR+//b+iqEkekeGiaqdXWIF6fNBkEFPtetW6w4u54JniVgC6vH6poEijcdcL08hrQ/xoI9K/as/+3qTn9zU5kk2mZQlvE0v7UwNGSc8TuLNTC0fiGcLsDfWD3ntdadzH5IjR3LCSWEyO34RHKrqktKLh/IKZL8A9pQkfs/nMusyP6PyVv8VtZFMTn/p+BuFToGZ8/+Bsiq9zfIpGCvrthGPdEjtnwimdpvXFWQJHDUhDTmwPJAcDQWj3Knhm1hF9Ybum+AEgWoOALIAyCrVqeB//TcGpwQ1vIYdL9j7uE4cgk14YW3h6DWrdO8JwKi3SW/+MX+my2i9qULOepYGdjcWueEb8q2c2S1M7bInU8i1w6TZSm8+J3UrrF2tZd3vWaZ7G+GnXPVTnI3qtPdMusNJn4xPd+T7j4a9Eer0toJqJYEWmGwCgEAVWpghDJE0Qk5wT0gGqUK89NFvneJ/4CGcXuxFdAKQcGuuhptZl+IUQLm5xPKyWGOySZdssn20fQAZhyRBkqC/612gml9AXuwWCQOX9ktVpC1TRaxyUhJamGbwFb/3wAoklZJzlOVi0cBcEnGjYtQSFSlw5Bi3CzoYC6jdEh81k958XhNl4BV3zazC5gLIAiXkBRiYPUAAbVX66lk9OhyuADAlPio6tZH3QMYsWjt7rM5DHm3EhWacPCtI9rrtxs/uPa0GwnafmrtBd1SlVpiS80WJyTSeS8HtplnbeCLU6PRVoeKYWWqF2K/p9tOjth/3as8Et0L/642/MHnKGdXShGwblkYxKCNzUQxyZauXRiM/adIjyZ/dHwv6Sg1toPA7FYLnuYWLMOXNR4wgFU9S88GJrEjPMGkiG7ktAPAtxartkP+GZXj4GSI2eJeHkWN765RksyLCqrvQ9ogVQwn+BmPQtEZ8kT8j2I9oFhK6CoMyvFY+IeJT3EDtWgOYYZnHhWVFnkyUv2uOf4UglgMJ94AFPKxPz/wSiweNe6EHlosru4LCKph08k1WMexxdmm+H+6eFSEDd0qmezNQcawWCLZkgETWMXIXh8qYRlheEL2W/nJk1aCGipdXTuH9xvUgtQz3gfz3DwbYAWlxwj8zyL6s7rK7wRd+m2HWPmnM6MBC2zpfkvHZEORecsmR1c3g7WtDMkaL5NdndxaTcqNKak64BvfipNyG8VPpnfYkVMjZfGn0v3xM0f46nEDxqeDk+KZKauVqlgbA4V8TTnUC5ickj1nVjC6YT+DaLlbXa2KtVBqExqRcln4Boqygy95xu/WSMukNh/vIGjrI1f/+0irPbJX9/ZEGPW/r5XbowVKbnr6H3zpKClBGf6qaXnErl7A2jUvpGME2A6ElWXfsXjd9g2q8K3cGXwSP95Hd50FAlapwZNBtqG260Fb+bSVl4sxu9YgQ0cxa2hA2soYPrg6fsKz4FoOaRi8jqyuQ0id4eGjqHjNVRSiORJvtHjkdSVNKbHWi4jQWmXYdoRQaDR4oP10c9K08FU+ZLpmJ+V5aGk7h5978eb1IXLp3wW4ff0bkPelBwLJp4w1nuzpF1Hg6FF4oUbsAVvpH5Wt9IiasRYwRAFsWXUhPSGGIchVQ6sJf82VGpLm3C1la1MyXHIcuiJkayVG39VH/QRNQgjmJrvuRmi2l6axd3anq1CQNHRZV/7ojgfgtMOHdLMxBT7hKdFxUr78qO+bIVaeawiPSk+kC3di6h3Wl/QFmGb9GvDlV04FQHJ0Nq4IXXHS5xZry1bkLNoPUVpUEdo5ozfey64re+6NPM9O+NbxA+8Bp4aRZ2hTlB8EIxmGjnzG2Pa5rHpn4HSXvW67Phk6DarReotqSIzlkP1xs8TtYxWXUKHoJEgOqs26/5v+GfOX31WhBZ0HhRnJzBtQzYd7T1juQpx+3l79cVyDe8R7WHdmqnUtRgs18nhf7vofd6lmdqJllV2gF6r2TObFV5B32p/Nbq05WE3R+ChlcbXkXbbHFCkhzUVUUzHf4M7TyznKS/WNyVemG/4JbxvJ2wqlGdTK2kJii7hypSil1xJqsjGrDAC9dCJl+WYQpZRPT76J2Kmfoy/GLsL+iJmy77S3JpTh4QutgQ2cUo7Q9XDr4a/FMszlB+LAE4y/bhz3I/HRY76/Dq2PqLucmXdZW45fVcxtb7nALm+8kJV5vUvj9UA229lyka187ZvgS5F6lFm0M4OsxX+SyMJQisq9FtkcJmMlmQZtvCdHE8Pi4rlMPxY+jBUtvDVd4dhk7/7vmpELfFHhHfBm1qleH/LDH+IX72xV3LnD5dEsmbUTfw2DwElxKU5Jy7ZW5YEiipyRXADHCdTWZM8cnPpnMHKerRLmvKaW+DGIYXFxXBqRiQ9jRQl/TVZsYG0Atxy63ww86QtwsnPwGcTsl84W0KkKj78Fdxumj9WvMpqMbQKNa9z/5d2umxivWqIW68VU+6RIo2sIOywmpO3aqTpOAzktldmE1x0PcmTh7ZVxMeX+X+bdN4iuxl+fF0LOzLvpzdDjwZcAXlM8c0xtvVCE8PTVtfrrOioCvoyQv6jD4wQZIMU8EaGa87GV2dv+mzX1JL6w/xD5B/HfDtIXQtgfr5b5/jqMF4L42xnjB72SxeLdOeuXB/Xjdus7z9ia395p48W2lLvVPcnrZ/cZCiZBxD/O3W3M4oKb/RVJvloRnZCnouRuEepryXIlXsunEXNUlHgQNkhxymTsbm7yqWwsJNU4MumsW/pv8mrbSCInzZFtBqVBbOWnM+M3EmR1VqWqP93z9a1KVPMHmzeidqBkpxyMjKDZ/76ZdiCapxfubyM+kn/b0HKQlZRXkuLGgoy+Y5h9zQ3rCJ5ASKkUvLuRI9zWRDTzVCJEBIanYqnMj5AYPlvj7fcyMJEaVoJg/WWxLYBLSY4kcAMjlN7VVm3U1Ei5U+QmajjNrqvu24eKPe0X+Wl71KW8oyNpBeYVqP7x9mjPY+p91zJ2qdt9zxY5ym6ESz1CYu3SglILBHKC74sQkgAbFolVRtBZ7HAixyMsG6mAPsLeUmPdgjdNE33HGONefMg1rpvrK7ctXBAn3tkQHR0/6RL77inNsfh1RJn0RvBZhMzyCWLkcoFkRtVX/uvSUJdTZAC/R1BRtu+HuJqGKyEC/7JlJqGLxAoWB1Jc/mVTX0UHZrYG7pa0ctaGd6/xMl+TBH7hMoeqaHZAyca1bHacyrOSzo9NQv+JaP6eWtCoVCbUDDBTTCA0dEoet6qpb5FSte26VwxO9mu0U7e3RKgJovkrCemtXg8G40qwlAgCWRomKB8NoDq+ZTlfccfQqvzFygCJO0ZP5KbwaCyk7srsVjyZXnp8pzt3qwps99TnNyPXM/dGkcB3H2knxcFeCZwQZhS2iEXN5lI9NbzsUdPgTRPnyqJqNEUWQFeXcBfQZSl3vOGLig3kHYgHNUvVEByvbIin9KS5wGSH4BvZdpuInunSmBv1QbAe9EEEz21fpq5n9jultn4iU/DjQIihFjVonojdmbal9+KNLM0v3nGB1KLgEzalani8SVukgJxqOZNtHGvcGMUhJQd6x4XQNaHj6EZE876CfisI/fedD7x3b8jFRi4PcO4s89/X/261g5N7kZzM0JAKI4ntD+lbO73PZo5c+PL6BtOV7mIoM0yiRIZYR/Od3kwqYf7Fg/zEQ/AS1RdovK3oNAb+ivH/Z7m5zUvINYVbWKZYr95bnN36OgOPu+Tn8rC38XnqmcMIWpW/UOkvccf0Sd3T8Q2FoR3CMtmBw6ocG4jCIlfDoRFTRYxSIs2UAS7ZGkgi/vbC675VaJ1JqZM8NEBK4ZTyNRle96OaJyK4agbJjRHvP81wKGLRsuD9ayRQTZGNXfWV1h3Jantz2EKlL+xV5XPb/oWEffiN57m2+HiYa5Gz03Pd2sNSjF3kJpwe7DRe/mZFO9N2Li/pamOl16potq75MDNd2EhvgcRZ7zLlhVhF3wjg08PycY2IWh9RZColmE8P7bbIC9haFedl0555FLjyvPT8X4U6ak9+Mn4h6XRP1+WEKtVu3FfZBrkQGxIoxzMTfLPQxcGRXnwO2S1+4RYwxLUnfy1Xkh7kTh2sXo7URuJ/s43x35tJst/FHm3svS4tf+2bQKQIPTQWLdFUiwwbO0lDfGKz21FROisLZWvO/3uIFRprG9v+CwmPiRvxGmu8lyHuBc6dbf77+tsWO0sEYvm7+5POEFZmQ7JnQ2ZqrjUnOpaB5+JowoBO1+sI8Kj3LgtKlGvnv/+0mXZtZq2Xm35Tkv1dx5Dg/4PfFyYtTMTGFe4JGU1huqpoITfVep7Xrv9wbv7Hf6/Xh62WnBivX2bW6yevDdxhQHNp8em+1VatdA4ulYSjxqOUDnqbbq9q/eOMYt0jPBAG0X5PTmajSLV13RYH0HOUe7FOjwxYd6BUH0/kG9zT4zKzUGFheGQTPBNn1UBzvLyZcuc31K37e9X+s42ViQVgsyUK1ux6CAtWHidtD71jb3POe9qeyrc8uKbXdtE09Q7mDOLE9G+nW6m6gv/UXAIzt/Qd/Us5x18eGhe/DV0e7mpHcWXWsxEBn/19E6MoVZ57LY6LeCYd8Ei7U2Z99GEPCH9128gxfn5Cng9Vahsg26P2xf+FuPvr5TZlN1Ev1cq9bmZcmRh5L5+4DOpqfDo0EvdP7ZE+NQ2rDtArDUYo/TqaxfvcZ9NzInvr2Iqktojk/ODt6L3xzYyLbGYwAkNynMGVQpSQJbjrsU8g/Zg3MISHHSrLN24AxUG0T/DimlgepuzVrj8trPdjkBirFe8Se1ZudjbfD5X0Y7/OmjBM9eY5x8TT6kJOW5WdNfynLPd0WkPhzPdJTTvmmhMf9Zm5YIaIG1pUOX0j6/rg0C2+WdMrHM6yJLqG4rXDNppA9OFp/D28v5R8T8a0KnppVJZHeGx7rNiHaVRL/nsw0BI79m5/VIq8u/Q6u6nEGY3TaZMEN8sax9PNBlac0Quk7+m1AqqiqtxvJJ6p7R5LyK6sU6NlcHVkPPanBXkVmHLs2+ycq+3/ZJK4IcE5zp1m+/kkP8x79wTKhPMYl+Mnd9P7l7BhLTFtbkdZId8I/f8DFViEStTeIQojFqN5N13oSdtfVmYcM+9n1TrxeF2FoMuKSZFFZqKoM6/OOPpuolcOfY59hmuZm3s348+ApW2iMtjeLc2pkAh0aHgEkZlbGnvVojBlcYz+Ra6bnYDG8URyb5JfrGsINNwwBhaXQqVgAA9QCrDFFWBLgLYCyKKlTsxWAATMKRm4Dgmsg5cSpE6YrqqAv1b1gOerRsD08W0QuTD8qwOGTMJdBhZmSFDFz0lqAGwJVI+CqQnVpwZ0K4VQQwqlMGpE4cq4O/VqZk4VMfW0B7nHeDgzAJDzNKGLZnXPdNsKcxnS0QCr9WKEGkkUQUx9xaXNHIjMxlKY9mnLNgXk9HC7JxEQDSMJ3zKM9m9zVp6DI0walACAT74iwZfACt0IANgh/Tngrtpu8QEXAiyAWJsyOSK1F7Qr548TXf82YF7qKaskLQU8DNMmg1mddsA6BYl7H5GRAd1CeBID8QjxI8FnYKwECZlk82p/HHfq324ljweAceO+cZ5QKrpOhJU9rtbSrfISo5Wl/tjWDBSAm0E4xaWIBKsDJQYUMMqPGTeYPRnYczC0KR9cXDvOzwAsBpgzmKdcoxMJXXQXvyLBdw0wXz9Lsfiei4fyi0d4EsYdHx49Ou2lBAwkQO+mG3bSq4Orkzwfh3Yw6PfBQm8ujm12kl1d0ZwSaA3iABNgdgq3FuR5aPH2ynG4w7jKlQhI+kyU1UzXRjz1PLeUUPsrESrDjjhi42qXj1HMqYQwjSobIueg5uVLlTNKk2SMUyyUJzK8/MgqFAJkwMKhKWea2NGJk9csOReMUKmqYIFDsbE+htdSAbH4oRdJlh2cnBwLGIq8tFdtRJIDu9irTt8EmHTc/Va5NmwaFwQuHYois5j1P/mdtSKAbIBxp+9Yf+8rH3plk8OrB/1/5Fo1jHIpMGg/yKPhDKcK8XtcbG/1LrSFVj5mZ7sFrfoAHqAdJczcQIhjUCbPA2/9IYnAMBdzpTQDIdcYo71iI64alL2Xnbb1NuQ0bZoKwfDwx3eKE+avmdR5jgvGYFhZNbkYdQJQ9ipq0VCVv3e2E00Ty14eQ4WZOWo/PWo4cnzlS66Pc2xyj1kqyV1cPNxls7c3mM8hlhex23vqiuOua0oq8Bf52QxuCZCgmuENktKO3Ds64TyHLJCFqAGvhx3K7+sBhypGWjbr5VqxaR6MxzCWKFpNW1+8uvd6uCgBsZjkgDI7iCnlaVXCQiTJ2wD5XL5/wC3HY7jFI3VMWBYoXilOo4fWJRqKHspxS62EjObVrkZCKJKgXG6EH6xuxiPe6/X7gzjZ3VWncMMGLsvDNDPYwHFH01q61/Y65c5FkoylhrVTUhct6jqLw+lxoIDzIFskFCs9E9Bmiq0738O60chIKmdOtcBLrS1xjgL9L6w76KMd02wywVFINlmzrURNHx+cxDvkmaRZjglYQWVaD4fWYjTfyJ36Jyd5juONKbzapq1Z3lmyi38UrJLUPzg4ieP+ckx2dZC8Tkel66LR5vLDQUetIuQ4qHx+e4vHeOo4lU3T7uwgvjhuk4Bja88YoZSFTk6+8MXZ/f3lsuj2gpmJSGOIvWZ88PmAA+sAL+pzx6mHggMPembGqf/W2yokf3pqJxOIErX9fmeCnYJlrpDO2aLETPjxctmO8yKVni/hwUqpOy8T2tFoOMSyyPUa2b/Kw5+MLwDoKXlmTL3CUoS91Y4Nf4FAAMrz4zxnJJvc/oOkAYBfn178BPw7Zz/9d/wv4VJQD4qEAYAAsn+o12UnKxbkk8S/ic2Swzsp7TZXhgk6Gui09haSCZdW3F0XevCzf0SXQGGkhrhCta3Xvg0K47vmndbE+WX7gh1HagVywNb9gnXiYgWBlL4LYbTzkcDk7pFhpXpYSlZqes14HvN0DlZ4Dm9caDASvTA2iOVy9Whtt+ve+Mw8fcmCFXu4jUCcwgooe61UW2IiT7chL6bvA6nZ4GZLuITnKO0p5TjYW79oaEJsFnKtorNg9cyOk67hD6FxwI9YBhllKX94dfEcClto4brgpc/0K4peA8mullOUyiPp8UZAD0H+DuN/vmIrfjN2Umq7Ofe3oYgu1GRv/bat+7wVtPMX+P2X9LKgDH2YFAK7AaKjpgm9Sj22+P4ymKGzfwQQMcg0MaNcJMHDLJLkRjElxaQEk4cVftDmbqkKgQAkcpxAQCTnAS5ZR/UV2mF9+y8DQn/JKaCQSjRkk0kWJWDxhegFCz/TVMKhUJAPSSQFKHbCRdOGnBKnNUgkpYKsnDU1hesUOxQmEgzhOGWSXY00cyp40pxSF2JBwTTnoSJjK/mUqEFANq4pnn65GxAqBS1Iz8DaICWus0nDDzzEoxNCNJw4tCGN5dR6Y4PDB3lmwCREBc62+8YOvD6kfGLSKVZw2tPPhQ+c8T2RJ8kTiczakkMUsYi4eIkgYk53m44cr1bqFPMH1vSAv/ZPNELE/A3N8t+0oftQPjifgBlYNVn/OpX1rTp619tZz6Jj+8LIumce1jWZYjqnP4yOMQjTPmqytlFH6ziVtYyZmXbQ0dzCXG6RmMZex7Z2ioZWR317m7pOR203RU3Hprq5TVWjo7LWUVEzKK8UlFVTlFY6Sgo7THExgKbQUSRWYakLynKH/DICda4jL2uzcjOdk5KVneqstF6XmbLJSPA6qkRHeqIhLXHFpEb5sJRIhzLWybHOUoQ6KSRLHmiZC0vqaonPw8R+AyJvB+HgXiYCK7H4lk60qsN4loIEW3MdrzlOU1287YOJM6OONWDF6JqtoI6lNMDUysOiNR1R6uswlvkZJYxDeJiQoEB0CyApIBGdHOSJ3vl3K/YV4otwdJCHjj4YooMNhuDNAe+NxXg76PDynMLTIwzjgcfay02sOQaH0eFmz8bVOQDj4uyCcbbX4eTjgJEJwfaM76iLSdzlQCn+MX+uPuaCs4+p4CI5SfaFyrFgK3PLa+y8DZnWOHxFoXxJIZVtCKrz8jzlX9NQCuTHqOeEYcSznUwBhYXSWghL85DXhPNhKGgtem5WlEF60KzzjPmXOG/rK1vV2yc3mrGJYX5WQk9fWrxr7j29m/pF7h1q797lNmfre7BWPKDc1r37Q5i7+oplmlFP4flLTxQLGA6O37hoBx1xB2Z47yovYRkCBOcf3Mxf+FQGbc4L8Kl1llY=) format('woff2'); + unicode-range: U+0370-03FF; +} + +/* open-sans-hebrew-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAB4sABIAAAAAN+gAAB3HAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGk4bhjAcgWYGYD9TVEFUVgCBDAiCOAmfFBEQCrA0qCQLgRgAATYCJAOCLAQgBYUGByAMhhYbBzIF7Ng44DxAJbB7/0cUwcZBPAe8y/6/HHBjKNTQ6hck1USRFCmqO13MqWltAnOq6YQuLimEol9hwaAoHnslZlaQ0TMHrsQ1NoWAgntFWH2z8ml2P8EgX/Tb89tpf4mL7w2YYzQ0kpj+p+4/z70Cy/B2vcT640gBIOUD4YMAgQPkYLWTeuuA0/3Zqgu1SU/oAdrm/1HGwQECNkqkOEljc2Fi5QkoVmBhYKAsUidG5aLSlUuUl+1+uL1o4Ineq151prNH61fwQgeRye0Uz/d/z2/P3DN/Ba0+aGgJBD/IJEoDjrn0zV9zn28h9IK7AfxMmysckBERURWS9IHu+KuxgEZdqySOb//vI/QFgc2lOOCiHuLd/6yVdi9hr09TpcBX/bBmfAYeQNNA1l+9BmnI5XOAj/hzuzwFe4+hWgCMj/8zl7azOyBWnGyzxglnnuWUik6hctO5KXf+7MDOzIKHvfMzc+iOqABKHIqguMIBHFMVctGFhEKu7pxzG2LnpnfRNSp6l/adr8mTktwabjCpMa5OCGNUdw3+20W8qgdnUlLePcaxOTAu7xQuUQraz41BMHtY69OQoyZO0OVvFgEF2UBueH0JZG7fLIgPkm3LqAYhcIIcXnTCDfL3g6lVJwYG6O8N1WUA/VFdUArQPwpyqwH6Z06NFqBDA+BXBx5vANiABikVmzA643C21roO2ZEEFps4YeS8n/hoQNPzWTTWjbZxr/Fw+kkoPuXPp21fheQtAKoygeBsVRvs2uuXd8Nsvjam7bre5sJe3oO4W9daikTzTq8LASMFWlFlr6mFPp8sCRNLHbu7t+a3PDVZYvJHPiZ/5u+p/0vgHCpSYDpZORR1KkfxCXuXnlcFJKtJWLKRJCWbSeZUJymx4H7JIbIzGSGHk5OlLzlfppKr5Xhyu1xOHpb7yfN1dep2PWyF3yY+18/r1J8Mu0hcilO0UxVhiNaOoeDpbD+B3WQmpTJhV3zc9A9MDwK+KuKIlHw9rfAPiZaZCIwTpUynEctFKz5nX3b6xQRSEmqm8KAo0LEEEimNm646KWohj1e7FYIixSUkzl9xgxg3uxOG5ME6jNYGJ5vlP2RPOrH4mpS0wBv2T8bFzkLXe1wWA9G0S9k7GSsGkHKC5VKiyaaNmx1IvOe5DT5I1neFTMNJwL7YFwtivsO+NQJ4Lh07lld+c+b2JFuOYtrEV6AosEwanZQlJENLzMeuil0duyZ2Xez62A3RG7+eGEKxH4U9J85cuEIHksx1MECVzMp+bv5UNLfDM5XoHtYXBwDzjY28xYcjpu1pP3rtcUsAJsgTAGgJACDr2YsAsNDQM20JgIMzwfGRQzvVaBAIAM89NDUIAPQPuP0g0ACj2c/9VbqIxUU+3Cxl7evJYBnYCiDbUFK00TyvjyMWHzWx1+1Ne3fOzPvX9b6vX8mv4lcvtGgKtVU27hhXbYFf7sJqhRT2b+aN81q9Q94+T/Jkir+T3+RX+SWf84lw7tGpYO1FHDbXSxIUQPOTeBurVxoNMrdPxXVMHeKTCH5goIL5izGQmLOHoNmix7l8ZoZpXYyrr/ugQU/owWi3fUYtaLBoWLtDBvRqtVBmsYUBgmYD1cTMx6vcFrbBoZ+6y4gJc05o1KTToFlHPaEzrQZ7GA0pVGevJu36jJmy4JgGLboNHIwF/lTmvSZZ53tiG7XLQUZ9hk1atMw3uWO0Aw7rNlIYRASB9Jp16zdm0vEBgYO3u2eEluMJZ7Fag+G5c2bHxkRHRUaEh4WO2bXT0Nigr6+rrdFVV1VWaMvLSkuKNUWFBVkOy8U8hpcvnj+7KL08Pf94Nh0/efzo4YPRcNDvdT94uzjYvyxPaTLArdXB5fUsJenLHN6h2iCHHkCU8nEw4whhLHY0kU7bWOsNWwRI19msiEvtpXo+kGcJATT7/kZTHo1LoY62AXkNzW7Ys/w1fOZUBA+cGsMu232ER7KhMRoC+THSXpmAWa3uThCOqgeT6Hh0NfDLGmacZ3QdW5ZVWFcyOOqbhVY1L9tbTj3wAFU55uPaxVOuCHSVAtte+35gHeyw3mha4Xr+8vKeAmyPCNrx/IloX01tNrf2RHjfHaN9hSXvq+YYNfiK2DbqidFMBf00l0L+3kIpVQ7Y9xblVyYeCE2fLqAdAlkcTIYQrkybzibyiYlpKt5UwQ+XUt7RsN6rCAts0KVFiLCfKzE9IQ2OyHygNGTERMroRYYx8w0uwQQgdxkkVMqx7h2osBf2wxG3+ESie/6rGnmekMWE3zJqEYZKPKnsUvl12LippOQmU6OER1zSeZyxuxDP926uB5as33aplN8yHNOJHXGK5vIVGvVO4mnHddoZi2CHIKoFb/gaCU6yhjAVumow1oPy7TRoWHMk4ZVhnw4e1Mc7Kc9bIx0Yl82MLjZOnR0fnNY3qGVFLm7ILgg3WHA32KsM6YAPnsXFOSmvG0iOFhVdHW4QIsIvhMOJhUskXX4nu5OIdVYnxaqJtGhiT7ub3TU1ipaBDnv8J+5wh2qvtcdzIoQn8sqsfYTtIXCELJomSTSt9bW8UadOwrRrN+qjcQqP3ZMLeSG6kLQapNaWj4sYb9K2hq2mP7UYbHtqryNVHUJ4cFodT0VxRlYNcaQl2T2GdAQs8BGUJX37rBTN7uZBTeV6nHvaoUU0tPBG1xberrQb9RxQNrA9MLFQcHfXbrGeNq4s5oHnd08O20Z3+grwdUAIBjxURQ+YmjrOnaUTNl7U24mBiVha+voSYHbIuJUZFqU6QTjB05rfehMlokjxJFrfF8buF91NOkC6qzQMPAndxeJBg4e9I+8rouyS2pxv8JYyGj3U42qbLHuxZxK62ZGHMdyaZG6sh/SReW1sjiL3rJYn4lEnbh9MoEWxYJcXp6rMUvDAA4HmlDWroSZpHWsW9LniSVHIYpdCOupCWoC17lNFtChexRXbGzw6vet5sO+o0g2BBQFOaFVUNamC63p2EZSH9oMFUM/jjuMKtq3Lsxz4iI+vngFJq0yHrUeJAT+C02oVY76d/UKLDmErOCh3pvsre7OuXmKryDz2tzgPji0V1KVyVtHcwAFiAJS/yd1MVuwoL13v4vGIS1u77sEFE4+5jHHjNydgXjBLlhFEynvipfnINQvkvEjzZS5lKQUQJDUIKSgE1nDWCbwIc3ImBmy+eWAsAIRfmjZjK06ZQqnXOEMxMupRx50YRhJRXjLy4AIGu/RI+E8YDwGoyRHWVDJcAZNY4d1XIRiPpjWEyJs2UzVHE2QPAoPAe9XSKAFqKlZqDLmFyV0bNwA2uzZTMTA/nCYTKCKrAM/yM6ycnvFcqWqOeo3GDAF2SrgfOyTrcugedL+/5MjtDN6aaFGUaDH+0ui6EGvZ7hrE4I0jYcFpr1j+jx71hwMD2XeivMtZFyrsweEMKPr5tpJZkFZgGct7+FdGboprCYo7E1NU0+GeqK04Pqp6DBNh+ZKe+USAm8wtHBwh4gCqVTzbL22wKNsntnx9WebxXHlKvwNiJiQkicxHXhQGxBTGFEgtAXYA73qP41GojCJkZLoWMaAD0SPwe1N/s3RKQ8i9vyGVD0eA0J0Drfq1ybR10jl15s+omVeQuOuIRrCQ+qX1sgNm1UrzQJNgJrnIpWVWcIcoL8Lk3/WaXI0IaWkoAOmq0f/MKF0HAIQFrBmJcULDBMi9Ft0ND53oArcTEYEyWIcH/KxoFAPcA+EmFgQveZ+lsRuVSB5vJlsntj0STwWEu+FLz5c8uiu9xXpS5E2FeFqrdOiHcPUlELIPyyfFmt69EXjFNepamRb2Tvcw8jhiFZw/PtAU1hZayQDSgW8XHkNEXPodV6Hcd/8joTwQLrZ7/yAQaLoGM+SJZEDO8EU9ujd6/54DeybfgZf0/+DVoEnl7UYYt4Em2rxvfsx95IrvKpa/8SnYXdfS6wg5kBdBO1y07VAgKWgPp7XqICKe3V8Yr6aD0eTL+ADTUrig/FZ260cox/8YbUKQTpDe6x7Urpp31KEKgsD1NjNmam1xhner3Q/q4O1LdVRKflzLBO0pyE7aiaqiAct7jriamEL6vzHvQPMDnf25etifXUoSxNsLKircz19aP8yosM1fWWwGw9pn4rMXYBdTb3it7CCKP6mJc9kBARG6Cj5I7ld2adGpYb5D2T/QmjpVs6EqrM7Y6+g5esrrxDFLvw/qW0AbO5qMG0tXvwkojCBPpnembuo6W7YIrO4LZgvcIjwwgjHmjGODQGBIaBGphTvL+ATrrPceAKoOQDQVgJYD4FcQhwFAUZ5Pe364Cx7dN7rsoVEIFJgc2LHVEJP/qSfTedTnPB9fa4NjW4qjcDqqyv1V2enw0aF2lh6XyGSXbPyzNnkQYza52mwOuWdWpkEZg8ccj91jqSGVyRS49NLknYrL7JujLJnoKlBJyBqdROw7Kzi6BhpNplBvpdmMbV2NPbLqNjwOHJtySsfCcuOar3r+AbbVbFaqs/Kb+WSocjn+GlaBJqoeVIC3TSbIMGn2PHaL54hXkuFHJv6Sia4nGDJP3vVfkM1hA1E88QrlapEMkB674Vn4sZOPvfDEKQnwM5N46LTT0NSU6mWGS2Z7GvM3nIdVSZzA2oTL0SfRVqH6cuOaYmLt9UnMrCwofcoEXHU+sYptNYecMisnzeZZxL613NXmKMpLcbD9jgwFm3oVaFrQZaU2pNThAsMklXhtJe9r6Oyc2JXVlH3R9TnGNYWyf97+gVwr4JajWRymbiXeWGVMhxyWpDj8IxOkLsWrIRUB1qjyole33DBoqqKFsgZ7R8RPOqDzRdAw6XTkO5iZcYGGp5337gWYzUrz6vbHju6h6/FKbNbobO5XHeXeXPMO7uDz9SrD7MiamKCGjjTBelAJTZppWYOjWG3EYeSqk1jB5QmlRHSaqOIc49qa15SZBkWl8bzJUarHVcRNoqRoNbsQm9ET4uEQEvbxPmFl3iWzH9wIZaQ+dXVVlgWl+3dsM30BVxlCcMtx+Uu3nZZOA8949D/2kcMKbYVZlqJaComvtIA9u3rN11e5GqI3cpbVjfDxB1tdiZmJxBxBbPoi1ZAJNSgWl5d5yzit6Qp+Bt755phKPagkXFj1SSuBMvr77d88IcGkGXXcxE+FCYOjjpPmyhvsr+9YSlSSYc3Qac/Jsr3Jiao3QHrI0D5aAwsOCw+RD4fzI69AKUtq4z2A4sRj7LLZ85ZZppgUxTmjsW5TQa1m5RtwvRIkmOwRYHviStXx1HP0lGuWgayG51cSqo6Og/tspopJZTwJs/dGf+kJ4Es4RVXGjQEswlg0e1HopbASglPzQSV0vhJUngSEc1b9PQdTeAhX368X0BeFV2QrIdhn0ABIfVvcVQrAumhmXwLKqzxqSgIM7Q04UK8rBqze1DdAooHQl62mq3BZk/X2PwFQT819AQV7lMuL9InxjufPx/91KAbReAHfk/+hV56ZECOryy57H+/x2YWLCX8fnrF9eI0VdTnvlbtMsh55UCsVE3kXu5sUeDE3FaWxOn9O8lMIeB6sar7C6/yLFZJMJBEpAc3apsYu6TpFSAuy4aVg19Zocc0B2bvI6sS9oVICR8/flIotk/5vrBgS5XTx4/LT3GwijTjd0nfom/gDZZl7/F2uY1HbjYyoUn6TNq9Dum7ttcaI4Dx9y0t6Ar6/ZvcRVqeWionCbfQTMdhN8Gf4JaJkXQEuQTPWce3XPapwzLBkOxKRZht3CqtTY8BktBcYgnbE2MnxQjsfPJZV60mM8+uL3UdpxVWBknWe8CNGutb059HNdf9/fTK6ztMOZWePeFCHbbZpxYRUL1HPnNQ8+tsuhM/HKk5idWqR7v/Puv/7KvVAhC2flYwi4b2FRDtS371W/u4/oCyZFFe+0tQoamr8DFfi6QWF/8gJ58mCSrZ3/OO9hxxXRQjDBpc7C3HxaudQNx/i1++kb+XhGGZKp/DzDUZbzHa7brsUQqzQuKVB6pdkrE1iZcMOKtBedQGbpxIeqvvyC1zLOtH7XnOnk5iUeHzngeC9tnLwq+pu2UYEeAsqT2vnIq+E1NqG+zmSJLZ5M0T2HbwnWXcJL8fL3ldJu+vHIHWARhQevtVAjGMdHdzjKCTG7xzPYoXtOGAbBn6V2y3diMXdxWoqFraRwwRZh7J5IjC3l7VEUvn2iSK85LvL1EzlIRei/5v/ukr6i98J/dCjgmVxxvMfKGg7DOJBPbbJxogOSeu0K+NlZXNyA6naHByqaX79SOe0jQiydsH8fXYmyspDDKMQBDHxXMlbcpqtwsMxqohJqK+ysSXZQFFB16I0mBBkLVdK2hzpkLfZEypZAZNtBJL136pdM/b7k+wvXz/gl4pZ/iBnx66ddslD9MbP7Pq9LhFKrYu9SQiBUMRxdXRHVuLbCZF2/V64bZL1jPeOkTXVrm58HDGtUVdEY8dZ8aT/b25v7V/cICB/4Za+xW1PXrXrI9ZurvYrmPAdad98VLqBMxjDsYrBJhqpTZUrsBxEJNpNSTcyrc7bHEcn712IytzJGUmU4XQvGFO7fzu97hNF1Ia8JCyp3b30N4cUQrJ1NM3fEW6RL3NJU1V3EmI0L6jGz3AaQXFSGU0RIN3gCuYVhOWKdjR72ouxGdmGVygj/iMtFpwMFhzzoYR4NwaWZJaNxd/9nO4Wv05g6wiRhGp+cqS2cHsWzZwQfMIdolMliM+cMMcyPwhBaJCDEUn7lC6CGdeDEw/1PjHcWY6q+NiW0gqPflUV9RCBrXP7iCxvQVfZUlYl3xeAK7ZFfqkcZKRvp1PuHUoeTs3xdlPH+MmDC3mfcq9UuzjRWC5BN745lvFRKEqDHoxI2KNycZ5xPTj+QO87HHOqamZrkVYyluuFLXXQMXSw+g/Zx87SdTybv/tVqDUZ0Vb3em7+zlpCDjldfc4r46Z9nmpSLj3WI4zDvHtm/VVnI/QN0S1Isu6NCEYirucKH8SYnX0zuOGxbU7JKVQBJZC7L8DDqHsaEPr/QP/fLzdiH2diPcM9jd498eeEah91GpuKcJas53IvBWyd6v7gck6VgKVwjtdObsl5S7z/TkQ0vaP+0Va/A1awZPjmLwqzm1SDarCJxEj/k2MzaxPcNu54/M2WwG8/j3fuLf7mUABYgOdYJYMZF197UhwD6Y8TJflofQ+jvoPdUHwiyj9m26Is1TrBQ+DQtJMlw6WfVoYnOyeNUPNObGedDnUvSDyV1zWUqjJp6ilLqTZC2t+cEEKA8OPHQibH+rZbZs8JSThGIl0vB59CN6xUtadpfTnCigAemDSC7S3sWeaew2BKGQg42JrtPtU9cIucG9WpzRjY5AwuZ3kSzf2SLGsX8b6i+H6Q9RtngyI9KeReqh8SPsbjo6QTQg6S4vf9X9wvfM7qEHPfq+8/aask2YSoPKKf+dff/CuKtF3EeUf2+6C8KlLEe0pyjvqB+fY/9oWllEKtEwJECgLb38SpDnEgiWtzarokeHzQ6ZUV3qFtgh7HeAvvKxomvsU+jeW9sq/CRVF88K5b/3A3yJJOya3k+32irKKI8z5iapkQaiydEJ6gyMYRKvjt/0VKiPdIHJ/2D5zzPrIv3A1ttpizgsctq1fPvdaqRQEPhfGopUjmGhuwNox7bb5XmQ5dmiIdF3FWL6fPcDcc0fU12e9RxjT31YWyPK1Af9M7jDAkr8/1qJ9l/ocdUl1HVndv7RS3L630d2r4g8U79jKoBhJ7oLOX8h2KznR6nOwriCv5nefC5G/rz36albL2Im2//Rtf6lkYm7er20sekPGwK89cVADn/0mMuucMlwuAQoDh2cxDlC0ccRl/G1xIfmRbQ8eCkAA2vGwgtowIPUo2X3pXt6BND9Wbq2cUaesRRFEYiqLxpghmrA8aVkiLvyliLa5ecrYGPOyDnOJW9Ag2Vb48ozipNOUgSH85QhjriYjduHXkSMAVOQrsMtaj9nY3H0QcUz7Q7pwTZP5rlnP2kqkNsAt9BQmirvY3ciIrRCP6vaEAAHv1HA+z6Z0A3cS1j3dKybfal3toOIPHguvAGNDKCJlimLtlvzntYkEjeTul+YA0bjU3ALiuBV0oiJRIP7Wf8vnCm7XbbP8KgZcvivNisu+B/Xg+Tnb9ADnVpexVyN8q656EKDlM22vQNkVldTQSvShS2YwRewSgEmLwFtmnJTV3KMBbRv/cngmrc7KWrg1A9fA16smVHGOBbsL7HcOsUAjz4Q2s1O4yPb7cH66sEaUTdOJ3HSnVy1rUapU7RJnnHeORYYCNcwyvLU7e/O5YFsZOIlymEF6xRzgMtFBmIN+F1L4wJBogeytDxzRHkMCdwxsR9nRdoL1oTzcXYvVjPd7KADMG/nhu8K3vvbFCWr6KLRTjmiVCGb/WZEzTDZKPYMW3UEjpRn2ksMaZ2q6CVLcGfYxRYcn1Vp2UxZ/6Kr0HEncjOkE/6faF4zx9qpRs8iONWol6AJISImVEoVMNU9cA46wQgMhalenxyjLCy7MsSVOIpmkF8JTDG/J4V8ftzmQ6hSM1mbMkwgySUTKLeU40y6BFeN19eEOtqq1EelyIIxS6k1qaUZWEVBjkvgHAFtKBQq/Pdbfbt0w7jufxijjercT0VzeuNjB7H2PPKxJWGlz3s6hSKXRt6/b6uNy4gdDCfR0v0vIf/3woleEfp6Wdz+P7/eJICRpudrXaSdVZt/vcQt8/fbpcprrudNEoiyMGQZIAgRA18m+4tjY9L4qKgkGuKWUcsqtsx7PP6x9BwxF90boji4w8UDeVdbuxzCKaOULrvukUQCKEQBB6VWYOIAHsJjoE72qXKXPoL9Ak4P3jEjIaoeBvypIrOigA+XNF0ULQ5qVGi5inOYEAEPT//P65a0vY9h8voQ1wTn9z8fgNPsUPQ6cJfzPjHsa3nkJBoWEAgMBfxlQ8QLH+p3rZeesW1JrIimO/aLNOuF46C3VL5DSOO7SJBmMWYaW5oSyNriVSI7Az1D0QsX79SDZKr3a+jT46PZkv6OuwthzJL2iWHzRILrI831tD22XZquXmLGA0uiOGAvhS9Pe3dMOE7vK+wd4Eznhm/Pp6wXOogv/vBPSk0JCjkY2D4IrEhyCyMI4uAWp1/+ZS/nWvcUiKb2/VggCY0MVBHQxMTmQEIDLeD4CCAFqc2+8QsAWAzwF0MbHf8YuZw25eLLiN6WLJJUW8WHG8/C/W+IIX7uG6arwaAkAmJy9GAIlc5Wgpep+7IPryk9HYyCdqqlCpQbViRTRq0EmJg6aDC6NAx6uMXAudLAdct9IJqut4iSTzKnSQ2sg1pazWBL8RWfHKTPsTXUpFilXH0swllLcS5QKJvGJqlilQeOBaXeuI4PrldNNdeXSgg1XUNPPRRU48J21bLI+MkPiS3ipcPA/fs8rslPdCCP2fZX+HOoUCyOJ+B+mOt90l88qwqaST9/rLymcuhS11GSEb1d0i8cLEUCLzHnHlIvJfy3BDGWeW5XnGsYkCzc/h2cZIrU9MYWefvu8/Z70zj6K03mMArefYQPehdB2XOnelY69Na9+UtjUZrXVVjEt5WssygHZ4UZqXDTQtXWmHZuXggI0cKLT9k2XfcIy9g2XPsLJ7tOwaj7FzjMLQrzT2lobOou/k1LeZ1LXHqG0tNbUbTVf3Ul1bqqJV2aiKRh6hbQIpryxlZZ1VWqqSgqziQmkKva2oiKIwxxEKckt+Xk1ezqXlpuVlclJLdqayMpuVmaiMhKz0WKkDWGmBSo34MqpoL8pwK8VsCYtIcTMLdlWyq14myc0k0VMJfhgR76/EeRJarJNUjA0r2rKidBWpW1WEKV8m3LSEGUeQ73JawPZ4dmxXsGUz783XJxMfMYuRnqPu2jOpAimZefhZJEwJTcxwpYm84hF60WleDMsmz2N4CrbTBEK6e7pDJ9H4NAvPPQou25fGYXNobHcLS8KgqYW/u/xnLiZ/ezdGgLvFwhceZCMOQSPboHWV02iKN07LW5/f81+c+f/xja2wMZTekBfQeC22evtT/6VTaF+6h/dC/5cEQJYyG6ZoY7a09ek9/UVZAGLhcG+bdunTetGNqqiZjBDPXoDeq93CvCqMS+hx1lgqLyQRfbz2/Ucf4VRzhE8X5FeB+zafmAfGNywp2pqfZJdm7sw/iZSDzBET3Hkwv8ADsKaB3aQSbERGbMXOrAiPLvL5sGgWpvBa1AA=) format('woff2'); + unicode-range: U+0590-05FF, U+20AA, U+25CC, U+FB1D-FB4F; +} + +/* open-sans-vietnamese-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAABu8ABIAAAAAO1AAABtYAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkobIBw8BmA/U1RBVFYAfAiCOAmfFBEQCrwItlcLgg4AATYCJAOEGAQgBYUGByAMhhYbWDYV7NgLsHEA5lmbN8H/Hw60OKzmepgInUaMMFWt1TCOs1FF2AaEinN1nnYeEm0qaYxQJ7fhHqFrqDjfSdWIwfulNr59O2teYPn0ap7Nt/HjpBu6oCtevKiJULv5XzVCktm/dN/ee7uJ3xDM9ybs4lLtTM4tJ24EsaAlRa+fjqGCptTpqW56JMPTNv8dNbzjkA3UIQo4TIwaztzMQGSAGEm00ZjFys5Vuah0fn90ybjl4aH/+9A778/MS3awhCQnGNrAlm6Lr6AlK2m1xytQ7H//N1f+mdBQmA4oe5RcIW5dhaurrh9bmpIwpMRhbJ+/rFD1S3+V0hL+Y9sytKpDzVyVswMcQNPQWvprkIauLjJxiO0seTL+DU2xo9D+w/58haI4nNH8Ektcyi/mC26yFJ8SU1Dyw0Xr/5amdHZHY63d5dqVVgDzpmETEGSA9s/fkTSzu77R3t077elyUXErkrvkuuem8zmldRZkWHpKaayi0liCgwNQAAsgxqEwASj+3t9b5wIxdWZXTQkBpH7tcxnT+uBqN5ZDSDEgYnT/WhsCAgwgA0les45EAJvRQMDSVpWyYZfiiE8lSkwlq4kggK21BbcxEADS/UmYLxB5kygERIADACDbyLK4Of4C4Q/HflVdogXcdyUyDSa+l+WXTPycV6bvy53DC3OcYFyGB8DwzSfrA6NVwfCND/cZB0gzBeCD4QTedPFDSgw0Exj2L6Lp/zJg/4/pAXCq9WJsrbzr4RLziJW3S2k4A1P5ukwJYauld8oyCAD8f5p2CMdUagvm5QEQZK0Q4JZF1risMzAeDqcAsuQepKZwQBntQXG+SAKEhTaHS6hiJk5c/MT8hfkX+/DGBoiBKOEcypiO4xfTzJ+Zv5pf1zpfbP9u/7DX78V/v3/E/ajpg+e8e6nJpEHwKyzPl0sBGpB9rb5Vy/uejf99aWEVvgG2dYKXsb7MuMhbGIzBUfMaAMu7HHDars8yY5/uXt9qyENq+mLqNRmzqNqSESZtBvXpsZg1HcGDUB0GiaAoJx5w6VJGbd+1fUZNmndUjXZ7DZlzyEMyetUadBsmV6FRO5N+46YtOqxal/0GTVp01CMmfYZVxLB8TJ1WOnK/EVOW3PMTtOb997TotN9o8FCsUFU67Ddg3JQjgwGtb241y58mtyWFofEjw0ODHe1trS3NTY0N9XW1xprqqsqK8rLSkuIig16n1ahVSoVcVliQn5ebk52VmSFNl4hFu4VpqfyU5KTEhPi42JhoZ5Z/oTjYP6Oz50bcXB2cransehE3D8/WNMwIVvFBUO0IeuTtcOzbLWNtMGyhwWW7viQtpc8iF0pSlUOYbR1rOOHhqPTUlm4Ap99UK3BttzBCUwBFPUKR67tWtDibGyUxoKWAIzIBaiTtz8CkX9Um4wdnNqKfYlS7wOh1bNmvKg3ZhqP8aWwag/wjaeqCIqoCNR9XL97kCqGh9BBxHXqlKpCEvMGkgqv8ue5tRYgFEUzJ8ze85AO72ehTY89H7zGSz5ZCqLKv7Mw5Ppd6LRM0cqh/qM1aP64vfRUoiB8a/M+EFMVGyMcyjksE1SaBYGaKWapcl49NuxRMpe/QxOMNmFf7KoQntcmFhZAgP/BoKkgYlOBUAxk8YfuJEzth2Gaw3gUQAs6uFGaYoBd6dGDoPb2vjyiPDmZskj/LYT8jKAfhFx/zcE0SOi59wuRjpd1UhMH4ZiTcRBN8DCHYtcVcuLgD0NKYyNaNpf/Fh2M8qEBSNaRD1GvtTFWO57czFkBySbASg+GPCZPEFeiJdylHY8NVh9YTfJG9QfK8Mhzyrqsy3c5B0RxKNCqXHD43zD07KjqZe3zGFbi4ww1gsr/gToyWGVxeZX9VWJyRRL3RzVZQ0ZGixaGSk4Y957tmMiOX+oF6kJFMP+eGqwa8sIEY+1A9NE1i9QD3sP8lt7lNzzyVPp4TQb/hn5h1SBALaE7gYcNkDg1rwzO6XqN2hirXqteGo6xfd2+ce4fgTJK0gFZsqbRI5UYta9iKzcPDVis45tqsczovY9JqB2xX8vKMhZxoCT0ClwSo51lYlq4fZlp68ft5yROf9SPpoUUytAhG4gXzpVa9pq9EtWwfUiJXtPUjuVi/bVgJNY88b7h3iHg+4BOQ63RMhDzwiyrF5VLG7WWS13OpbcOisbe0DHMnhJrjYw+t58UqgUkvvRLc1TIEgf1eJDeUJ4dVpz4rgsubmIeKPOxkMWowHpzt0RKSXhJR8B1+wVaMLulKY9Kd9KVdSplLEBbG4KTk58YGcNWJsvAcATsb8J6YdG0fhQnY4C1I9qsRSQ3FQDG6pFZbow2jm9ZplvH9V72RFrynSk9RkvonQoi3UhlWg79RWLE1uckL/PIJ4l040wBQ7wEHJQ0lh7EjO7eaCIaCqfqvsDdNO04riBg2J8ApIO4LS5x0mWmzDQHYOKd8ACsVwfzl9S8kTISO6GDIS7JDxG1puYCOQoWPtTiLji0V1KEx18mYfDBUH3S4C/cNy5FIg/JOChMud+xKgwsdU+4tzybflAB1HjW2npURo27GgfbeCvFBKGBd+fL4iIVgdrof60SH1pBUCdQgAn5X/TYCYyA8YaogmTYTN/WEd8+UqU8cYutJB+e+sFNWvzLUqOusca6EBTM9AeI+A0KYRhA/LHK5Sm0wSd4TMnHewsR5jamyLznPYWQIQ+iGsj2iI/pQUuKw8evA9pBwRFY2PdXvS7zZc4WyIkSM4iCmQJyyLBar7AuDWIozR1zH5PebU2w/MkCG/aVzsHOQR0SLvUiL0TcdDefeWra7ZmnQholQ76QvRf97dv3BIQHGDqQ7rDow8ibYowBhT7+UlAA2DeKkbuKfCbQd3joRZ91MaOVwz65UUxwfpX187YjLz9j1b3jADXMvwgdFOoxTfKxFx4AGv31wK8ydHoWlsfWVAsFMDgn4yEKLUWVDUvgFgZjERAUw8J7znZDaXontebJyAA+lO6D2bv7mSBUH4K/+RgA5GLngWzuUdI/rzh0nGzXy1SW//jJceRvWyKNFjlasO0BNF6TtiFM49T0KvPHLy8OALCren3Mc5oZFTN+gYS9WWRY/OonBAOJP2IWdIMFFyoUMTXXqMp6qA+6GAiI+l+OHf9YPcbjow6qNW+Wf8X0mFlqdkV9s6rcObge4igoweYfXsjqEZWu5FRxuKdMg1Cup92WA5ysvALT6KvNeIZaGAjZc/HFIauchDrhn9I4LMdnBseo2inWxwo3gRd/GyJRXzkxY5yYM+c2/Z2WwEefAbboVsHPvM7CPP+UezhkKpsggG+47S039N5yx6F8MbWB3KVuX5neIQXGpd065r3jVN5Ms736WK5cleprAIx2G3VEXiUQl2HG3iyTtWar0kfv9TO6ZFg7H3yQfZ1J6LkjfU/e+Kwr4x40aT+DSL5tvB2B3lf1mH1s8C2W3XjcVQcWlSKOIy8AePDjdGPfYtJoJpkKDAUeHpHieRNMRpeUTcPWDWe6gyYOW/U7rdr8+baeIphkYVjDMn1tOHKPcyV/YdR1D0Fs+rgFHXeXzQVIxqPCHqvYzr6AVQXKBf3Vys6TXjRzuzw3E/w2Sw54qe8NmGz55hyyhZqFcne3Kh/jcC7FNQbndWJfqDUDYIViJGOqlXVrZckhGxDxFXKgnZIhjx8y+bxVAAAuIAAYo2LSROQcAAB4CAEgCAK4C7BvA1AJGK8DsAfMXAAhAAFJQI2pC621IqCK4ZtRk0f+sG9mtGQWBDk/0/MAknIUFwwxHolNZs9eJ0qhMJkqhOFBpVGu2BZvqxLWiIphlSWVQkC/YkmGOQ2EjWk2SkiQaVDr7hgOfeO2FGDcLyRJUSJKYCxEjWqXrfvMGalrLLoCYPgPqdbu0p2EO1PQG7l4M1Oqqg2Tdzo9Pk0TCUjyFWA2aU4NmaX7UZkrEm4XGq/mSB4ROFK/3BimIUwJ7C0SMVMFi+DorcSvBVCDMRe698w7GswiG+4fDaTF4yWwNNfMp7wExgoi3+uvCuclIkWDe9tIXzVuxxslBMy/0RZiBxgZnLj1VcYQW7oQ9jG8NmjWxugr41Gn5aoAKRuiaNckTBcvL/JEcWDzWoKbPMI1vnUs+hEWI1+cBwxJECKd/GHekaW6NISaJ0UEKUzysf5kL4Bigt2gXerR6DHBw6OVL7vPXiUbKlWNWSONJTgjiGz3oJw/eum/5IkPmZPXTh9T1nD0gWOjdz+5plN4eqHBidYKFa+7RITnf0A5uhNE9mhVS+BFTDC2XOR7EhwPvxOe5J0bhZWrES2vXoKZDcPft7dDS+N5DKKwZmNLFNzsfiyxYhRHIdAzkjwpFhxZhHpmR3YmqQXxuzZt1xp7ds7PpIU86KKUHAWcvqOI1FsJ0U+DFi3D3ZZuaohdpXB2VFmlcfdvAwbh9QUkkvvfouILFdpsa/zPuxF14QB4aK9bWdBDzBvHFtUCrQOQN/H9i9PxspdyMt+JilbF+OMM5J4leFbSpmoV39NZ9R+dRd6/48P4D2ff8/nsvWwXMlBup5Ss+1LYV0gj11I9dH/5els6fCF7Vnz3csZ7QBpO4f1Y6fsVfrT1zsP2teAM2WOeaI0iu2jHMPKfqqJ0x7irxzs1IqtsxYnM0Oy+otTickkEdeipTnq9lE/glpIgxbxJnKH/KWpSVkZNeFhHTQSskcQZ8SH2n2KP9P//X5XlWeJBvdfg3ppSniBznOio8rC5E2Pb4MXuIdmfWh7PUqYZ6ix1X7GSuyib6lgFq6t4U6ck+vcea5Hp9//Tu7BiVc0JcEdF/z5fkT7M/QvcRi7Liil08ft6pyk0YMxdVEvieMfGZYW7J/mH5XvV0U4w4QuJCpbbczTZc29+bgpt88mXlyOWLh9olyXun5D/5zfkiECJVqHIke53y3D8Rc89yPxh1L9vnHZ7q5aX38ddFpRnpDuTX2e7jr5NY9lWoaEdEIDcp1SkgWOIbyRfnU/DU+usK7fW2So+3slf2tF+Jr2y+olTc6S1xe5lxpqf9anzurz6pPruk3ArLrtgAa8nHvB2i4F0ylzpaa0hGXBalm5pblxSyL98BKb1Un+He2ZvXQ9+V4RelLUu9vbU872kH/o0/pz1FuGFyeV2ALf4bv0ik4sf+95wco9599z44MttpBz4Jp4RkzsQXNmmO+UtYegy39f+gov6+o9HW5LJ1ukWyMtGwkZ2Xpglk0sJUzRZebZrJ77+ebwW9qBMDXYyit79/dwxKncjYWBtPhpdVJk45XJbNDIy0lMbLvvP773vA8BQ1q08iPN0tdbqecqp670yaPCrPMSJcTaQmEiMTzdOdnO86bZt23zY96nx33Pz2kSn64hIk8Xp3r5+50S4BMa5SWxm5wC02VBznyfcOFbnrt9buFCdIfBEEhjv7t7ZNr9YUuQlSgnXhyiX63cKhPcYTBv4C3bF1vdKUElIbYenhdsz190hrXnKBn3nUFfr01RNbyNvXaJrkDkNolHcS869jDedn0RFLLb/TsDPGO4H15XE7ltVLKxie838SJ97VhuWFx5vMCz2HvA/efNDD6zBLc1sFAzBmwZ8P3cF4v+iKyHTH8gmnIRtd1uxYpdG1Fh/KWRa/GyON2vdQo7xiZBOit9U0QXlE0l8Wx3Oz0YlORWaRnkNbhbuHGytPJJRtqgphjw7/jOlidFNzG5JC9+U7UObWoa0MG+G8fQkc2s63QYQ/8f6U9pTIDVPKGwNcOK9voQc+C6O9w936L4ujdpn/Owv1qmnLTs/Ua3bTqdEWMIxKu2oAXQiiRYgD4nbVAP2V5bWuW6UpCguVZjuD/eUheQtWl2yEEiudKr7s55sLMmk15U84NlOgEKSz3vkjv337m6i4oCQK+csTrtozlE8fbtNVtPSUwNqD+pMVnaeoEn/JTpUmh/nH85M3v7Zzn1Qgzc2eFJwZJv6efZ6ZHN6WE1JWFEHi71RLt/v5vP4t5Y0jJ+aflrLRUJzmFWFZ2vLS0YE562Dzel3dlrpzSNm/nZkQ7xKaZ8hjxAyyhu5e+BVLlaVXbltH+iQZhQXVtiYGDeoPhGPYS3Myy/zVda7u9GZYYFVr9M7+ih/lB78hOrEHi9JLs3QgyCwUtjH8SH9eeEIEy0AfXnoSvM/irvMkXjzXOr/iTA5Hd66JUV6iTPa6/dnZt1kczd5x8fy+wQN9XP8k213K/OgLfazWG3OsPa/G93pxLFTcDiPKTRc5h1v2u6fgTESMIwgA3ASsfR8Sk5k1NgFEABTAo9giY51DBq3CE2AS+KHhlECH6qGEMUTwgUHOEdAhEprA3LY+ABDoohtXelsxQgC4eZ7HpGvLNiSAm+dxsNfNX5cn7PX2envD+IY8GcLxeNHYQ/cCK8BYJISW12T2xv6NgexN/Zsw9mZ7s72FtmQixMnrH4yicUwTQBcDDM/0TABr6akAA94q6wxuHcWkGcYjeRgBMN6XY2vzkdC2Djv3r8vsdfZ6e729YVCDYD44Mx20gcGJU+ZtgE3EA2klWodugz6WAaFlCK1M4IaOnyAN7dUAtzBpAyPRQYajbYzUOoyx19nr7PX2entDsgFh2PhDI4CRWq8yQplFcwwJKOth5lC4bH4iVDyWCBbjSdtYAnoY4eKOQYcyHgWPNJOx6HqAzyiFoWzaFTSXofRywE6EAmZHsxmbFjK74JaIUV+xHRfUNmFn/mBsymF29ElA0NKOBLm6y0gZiqF5jJFpbEDYSObwMGTzjNAIOMj/CC4zln6yNtDw3rI2gH84W0jXtznZrhwAw7VW+ALMV/JbDTM2GZhy+RqFNOTlGciLOPOuWb1Kdxpuf9uttl2QPXUp1cXJLKUf1zN/V/P6ySZrrlXrZDfgxl2Z62bTFOPSAX9Mcv859kei0poUoJ6PZnWYoW037uMD+sHcyBLZQyfhQH/Swq/PAUHydDCeBgkfjMfGSTjqx9yZ8tH7m9xpPEmLjLpuAkg44gIVED+EYBKIxg0rgGQi71JAAE1fQq8//boxXitrXc80NY2xWsP1xK0gzFLbWt+KOImQw826Iy6BY+u0qZUDCLsChtkVAOEk6CF/cOvAfmfzTK7ItA5CAg0clIsATHrmaK0wLM5Tmb2szN8dGtLzeuZCU0N3F/YE2O8ZNyZX5DAOrKY5cFAqHLioF9WuWlmmnZm9bNnvwbyeyT8DMvDbL1dxD2e0FcQ2TUBY6kAkDOPgz5fzdHUdmGUQAjqjcmwA+bjCPDdY2ywt12QMFAe2TsjR4sHxt8JCuoYJkSbGQXQ6b5VbCGjzhRbdUMwFBHD5bizWN99gEjLpmdJ1nP19ZskojvMceBvanwahqCFATRsEcEyjfmaX6WbTwnVkSmCV2nVNNe11AQftZhmdkOgz8qLwPB+c/CWcgvFAh1yY0gK3UkHX1y6WoVCXzefDuVpV4baF0sCIcZWf/D28D4r8sDPGbpj1erZly2SRpnUUsQyk61xeRpb03eFhPP704gdkuaEd7gnFCKG/bw03M0M3//Teb4iXcZfEXMGZEF60qRCF1alY54ieZXGJEn04GkuErnLq+sh3gCbHde89xeQjGnEyO/SdBM64JrvpjYJ5/gOjjWWng5l1RXyjukz3IF4UcSjFB0w2TSCZi7eHmfLocDJAtLfTUJCDaIpyne6/HoA47h6wW1g0jG6Efg2QvJlaG0Y/nUWIrvs2hiuabb/p5/0BtvPkm92m33UvTEMHyudNUozCAzVVuOBnNjW8I+y3q+2bYCqZW6+pq5mgI8xM+L8S0HrMqHXGB30wjum3swjRdf8qhrYb0fbCdI1O+gk3MVnOzJqY93OlJkvaYMpZ0zV6pp9Qy+4Hw89IfOVmHRzOwvBGvPatE+WpqrcuYpqhRACXU7Gmc/Ff8fXlxK5dleYqfG73OCr6ouN5LLY469Lz+uDAfUUMIeAxBo/kx49GT7aOh89lI9/zhKEo8AOJW/nZznQfUZLfzHWFSJsD353pdFV+hXYlWy9YX3bUqP0SbBKhq48ak4tPDV98KNUIbwhAAAAD4X9I+2nOefA/IkIE0qxvv2++Alv++qL4/277793DYFMDLCAADIAeBOBvrLVTkrL+pT1j+9Iq8d142CduFGHjQYrwxl6+tcZYHUxtcfF9V/ToC5e8QZrlpCOXQx4jzVWGdFqlo88XpeZAA1mu4yqn4y4IAL29yDdtunDYln1CzyneVbszlgNp+zLtBDXwb57ubFR5qvDr7B+RSc+Btf4M1zpnnJd9KgQHewcZHjOQ4WyvIMN1nwDc7Af8XQb+fAZuffA/XIIQ/v0/TaAPmw8CAB7ax1IFPMAACk+jAGOct8CiuvPArCaPM+vj3gJpCGxxJI0Blq6msSDY6zQOcIOSxgPrCEwTgGMI55LB9qi5GASADx1LQwCGLkqcz25La7DnH46FCL3r3segSLUSKgpKZdh8eNUjNqFjyKIURVrqEaXJgyztkl+NDNS+V3CPwpRrqfS8EpxyJoUui8wokOdQVFAhnfzyfB4KutIZQUvDtlxLRm5IfVaW+oEhdFBaDuQSTRTOUF9eiC1uk3nW1ioFfHnwqs0KEiNFxhiCJFsudIcY7DbhPQlWFJGBp4q9lR187wNmWBJlsVTBVHhFLHge9JGWBxsljZ5SREskRma6pNhQhbzGyb1kR6XTZ4Mvx5L9Oj7WuJH0M9Fr8GpgNhD6pVEt/ruHv07YX7KvjL1P9nwYn0d6M4f3kG7b8eo9vJh0eEK7l/G4pFUIvouGu9nQpMM0akODm1HvIXUePk+tJ4Fzl1Xj0tVOen9VzjCOHR0cOSaUO0iZjYN92z8lNlKsrSK7Ntgzh9Hbfdi0Eq3lCUtj0WozWSqzVpqzNQpzAksmnEZmIoWmPQxNEgwM3nn6BpJrPEyOkZGtJ1l6WJk6naGuWFK1TtfSeSTaG8SaLUQ+SoGywrSECp2mSJ5HoOggr/y34qtIioqRrNQjLSeJMpIgJfEiEie6IVbCiJGQaDGJCoXhdWfhcVdgt4VhMXdg1gn5LdOssG8ZDRUYFgX8ll6gh47PgladhUbNg5pP3JQTXBVuKDQ8bkvOW4AMxImbgERkgVgkhohLOHo+mjwHN9wUaEz86jl8L5cO9Y2+PLv0cjG7HIpwfOlotn1pa3YUb8Wn/PbWVrJt2cns8NLBbPfSzkx3qcaT+CDeif/rrSYI76nb6gNo+l9loLRzaW+2eWljthdvxKd0e2NrsEBt6kfb+Alf5RrcsLKycTmcmnPg45ycKMv0qITZXjc0luc+I76Iv33+HA43hnhV739mMKsJmSgahSzOGhsfqdPKOfeRBsIKumsU0Kpr2Aga68ISzfzsK4GVkIQhXriwUOc2FRPxk3oGAAA=) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+1EA0-1EF9, U+20AB; +} + +/* open-sans-latin-ext-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAADKcABIAAAAAaEgAADI1AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoEYGyAcgiYGYD9TVEFUVgCCDgiCOAmfFBEQCoGMSPxfC4QIAAE2AiQDiAwEIAWFBgcgDIYWGx5dNWNbRsPgPIDy4Npf+ygqSAOPItg4EIKFlez//36gxhjyTwdq6bZ1AYFBqqS0S0rHiG4ly+yYq5O3QUaOC5Z/YqOHKAzpWWbHkWFGpmTJfZ7g1jItXRAIAWYQx/AZya17uYqvVjMxXR3IpljILxaU/mPWRfPp1FewYMeqXAsGBfNmXjs6hp4o/8POC3DPuAPZb6PEv3y/CokJ2VruDBzno+b68Pw2/1zeBRlGveG++JEFYjSrSJbhopAVRgdGrpjDWCbb97Po9BFEa5TVM92zT6T/gzI6DtABS2QZFeVR2EiyYR0ZtixvegC2WXOJgBjglDJQoiRKm4gwGrEBs86KmXGbrnSRunK77JXnRXr37r3d4iJ3G3SuIt0QQhraAUvlvPwn10r2r33a/tdB+zKIw/j+w/58haI4nJH+Mkp5KS/mGwCQF0vxU9oxLETxcakrd1doOAixfhwpDJXm/QSBu5k4wOgAOYRN6QA2Tfo0zRel/dJWr+YI5wwkQ6s61O6PgRfoDEt1bs0ZpKVfPzZwiO0seTLOhab76f6/mUCAwBBidlXz/opba6c3qi2zUlTW9e9SV9p3X2mlIONaq7P1AGwItg9dAKkCYMNMKkrAPVsV5jRqQjviA4FCTDrSe1LbXncV0N9rn3+d9rVPlv2j4FkFPnA+ZoGKDgBLahrpPj35vScpkWUnpoHAENgetIdMf9ZJZoGgRQhuMoBLjOVyy9WerbYoKoaiqtZ/XDqby8sVyLFT5rIIj3DfyY5cV/IYYxqLzKEqK4HYRWSKW9wff9bLS5JkbfPpkzG72/NILykSgmRFUhHJO/677Z1/kARGdYOKE6x93zrtp30Pg8mW7mZbCmJEmigo1ZLM/d3WIODBCh9FiBfbU5qAYNKtE0zRCaYZ6DPMFnPRCVQ6wQKdYJGBvlSDfsJ5/TqTftMd/b4n+jNv9U8+61991b/7of/WtiMBA8DmXRcBTk0EJ1Jk6ENjp0IICgAc9yI6ungzHf5UspdqN66B+2tlS1dz5uuORRufrrezNq+Dt+aNAei4e0fK4PSwbqwMXR4RTJfB8wndOBm6XgRZj5AIb1cGdM17i9fAkVSZ6pL1hBGgEhX5PFCI0Pf1VJIQZiHWw33y22d/fPHXV23it9tDT2OMtdAiRYqnv9esQHFIgyTJCCjixHvm+fCqP/jpo1+nvtY622xH6eTRhA/wlXmp78vqKRljP7b/SPJxrACcwmR4mUc8OmEEKQyUfSaMPSkHYduIBpL/z5ttZOkBMhTEGls77LeXxRNv28ubVxACbHttxWYCkP89KiEUPAhgl+ReAHjE0ZKgziPOoykLQkcSv6MLHdJ1il9Od8P3lTh8Y1IsjMWxO5KiMOrjbXwIjicZPcas60R6tzQ0zUs/S3/KZLKSvCyv6tmXbTnu2fL9Y2osiiUnvQVRF6+6fo0OvZDeJd2jf5J+UYqVSrIu4pTt374dsnOk3as99/eNfbwPQdtXO/mX+4/SHoke6R5uPHz9oPoB6YEMuP95/rVwC8h4No1lTOJQT73z3o/FMufriXFtORkL3Cv5po9sMddWifaeeg1XQXTLkV40UEzpq6TpJXYbrI2UZH/Mn6dQgqiVHyLdeavkbbOLVjYdtTKZYoVKkyyaLkzCg4+BwqWp0+lyj6wVukboezpBljwlagQKEy9dsUrnLbWO2m5RMiyz1R5hYqXIUUCnilqkRGmPohMXapE8crba5mfbKUTUZyqcLlO+Mmd8DJP/+ydYhERZwScjDbRduESpcuSrLhHYdXwGds+RN8vuGZ2ZkZ4WHhYaEhyk3bN7184dmkD19m0UVZUV5WWlJW6Xs7iosCA/L9eRY8/OysxIT0tNSU5KtFktZpNBr9Nq1CqlQi6TEpwS5dHh4iJHYcrt9dGShslhlHL7eEmjgEyh8tcGo57gJ+Iup9LtWOeCZQcPbrvFqrTSA6U8FArzIIBsPtvljC8nlVBX9wLTGzc/YZcGbuPZbwqU6jR6vC7fqb1RqPaVAdJvgWmZAJu0OJiB2dCYtxl/Di7SXzKM+sDY79mxrMuKsoa4Yx7b9WnxdAX1QSnVTbNwG5fvc42gqBKYuAmDwjEgi4+tZjWs4S8Pr1CEWRJBWl6MRTuAe9me6lNhf58NGHMhhVBXx1CEbyF2zUYm6MxJ8dPm7IsnWyupmwbmp5b8SkhpbIU8N2wAMaoPESCOQqbXDBaD05AeDrb2eWru8DMKxw7UCKiqyY2GECa3KSTkzKBCYd7vCRUe1uE8Ml/RoeYWN0AI5b31FmQYlUM9PhL+wB/6E6rRjIzn4lec8i8CBAjfYqwhR3J1Ovwb8y9lcVtz8aZPSg5UzelLC0E5E569rU43tJXftV3JbzHUcMbeTMrW23NpNrqZRjzbtOFSIMsQHI3B8jFhgmAUfiZkI9G6YP3QeQbHOkUSXlsOeeILerabm2X7UtNJ5Wb0deu8b89Fr/YGK0txeReKwOxwyb0YH2Fwa8XwmlpeEab3R7+to7KnPQ4hE+GbBJMzMZuR2+KheZiRZFyGybqFKGlhux+ZRyFJ1BLgZIO/h7vcpVee6QFeEMGP5andhASzhOcEnrRs5tDpXHilaDaom2HEd5qNy0n27/nxtXgELyQtumjdjkvLtN2m4yw7LX/spNMJxLwLfulLRExq3UBZCWYO2s2JVvATcEuArbwFVUX+uswr0fggr3gm2T/WfbRMlpbBarY09nCn2SgsMQ27iYlBSeGetsvNsHVtzCLy4gyBWRWd8GkmNgUVWcAjUfRbxbU6wN1VEgVPtBtLp+JoFewlgE0po84a14ljBGYZL9PmvZMImmiah6PlEdh0VPaK3ghub1EYOGK6j8Nxi5PBV8+UkO8nNSXf5U/aUOmTvhBLJj+QIpOUbmdelNHOJAvrAri72a/OZqB5jkp5aJz27Gg8LcSWOJDtSg7yTRSDFTFANvvOzorI0CZZFmKuO+5LZlxJj9NJtz4LIAufEaiWZKXW7E5AnWBSjArEHmwE2CqAGVokWmLmiV5mEUE4SDeccF9y1nNaw0RZ3AjQmTmuGgac1tguu8CaCmaE1kZrgv2fJ39Ak0TYFT2EvdDxau7othvYVZqM2ZZX0bOjkno0zH6yJ2hADoEf7gmrlhZYSks/9nA45fOufYvYIHHG12zRbnsCbBFsqnZURgQ/56Vpyu0IOj6KWyrRvJQJAVX+MD4hPnCWcoxArczjz3LYzLMI4WFJY650b7aqasQEOvJDjUlAtH/aC+MOq5KqKzY/HNBii5ww91zrsYEYj7Ah4cWjDLfrZ2sqROsx6hmfuMixdXVUL2sQGRgA0VILAbHF1tEtOovHybUegI1+hCI5bH9lmRNmUikFPOvOeKF123DZujpqNLpl98AuZfbHgGQhRw6Ro+6KwttL3mmipTEGZ7LSKLoW59jtW0ahrRNhq9cD/XJ/NKg7SgzmuhcVPTY9CFgCkw0gGRSfw8YAyQdBU1HCvxKgTm7fkaAwE6oSJ0einPL0pDjANhFXk3T+WADr7X0empDBBuMqL8elLVqyO2Mn2IvhDV7xDow9KqNQXgnHfmVEqfEDmkOLtCGRRGIPMPkBxYOh0II8PZIBAkAT0YPgDp7c7cFxR0OVGG1xFSOHe4RzoEVcy+RdZ8GZjt1FKP85hPYOlIOC1Cz8ZjiATWKlRqzjYC6d8KIhi9ljVpRlzt92bR4VRaRjCXCfrStOZUpoaQAZXvHBqhglHBOZCCR7hYi97AEWRN5xgI6PE36UNQnwUaVigBlhkveYm3XysmSM7Vx2ZuwGhI5KMHvXlCPuGKr1dWO0XbmQILRMiyj1A66/AfBmYflwIdOzFwZu+WZDC13DTniAcU5zNsLe6bdVwnxhXZgiStcumJdkMPjb3IKw3/2fbu6X235b5/cH7H7ZK9ApT4YJ2aaLOHI4crT6Rp/LdzBS+n+MWcFMOVdIqzdIou49eMYvcuV3IyvufRX210r0LIGnRRLsjYe0SVRoGhrh0lrsY2T6s65h+CsUXE5XxnPMKuGSivvm/pWQx7cYOULgVpjSOwG4t65eolIVNoHtF3lzNVRe8Ma8xXPAfXioW4Z3GN3IBOkIzNXsElqQQPGSEyoGZ+DuZowfkTii6NXVA/15UZUk2lJgUsNR/tKZIa+G3fyV4/IYhj6QHB/g5w2/HrQwH5ncSCWuZI8KgmQ5FiT3le8nJbPG8xmJvwItcV9dVbHZyWy6S67Q3359NNT1PwJ7C3DHnn7ErSMbWw9IWmFemdx83anb2XFEzn5lquCU1NEQrQkl0/8gm01DCDVQFblcsn0zSf5BabHQJiRNtzQRa/X/5wABVt0SqoEynMe+o6AWCdvh/V6roCGrnR4gAw8KIJ9JELllAGuDeyp5M94WB1HTQAC1L4dZRc/LTX6vkdwJ2bbCsFHZa1CHHbLpfS1b4pkVTfmZEpunVL+tak5t3uvyDL1UiL5jM5vyZ+aC1xZpOk4hWdskTpLkOH6uQHNrd3ktQwU/JZg2VzLOxhwStTkiKgont0RVF9muDyk7YzPfhex7npZlzifzeobGQwI1z4omT9KIklJAGNEIj9tcVQr7nIxk9ZhW3Su/TW2eJAlE08L4PouCSBl4njqm1HugEZ1Fak/i63/YdFP6praAi0KH6G6GKIFcdcXqtn+avum/BQEK5zpgp6sOeRRrkStcnsv1XuiqNpljHrwYS6h3Q7ALlYqmcp6DeawrjtxTaMCTtz+SzWt9dgJhAjhx+hrkeuXkwAzhMO1sk9jUxm9XAbGFAY6tLHK0iO3Mu0E7K7fEcp7DdNAlCtdntcmWtMqxb68uxsH7yq+sVy2f7/DNhlLvGQoNd7ongl3JOUMDL/dEiJWdyg0U3j4gXMjMmHd25fdJTu3SmTnx/f38Py+3TOT6IruSptWMgi7U3VzTFdXk1z9N7jnFtJxnNN1IfUNLzPNMMANcRuy5kMR4p/tnQUZmt3r8x+HwydiqMIpNBvFQQx0vZnirAGq1zKHV5xEmGjMFgzxnBmnoGRS3cY3Tw30oDnb+apI3W0zFo9FNf9t3mjPqOOZBEyjjp2ZbeuRIR5Dt8cLr+4nWFq/8P0cKdQKmw754Qm/kHdnJan/BXCPUiT07CE6ogrx0mAbnni4T7Vd6gMpiZKCC3VquDmeOMUsPJlgjUlkFt+Mn/N36wXJRVM7txoZbCgj6s76rSkFe5SRKXrtNtn3alwD6ZTg1/PS7KIONh9Fq4sh2fX6bSHPDfxXy3i5jPmxwla+mynZb12sSj6ZcU5ZkAOldACiQ66FStkvnGvXIw3ektlT1Yw299RrK8PPEByZl1p84LUOO3B+CvL5ePkknGbOUZtZ5ZZ9kZNTRZlbCNnaf0cqpKzYJNLEFPX6IXZ5QKjCf5Z41VaDcnTc2hP66LrnFUxLghz4sZ5qeMSbolpK0UrkMLCeqIyZtlQjILGlzzMQrNpOFGoFKRj+0pdC2n4vvWHGMsvVaWpgk8rD7wVfu3qSCzX2vQG+ZYKT/NTb6w2NZkl6y3DifLHi3NSa2LqA9Rx7WkiUHD7J0sB9/OOxARoDmlk0DCUziM4qAbKgmfxyopB5N4lvp+MWpaR59Gmv8Djt89wINIyCBUpCwDUwSx6WRn/mv1O99HJMN00JpamedpFyhyMpTXfFENhmyQG+1UNePOpsE7DjeCE7t5qWx3nMrBEzIPQ2pGJbhOOkYbuBpL5A2laOegP6MQ29oUJbsBsxG1+Ola7KRg4Q3ZqrAoKI6AxxmHOhyueZYyc77502y+imRY5Ocvp/KuW/DxzYfqeGJAk3y3jYvoVf40YFIXjSgDr1U1DCabBxVfn9O+G5TcGsGKTVf/vwY/+utQDK6KLB19UuT1jsOoD1DCyAQZS9eUF2yvIxt3RQ8Zlrzv3wQS3Yzwa1jXz8Wjx8W5OO7+HxjfRq0AxThkNRF87Fnm5rpZhTdqyRPk+hfdDCEII/yHaEKscAFh+wVCUZ4RDH6BGaAFpUTocRKZAV3EM7rOnM1YEuufCC1mNEdx25gMxHVfFtIU/mXSS5jlfnuuWltN4ZS+4wZhP5LUKqNztda3I6ToQLVzrJDy0p4YAZla9meK1i73W9dfqTxJFc2rAGD/BO4I810gEcnm3oWLgJvKoSca3cgf6aM+8J3dWC56O8wXY6fad7ClftZZlmv4oieiFYtMZ90WjyEpsbcRClJLTKU9vBcuQpjo7DUw35v9Pu5xayMrLwIzloU5JwbGURRlS7W9/A7WZlK4WZHr+xy7t2EbY6lXabGOI7G95o/TJSYm7btLPqLub/GekEtDshSbqCbUPeT96rFZY3Vef0T8TjXGxszriPF6oSOkQORZ6lN3jEQyxGrB25NkA4SbNX55+rUH2quzt4twNk85UwzNP1rYg6oh/qm7sMxnA/hI9ALD/trdp3bH32g+vG1G8+cS32vsDLZlX9JCWO8VPu0ztUtW8FcsR7vWRw3LZPMoXvfep/tw4Fa1vq98Eiv48PgnV+9OethmE95vuxYEFZUq1/ErjuOjE+3lRN8LDE5z3YJfV9yn32ZrdnFIfgk9Dkac3Bc4t/z/w/PeWctl75By2aW/S3Hj9FsXW+Wta3zf6gojhlrVeWzVF7Lg0ggngfryF/20K8pwaxSNbEbVjJ+Ux1VG2IYzoJW1m8TaMcauLMmweKd/AynAzOEWRyRy9fqZ8lh+P02GHai84MP0sGUL8v0K7Mfzz0uMNzA/GW8rWuQFHsicYU+e9fAIcjh2sf2wiSeGLPkxOsUOHQJIsbO46f/8RSOOeF77joBqoDxoLO+pkMnGh3E4S/mAAr9uxEj10Yu+cHHqPWg2AgEgVP8Wvzbl4bOBUxDLz7uqf/7ZBnhe+OdptVTXZuqDiCY9Gc17oH+XsPl5c5Ple49sU5yhlFbw5sKulLQ1XCkPqGMkZmiaeRNo86kZ8W0lwqN+Bme98V/63crTGeGKlOD9xarP6RXV9GBr1G1glyULDLcGm3MMDiU6H6oa432wC+ZeTYylWX1+yOGEEVRawWc98rcirGcbOmRtuqr/LLSl+nJjOJtTXh/uIQoPki6gWOTFPr4Dj27sIY9YC23LE+43+SigN5blzO5Hk+5HlnrP9bQFOjkh478qw0h+/VlYNEsAxw2mf0iwpqWkpFUIZJ1wXLAYeNM8Oi+kJmxp8+efH7YfW8teNeSq9l300wHQOrEa7cCoCyIh4gF3XOLbwQQKI3UaipsCcUhVK4le0+TRI+KdCgAbuCNBolFHyJpVRGQ17oiW3SVOituqasqIiAO+zZ99GEw+/lJwjv0738ys5/Dr4nQfdygPkDo5c2ptEKDu8mfdzPUQc5/Ae43DjUM6pIvjLoiNhJfbho7bEmXFRBUihJA5KFtyFb6t15DwpI0RSkx4ml8QaZq1ttavV9PkylTBRRtpCCb3gQfkNlEicS/oBXrRtfl0VrGl1k3BnuvacpyFrDi0JQta16oUOYyqHvwK4kJBIuazFW/ECHG/C4JP0L0Edxzccz502ZOF6WSRYp5wP59KlB2j8pBhR2H/eA7BChJVZQSOU9pama0mVSAdIHz8Hplhnwi/esPCm17M9390nC/bu/Cpe3q6fXrK52J2sEXc59wl1ggD1ByXkFG4iA+i/q9jbRK+nqGWjHEEBrodBcz0ikx1cMlOx9vT7Tndo8M06ThQrIsMdcRwafHNSZnxs51vncuoYRoAvVGY46dIdTWhaZHT+VOr8QVoWHsuQlEwM9fJJi7fYu9ugcKivVO01EDT8X6nF37vqkOqfzhAdanszuM73evy1sCyKDQRZTozEi/JT1TJSHWakMefrlODsBvU+SBmVF+mtgkChZ2HEaN8hqQVoSWfApoVandRGFmizZh0I4FpSy2N1C7+0vr4QkpXLGzQv8avCrrQzQWcjed6n45Ayoe8K08UTRJY8BHxSayxHpbtk/SDj0d8uDp33UUUYxhqq57312J8BnbgDlSTy7akVX3iB2o9Jd5dDUzwBKgtgJe/yzxyR9sh35tqVqmSEFVmCDBAt+gH2EfepKEeY6maG15Uw20EEAUFjhaozX9vWfGFFV7Zgcx2DaBrJI765uU8bHyQC9k2USyKt8vsZ2IyuoK9PYDj9wHbXo5r/jljuqIT9PXDnXeVFa33szPe6O/jHI75XJf5y1l5q9MAzMhmVR1sEcehUj8jsOzxiY4iI2w9rgURZqPpN9IIIq0wFHPVQQ69gpCf1MERzooFhu/3c9W8AvcAS1aQIsxfypJCxEWmhHOIaJm5WwxVozLNDDzpBWOhVuGjqxLZAsz+/5SO03I0FDpiOtC8oAIk2+Ocalbyk/ftqGmoR3z7pHAxPQyxBRq5DVT286r9IdIxhaiDBFB8SQ8IRCVfl9/+3snGt0LzWzUxA1lt2eV32hKacnq6ysprjC8HljpUdv7p4okyM1tjEKf38NOh+/52bj7iFma521yAz639McAeaDUY9DMCHxIbKbUH/jsZ1ZoeLpy3wGSR+3ephDwrtkBwb1vG4Xct8MVg6oej+WFZdS7qJYhoDgdz9un2Zvv4SAAPkGZcNkn9sBlpPb/YkrGRs9IETTMpfiXB5jbP5Pe4py+Qt+GR239yZPR4zRavZyliIhTyKzvn56FaQsifnDBkIpNuL82X+1+nvVNNhkdyTmGIj/uDl3vnXvSKvIOw7yag8B8oQVkTF/DyRYNJpVY4OxN8KmPOramnwxbvsoszlCkrHyW0pQR12TTkzkNpgH2Uetrtc+rKaXjYdZX9jOeWabLaiboYvpq4ezy7aZO4S7nt05UVAxFiMkrORPNJ2hnykTYbcVqfAkl26ytjZwJulrgS/VRf39OB7v3runJK5lApqiKmZ2qaebOIM+mB4ioh6CpvamaS+2VtC+TbzYOzumTJVlYufwuKPLQum/Sb7ORliNnIxF5/OsQGwQB6dOqatUrTCHme234FXq2s5+z45227jUkKklUOIm0pxQ1Ld5Edz06Dcyg6wUZEqo2MiGb2hQwIMtQ6FNOpK0vR3zF0V9UNRoW3qwOheMIypA7EtuQ05T/S2irJiT8uoTQT8/2X6uRZm5cMsHtX85C+Hs6bpyAtF0rfv1tCCLGxo5PwrthlVwQAAd8e7OBXrRPG000X+pNxr+su1g7eMSUK8nCiYSFAKgaIFZ7J+EJb+Ixh6mazyyjc96vn5443gyqRKWLSn9KkhKjZORktANip8j5NgVNz+Bbqa7Ahnhb0mXx/vGvbCevsjBRxM3Lsmz8Tpdyi+wxGXTUzygUcKJeoYEMmmK7DFeevi8G5EDCqRcIb17Cv8IkvLJBhMEvHldchsCoa6Uc0J3ajfBLchGs99bpRdKbhzGHqSGHyctrR/4yyAW39QHa5qpcRGFWszZhMBsLTF2siac26FLTmSqOxEVe32gZIoJAOqNx+Xlxf7sc1rwP8PY3SfS9ggACIRBe7jfzjne+qBq+QCv8q19T+C73uGVyF4dQCdm3zzve/aoGuCQlthb9WvDujw097Qhur9X9MwnpXn89jenBZGUeVmKACRDhRgDIK8Wv5eBi6tBQqGVNGXBnE1gI7UFMft2qWnA9j6DRwVu3k9GYeYAw7nf606hqRRiy9TQAJGG+oyUBl84/8S9IW17MDhZ/P2CwVewJbDB9y332dTJrDZRSZu0c+f8ZLzTt5cpdIaMdhDfsBC8nP+PMHwQezk7QaAp0yRwTXl4CwuAx2Q4to9U/O9DxyXq/RN+9/6G6nAtLEqekEr5f9/X7Twi4ijD+jK/EH+ZIO7lo9zlU+xUBLW04iRpb1/ma0F3FC4sSl6SCZu4oiQ7Ev/k5fesLsGih4f8TCK6nrgqvXAtxdze5ikYaXdHE5AjPVR4Rrbi3rKBoRHB2qOc4EYCLuTV+C+dIdgo1m0TMplL2eLdbeWrECumcFdiqVjUJfsMsrnbztX/k6m5yu1T5jjlLhpuL+kl2KsVOItop1D1e81aearFSpIzSF6LvW6rDVVhUQjHqYp3C/BPwN3MmD9Wfd+uPwdFjmwlxTkH+Ffhb5TXzxb5crTlVUaE71h/C3qTcLrK/GoNx7ZvVA7q4BtHBCMpZ8u9iBEdr53pLbsIP3zrvB996wLfxRNbMJAtB5D9G1duywaHhG20cgjT5986Zlv+9+btVwzWr1v+Q7141BAxhb8CKtF1uvoShCfrrbFDYU+vpg8X6bne8jKEK3j4XGhxwOwBv3oT7G/ON7kcM32SrsSA5z1DE9+7KlG9wP//kDRbs+E/Y0f1NN+6kz/bcMttnnZXGY3N2t1+N/8jJHhn5jHPh9dxpZw/zSikm5d34ZFKMGm2PynZbUmnMJzEcS0icICSTL1Yo4+k6UlwBLB34fcj7zhC85f8PYP/SMYxecoF/KlCCrgyWWo5mHKepwI999qz7IVmPccjQBWT/ghDJfMxFe7a1wBK5+wa7XBj0Gm2jsp/tkmW/4j37UnIBEHbBk70vFEz/bSSFJ0z2Fb8cfu7lwKpXcGdegrei+jsuvGKucq0zJZiS/52uxMXKs9XQ9ICSdNyZ1MCqtPBzGeB4i5qXNczdQ42CdqzFzXyUVXi5oc329mL3d5J+o+sAULSfxS8O0YsoBXJVhi5dTBe/XzNb1QAH8HvjAt3+BbNldd+cZv70lPrxEwGTQgKFb+Bwvy3eOVYUxNL4lhxNSrrY2ZyUiiC/Dk5BDMw2G+eOyGvyRjX6IUd76rVL/a3CXUZdbjRTYN+T89G+luFrU5ng1zKVBMGMk/zlJ3ASWpUQErT1AQIfUUh2fo6ENcjyLEWvANHmTf9+6d/oKhJPK3+mBwCBwKEZdlPzCvFHxPkvigVZQuWAdw5tkrH86jt9nC5PE+WasdYi8kcP57KSK60SJ+Eq5/GTKGfa4mx1PblhHz9sXflVQ5qgo+8W5d+sD9kvvf07z1gp0vzCgruyKFXjSzzFtMlAs2Wqpfq8quJATVzIzNTT3U+SXmhms4Y/lI31WQc+9wD387AhvAzIbzoGAH7PSNtvTUF+bksUMezua14jTwWwz0mB/waHFRKP/p3mRa/rSE9KdRVZ4FCp/zL0xo0JlBxSHhOknpKXfzYuK2IrU9321mzbOaDbs3fnp1FOibnORz+rrnPCgUDQXPovBR9WeBwjxe8VkE9QDTHZaFkkzsIzj+RNwF8jPe/KVyYl1Sm0wwFO0J1GBti0gL8199s/B6sNVySNVaoxiA62YwlszpaO2KuUlwaq34vF7dmmbSGSfNp7/ANhv1nZDzzcB2OTnNSYdLBC0j4jtpJFL1ZVeanWWYFdyz9964CKU8o5glJfm3T1l1UMcwe+sbjS/xG/7FClXTk1kOPwB9jhVf2u45O399qXNvN25ncuq9yM+CyZJtmceoz527iiGBdjFIpNYutUyE3UENg2S2bRRNEN0xlbK9Q45FkSO0J9y4pTW+WpUkQfTcA9hU9xDWTKFO/j1G32ucaoliKXgq11tSpq7DsU6u9E+WAbNF0prAyjZ51N1GdaCcKDRLceUPc6kheUHzsIWL8031L4KuQVSIVwN6ht6d+WxnjrYGANmDX8H9g4iVs99GRn/+I4tHJtV/+9UsuVIirIvpq/tbsM2b1fgs5zmHP+9mnfxNoVuX3pSeounmwkWFl8BGhYTm0vD2bBc0EAYobG6BMzQ9hhtSsgdzd5x9CvBUH2yHiKiIM6nfAIyXoOkaYrdsBQeDWBw9ETkNwhjjYPqpDNoZCGYK3hTjJQAiX8gznjlDRa64N0n/BSR0dGvezbSQ7+CdD0+lO9OdQl43BFe9PhuKuXBpHW8Az5b+FjJMljomyKsdNN97UCgFsuQacB33KZgMgVzq89uB8kFJjALjrRSqeFPpiRO9qH+I29TAZ5qRG/JyD5UKw39YESXUUPE3vk1vjv7+Ta/GyzlOCdwo6QFw/490E6FqgpdBeKFvN7C0rEdhteoJIyZyUYbANEztMlyuARRTN6fJSpx7keXcUhY9h0ngOjA9CK9qH+JED27G7uSQ9oUWCo8k7YRAt/+GU66Z20qCJXKNpFePsAUHgwxmQvfE3Lk0NJ3hkHjeVNTJc7hYTl6LEoULhj9sHKeUYLuwTDp817RSK7RMPB5KuLc6aL/ovWy6DK5bjiafqwlmLq8I8K+16xANqMSngbrDBy/VO0iU8rostvvpPa01DTJTmYom2NL0IhQyGPipaNsUU2ullt0hxtki2RI1sC8lhsqB/TWl4PPDOKYiyi3WHiIV0RHGRjX9BkbkqQ/PPkPHQjmwO25O4weZLNESCbGRcMdrfD1j/Tu9p4bPyKoaUvzfWJycf+tp38Wsnof6L8d/JmQykew504NLRbVW5fshY6svSIHHo4h70Tuw83K34G32k4b5oj1M+wI5Izd6kN3AiVZxgMe8fRcOP2w29iYXtwN2tjcgvpSE/yqAx79IIaquDa+0Cb4iOALoRutCwLbprOv+WouDL8EeOouEKQzH1AgHsyRWtRCQvnNVblpLrlzlWxuo5Xbq9vFtrI9rggG1mvZ9lpPWrpOKkY0sO+B0jybPTj29i5v3/n8vv+n5857g/HtTnvyR6AcD/+vAGACwWqPyhm95vMq2re/eAI1pZHn83S6NJrmx3OTTTVWPU41KOHHbQ6UlO/0Jpz5qfFesugRG7oBvyZiK0ChJyMR+mlQZrjgQy2iIHMZnDXjLTFaptlGu/2aq/cmq8l1rHdQBGPBEc8ImsIq+0+bXWJeSMl8MTppNRECcyDY1k7h9Esq649B+2SVHWX7gheM3R59ClReLHWWyZ2saNh3rNjDcN7cg2qNHKNvvd3S+wz9x3q/Stghlhquw8dXakP/QAPbcxDjakEJLOS76ONlxPQ1FnTvF48zGtjao0f28ENX90uYB92bW4akSugGL8/iMbLyIBMZTwKILG8otZqALX0rnl0f1rEaDWkOcFUop0vUQZzt5NYbozcQQbnY0TWhe732SydXhcMG2MKctMobGhOj52Ldh9qLD0VOzEBNVY5qCmKas3cxYqVvMo6lgmQngPLSqU9+6o6HNy2PNpPidR9nW2H+sxatDr6mxWt9Npmry1VGsDsee9OEOi5AY0/INabGEhE/tw+AbS+utAIzGsGdU3XmcW6xtZMlSQ0YRYQafM6M/uSrqx9xyYenZWRkUT6qH2qeaiHR+ZOSD3SyrFT9MwqEAhaPSROyk/dMMA40fbkttIPpmpF5JtXwiPLprJC991UGxarILKMVJZrGONn1KVrCJlqoe2gOCFDYimpSDdUHB1Vta899qkn+sxp2Zk0d8u6K8u546X4YgnVxko+2BJ9pH9ygq/7G0hZIQADz0F5KFRBb+WtfvFyn2rmO4j+FiqKuleJwth/qzdUCngkEopMcQQTzxcZSKrMD22z19jgue4Fi4Gml2kN4noosb1SyItd21CvBJDqKzCx0UzyEIScFKvfotiBymit9Zillm29hK+dxUzIKnqAaJXb7fYLw3zZPzznR85ZCy2NM4pJ9jgVoVsyEyMPls0HqozyLq5K5UUQsADQUaNJ7StF4xK+8ydiwbDdBL4mDB5VuiWSyFmgmtNHVjaXYIwHHqUExROF0Y8uIcBYh9rzcNIOEED+UV0pYLiWQ2+O6F0cbzZQ+qJMmk1gGmJH904xsopUDW1E6pYCmg+He9i0zW63yKBFxsChGr9fMEN+yo2+0UjeTui998XDWD3L7fZ7Il8C9+w/a0zVb/UbLEzVN1ZSDgPaAsGXoO8pf/RoveEofElQnJ6Gq22G0JVcrPNS4mJpOGjR+DRrfg+wIQJhuKipkzE3ztjtlhESyELDJPbN1hKGe7tFGzBnTVOjMX0AlHMzlhtqQ8S4c/UotOHxDTEnt8t7Hszrvpdg3AO8ryVSKklCbftr7EBpjK+o0b5SwrddixCtU6v+yhciZdjtoG8sin/PFXfaZBxa4wBrO44qrkuvXQvIkJbao7lsm1A5Fm/TWMKjG0/ylkVxwvOc4FDFHwnBlyRyRE6TgZRtdJX6pWwYrMUC9K7Tl/uO1b3Fm2cZZ3wR3C8OIUDe6XdIE6IQSw7obrx+q/grMHqA9+3wVXeWFKHPvvpYSpdufvPNe/DkKXV1BQaQRZR8dueXbWYdL5MzipWZI3ShH5PYyCepChpg8XXmieK0dl+1rI32rDS78a/6G/6nvAueLQCAr1BcmPYC+q6ud4WATSDGxhFXrZajEXT1p8MMihSTXJOabZdo/6CHNvTZ6bT2mPlK3u8xTGIBI62j0ip41nk9L0u3EVP7KtjPJeLvFSU3+E/l7JatEdpxTMOljLHOhCA8iMIgZazUJ6UC67uRMCkDrUMXbzbc8yH4wUujdla4wxIR/5djbAp3/hPZxLs5iiuC3ldGvyGBYDsztkJrEd4mgb7vteAThhk2aBDgwP2GdOOkRir35RkaINNcRkpBONlYgesQfEsk7WhmSWgqvbmyNVHEoXnrBtkQ5onlCzWV2o/XSoc2Y7nv22SjkwbVIca752xY20HXRgc3z+c4eM884+JAp4pa1YX2PNXad8pb7Q8pFjpXhXOL+PeRCDMmiGPplNdCyKk46iuwn8Vk08ByMkVBozhOUpNdgAFeOQsErdLW4PftKugZlRjo0Rt4XrIPsC8r+K864uKgzNV/BjfHutCXd3kG6Niajj11RIEzR0HulY8AHZq3aL6/No+1rxzOFojcc1hardIUdNzG2cDyu5dD5POLmb+ZVWz7AO8pPY9tlcuk2QK46bJjro8/nPL55689dXMWrz+SZQFZ4ir4r45KSS3L4rWp6PkuET2vEGt/wRSYUBMlc5WeY75Cd+XteG4LNXdMTHOYwcG5Bzd4jBnuLp2ayExEBA5nZeKRW1i+Ru1R0mxGAyviUxu5FFNhUBZlh8KyKNxswjgG12JbXu4yr7QRT7VajST0drsdDMDNRQ/YQ7GKpFMcBrsJVayFAngPjzh4Tz3XZRmuGGVZtuFIYRRo5JIpFQJImVDOTCpoMX37IRcDqE222q9kbUAUbcJwqRZRBA11PR6AFqpWJI4ulqZvx7TbjceDvr06oc/2+NBGvkGmSInW4kDUtSpfBhapkNqdB1fq+uWyCyxfT6akolU4GRhbZe2iZcnm18H3YC9u7RRcOXcm18+YaTeCyU7AqIeuIMpTXEF8Wr6EaMnvncq1qG6G8nqZbWZ9vQ/KlXslGE620JMfQJIn6rGE3++WaSZykha0SBToVzE16B7dy15FfYVIbbfAVdIvVs21R9HfIROdvdrnVDP9Ht3wdDxmo5wQUOa279RNifN8tWUYFh4vA9sllYzb5X7czLnlhWXijVdWS6p3XGPNtVikaaUseHDEqVeWCwDTYU19CdMeReNupYlVPz/wZHvk9eb6OvX96bhYRABeYYa1Qa9YUFPjN3LmM1My3v3dDkNJQtcbuCiLa5vQwryZmWQ4kqHy2BRxs4Ep931vMwCCVn7xv9KfYv+kXmZhCtz3Y8oAAoDB4D+UUcYM677/C82FAICb3x2/DgB333eZ+G+nv3dOt57ajYEAPAAAAf7HQ7/dRkuN9od96vlCq48nTRh6ybEScKH5lKZW6ZbTdatQJ1nTjHjKodst+bwicv8QbbKMjpi0vP9Wy37ccoDyChd7KDRkMEOO7hNT2cNHcrjlMbPnXbN7c24pndqx2Uo+FtCK/YNG//aPfkCKZe2Uq7RonuMwR1Llt27AGm9nKnrTLGljBkTBSPY8StrvcOvQWkVeJkvWL7OzlscOsKnasRc81EXYOV7LIOWz2P9BzC2EiLBPXYT4sJNNNMpJF0DrU0HreUl1o8xj5JEbOdi/YkdE+IL4MWv1lt53zgTkIfVu3cbLA4HIqir80mH/Rn6IumpHpojfoqFu5sgZmdTXsgMU5WUQKVd00rkWyHC/ECqEvFEjZG7XCdlX7XuNuy2iK/phQx1QAwBVsH3lTqPn83r4G2uFx3NtyONDCHi6kIzxXTTLPU4LPM9v3WJr96o+RqLBqtniLbkC6Ir+IripVwJuu5m8k61Z4TxQZdvPGzUqO2t50ZTc7KUUW/VWwd9Pcwvlyuq98JjuOUBBhFWzgeYo9Ylbyfcf+q0vpfwcYSWnn2vQZ2Jk5yV/7WQQdHze9gmaUfn43gqAPy8CNOuNoaHrcAQgDBKIbcUHDzZ8ZAEjuRiMAQFgiaKfMdpu9VTDpQR2qi/lQazlUgZ9/XcphXvYXMqHY/S+VACXmHqJFbpG4NURwILUXkogIgZBq8hJ4Ujk6uvmTEjuELfuktqygrz8ihAm/Us6xJwUR1pXYsJF2pSFKF9CP0+7CyvH/i4tqDSRn52ykSQsMpcoCelo2pvNKxjmV2ZH2EfSKZgm3NfaYkfuI1y9KK88t51X/jQZ0UFa6D4ROUkoPiLLdy2wsyLon3pjZDoh+9tK+2mAigrU2rIeg6zVAafAb0OI4f4wYcGwJ1GeEL9TsrkTsVIUG4IUeV2+Tqq2qZ2RsKnMeVG50NFOO05uG37N9vSXzlEfX81fvP53jf9f/TesxU+28R0GwyEMZTh41ufQhfG2ffpnAi/zmdFrO568jUcTusyg0wu4a0K7QMGC4bqev6BTtOh5s3vY5KFGD0ODJ4ET17DORbVOqnGGceDoYN/BUOmgChsHO7YfymxUalqJ3Xfb6ylcdh/WrFRsOdOKLH6hWbQCs59v7nPyzAnMm1jEYaIc0zZmTBIMDLlP30CZRj/DONPS9X6aXrRUnZ+iRktW+0la7ZOovcSm2cnqI00eyoqgmRW+SdH2MSo6yCt9verxdaqjHK1Sj7QcTS3zVVJ8pWjnKESXyCW1L5OoJhUvIgmF4XVn4XFXYLf5dBZzB2adkN8yjYdDrtFQgWFa0H5U6AV66PgsaNVZaNQ8qPlEUTKQFW4oNDxuS86bggyE5yYgEVkgFokh4lKYno8mz8ENNwW/IXzWc/heLhmo+Irxbbqi2WYZyaKVRKzk4oxnDX6HjyVrVFi0UlMrBdwD6lmYyezfGlsE4czgmbEkENWVClsZ0BllDbpDY4M1Yc7sH+/ib3xdtvxlraqCCsGma+CT0s72a/ykgqSThnZ1LRnxZfb9ixcwq3WJ11vlVwZbTshE6SSicVbc+sQsMt77T2Zk2JnawjDQWLzTEnyjYJUUh3vXZNjZbwypzC3QX8Draeys8k6+AgA=) format('woff2'); + unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; +} + +/* open-sans-latin-700-italic*/ +@font-face { + font-family: 'Open Sans'; + font-style: italic; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEPQABIAAAAAgyAAAENoAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoECG4g4HIVUBmA/U1RBVFYAghwIgjgJnxQREAqBtXyBnjoLhCoAATYCJAOIUAQgBYUGByAMhhYb+3MV7Jgh4DyAIEq7s9nIQOA8KIKpf0D2/+cDOgZoiwug6uYvEpSWGVSpVcqJUov0uet00JVhc1EF2EqrrYyb4S/jG19Tu6qvTe9jOfAzHAhmhkvd+BqZtpwS+MU5WSB2K8vOtlRFi/c0y++NrmFo258zkESL8Hk+S8sPvZEdHoRv/VdIgMEwBGdg28ifnJeEL1qL91V1z+zB/8ELADhWACAMIDkWKqwYVKIiLDDfbS/UZUkGBejZdXmg+CoGYJvidI4ZhYWoKAoCgoSC2EikVCiIqKCNWTNjVi1cJiuXruO7i4jvURvSaZ6ssw51IMKQ7CRy/kwPetQXCKYNxzU1DVsn21uBtl87bJ2cy/zm0iE85JEHCGkyQoUUNeOAhMHzQIogaW9TZPz+1L2+9yyb/8UFDCmnSgX+W1kXB8l3cZK2HwoELpCKY5etKuCydBozjN/CuToQhmRhmh4gPDMYE6Ur9d7n9I39P8/sgvVc2ZWL3lU7MAuLhFLwhSjQXFKLzl3MqbzBl6ZWmpGmaYodO8Vpdm43ZXuulM4O8AdI+Bt7gK4weJT81pznpyekqJ1G0gXCASX53qbY/7SVqZewd6OpkuGrfqgZVzkj7EHbd8tfvQfSYDk64hB/Fj0d9oZHWXwtczHjvQQAQWBzKQ64qId4/z9TtXYGQ1BLUHriPjiQl+FIX6R9odbRFzteiOU11c6fWezOzC65WJI2FgAlglQCnQgGMVpHENQzKDpQF3UhpC4kQqIDRSeKtqJj6C7EWFSxTkXl1m3nuy51V/TdQUxRy5kk/Nh8RDosl1oIX8en9pleBxn6YhFChHjEcgn9c6+/+3i/b/8dFCZulBOpqOC8qM/dYcz9dxq+uZumCVtlCijk/YEIQhuvzkn5jsRgQcJ7jiGRKoQYHenSGYbkkFH0HPosxvRFHNAPcVp8oqEFn/nEEn5Q0X/yh8BSAGxqeD21acdYAl0g4LJnBMOCO+yIBDnA9syq4jytPbfYmFt7njGtuPai1FKTj9Uext9SwV1MAFQv0hmVNB/pbI1QzUYumgStZH4o9fkowEyIuQqcAwkiZEIjXJx1c76jlB984Rp6+M0/BsAoK0yWDerKXd6C+ayQCjFeYXZzRIoqlgF4nKRSSyeDVivHxSrUsF+o3JdVu4smT3aob0xoclZ+g7Zpjw7qoo7p9NH/uu7qgZ6tdvdGn/Sb/jaA+sGjapK+Pe37qIFGG2/y40ebZo6Flu8uyXpnOM/FHjiITrvyrHq3uMuJUU2v9Sa6eju8z4d9wmd92Tf9ix/5nV9YHhaR2MxKQkKyiH9Xx2o1rghRtc1CtZF0qI5byhAhP2VU+5XSbSKFSrOmvrvQh7ro7K6hgDrPTJ1ikyS0Zlih3oEcJ4/IA1JK4vXsliBfoTomcZBGkq77tZM18e1WXawdqvSVQ4a+fNDWnJnYtGbxQGoYVD6vMhnVPQPp1eqnZq01VZPiGbXVkWfkgcom5VXTh3SoHtL99YDuoPt1K72471F/x1IrJ12Vt1PEKBeBim9VNjJigcwo+AYw2F9FFOpcUkHGqeOkYixWqiaqyiFkP6q1UX7STrTVR/PS5UN3mtuEI5FLNU3QwlaAJa3aslOzy7SFtZVwe04dY+S/OFwhJ8h6CB7Nh451QcutghzFsj6WqKLNuOrnFd4YWAyziLeRO5jnbzOelx6e6464LrYeSw49WO4HYIermH6A/DbE7VeCuyiVIjzMxJyE2WWonnVJQT7A/5zi1HRA6EXZmamAX6NL5wFSpxHZl5TlFwMKL9tSgPKroGqlYKgTYLnSmggQhrBEI6eJNtalkSNZzQcu8gvB36L8doqVpaDF+uHprw6hD+K4wweRRs70gL2ySAUlyeHHXKz0I5BzmoeT4lz4FFflwKSs30rmfucPftWrEjxpfOY9H/jIp6Z3R6byLNN5zjFtq0wL/J8XvL3usMeSceNtUtPWlge1sLs+g97jHyNo+/UBL0ZqqE94MRjgXV2u+oDwilTNg6RDWboUFvMGBpKPWJJGJt9jLIfPLBFfUJnK03Ma8Vf8A//GP/DP6A++k78SpXTcs1Xme56lQNsrr9RjJuNHZ9xXIHoQb98G3kWbg3etz5EnitgWaw6zVpPe1QkAk9HdAPQQAMijmhkA22JlHVZNA4tpwT1Zcu1ZpVkWFgDXnptVagH7VdFWC6ulltHH98nTLXMMBFvT23ieBK0qnSRZigqjsjJQHdDx3rcGwFqGs5f9/NRMMs/7rH/1g22X+E395n4LlIH0yIRsKIwKUJXfot/hKcyUYEr+r1pVgVS3ZTU2NyY9dkOUhrTPKYTy/8Kn+lGf1ylC62QdrKJx11Wtflz98MmHn7z9yVufvHLvPXfeds3pQzOfTB6/6vxHo57zCgv8qL7Atu3HPZwspRgCqO/kDzE7blz/R8LtlvwewN5HpOTw0QElWP+LR2vW0UDJdTLI3j4/mVUM0KX5LYxxkZx2c9Qziik2UMUGJuillVGG6GaD7tGupRDLBEAcjDFT4hr6EMYtNMAks6xjO9WMp3+61Dm2cBEjUgYxgsmMk0EXIyflehlmmtVsYOseTGKlGDW8QVxqYiilyvvmT1HHWLqS5SZYxUbO8VX3xmAMHflyk1qKqcTSw4QuGGF6/pW0rdmAYT8V1UWh2dh4UPPEjrHR9rbWluamxhUN53W1NdVVlRXlCMpKS4qLCgtM+Xm5OdlZmRlGQ3paqj5Fl6zVJCWqVUqFXCYRi4SCBD6Py2GzkFCoX26FO4qvcZSJ57OtnW3zNYq/7O21X2G9zPobDgWTnqCPxI2OpXphnQuWHTSYrMLGNNXmRjskhSn41tt9d6MTHh3VQpXWQIeS08ziWu7UzXUSlGmAAa8TT8igdYiHCoCHGcoyAcRqTmSwlFG3thlfLuxmbwtM+sBoeHYss9yIHEDScxqfXyqTcgXvgTLepNCws5oX3CBG1AJem4d+shuWSLwYcNIASXyZrlUEbxLBkzx+W7THYk3YXD8W9urtgeF9KYSmdVLbeDOx67QzQW8W+Ho66+L1bC1NCpa/npNfCCmrPQt5U2wI4kSHCLwKwEGIx8xoMTqjAtikbbSMlIqdMNDdbBDqJEBXGkIFOSmTkKJRTBWsWUNiVhFUlOEtOAil/a5gCYK9529+BqPs6cmWqwMd6oQq1J7xVPyCc/5DgBDhe4IV5FBJZjr/YPlV19reUHFnnnAJdVKylwjBRCJ28eCDLsl7Pzav5dcEKtj+TbPy2dtH6bSrTBPb2aYNlwRJBmFXDJYPkSPIGin/ROCy0brw8sKLY+BYe0nCM8shr16tV6qcps9Hmh3VbsZeB+b6mope7Q2sLMnlPTsCjhxMuBvTWQaTLzHwk5NzQruhpEsPlV0dcAiZyhsF7l/JkRmZLA6bw1+RvMRGYvYMsXjWeMQRcyTkIT8DXKvwu7niilpvtMljIui3ZWHnIYE3oTmBiWc2M+h1LrSKnW2qMgj9i057dJT1W/7tSwkQPoLU9FHPikqTdDPohbPs9Pybi74XAdqurGe1RsSsVgVGSjCzYD8nmkIfgUkCyHjx6xr+cE5r0eSEmPKJZP1E6zRJlibBajFRdueLTrt4IVOyGplMIMnfAzmZdwMbDo3I4xPwzEnr212UYq4oKH0esmK/BHM6wtU0C592onFONiOOpsFefBDHjCl2WBNt4pQkvFbTA0dhpEjb16L2NFhxRnY/YxFM3mLAV0T0pRzOWVwIvn1XCWWDlKd8j78YIu6hnnCnVNlMgUl6bkc9PBxOMrYugKnCZnU2A+ne4rIzLnlyLJz2xbl5B5JD6YVyimJ4iRhB056zI3ZTNE+WBSFXvj0WOui1UJB09pgPif6ThT83L0rO2O2groJKwSjAdqEhQCYAiDHCWCwC0RWOILgKnhoMcD/qiuc0A6/xsjkAHpU4qhigtNlW7AJLK1AjSK2rIWh8Lb2pok44Gj1ceaArDd+n81eQXBrB7ibn0bOjkrqkZy/ZHUhADgov3AfeSQslw2Uf4xQu+nx0Xdasou2y7xgJ1JYEkAqm2pVfIte+GgS07k4CBp7EmYVGMS35cNq8QTyCtO8spk1pNbdxGa4coDm2xlB4wUKudG/xvpLYZKi8D5KgEAXeJQ9Gidkm/aHE6cEeBObwyHGuCg8bYONSY8hV8QCQ5KyZz4UgPBg9pRN/9rJN60SbzH7kwrDAWgVMAJqRVXoDg4XHmQM5QKP1EYrVQPyCcyoqld9faObDmeZK3VJcummdUBq/4ffQ2OHIHz3S9Dl0Ep1xphjuWvQOiCat0amjTMO7lINZduvtDKaBiTDrtTku50eFOsPIQOetqBgQZgAuSII7uFTAUFF1Gm6REqCttR3FvxBgIO7cobBvJvQtrg1EvcrdxDT51Rans3T+2wKgtD/gQRIy3IBZ5a2w1E8uq+0rhb0YgXNbn0p9Q6sF5G1/bPaVKIPmZq2YFBmi8ijAN5Qzb2C8CkzACAUq/pBhwSLRK6E2npxl7aSHYD/OElUxdFCCP/tqwloqH93zziBRB7H8Q0TyLnwHPWRqsR/EfRCzVUGN3fmnMgg31llCbrOi1Km/7JpusY88ZSHgPt20fvaZQXIJQAmv8MHbTEzmmFCKQLL7KeJddgvTi9xtD52eRHyLNArhY5KWFiYEs7zL1PiRl9Eudior7auFjRSVcOQ9VWbVtvX3nu5PrvJVyEW0Vk0c+wGccQUAbRLL1wqJevLJwEPfaasJKo3b3WhQu5VpYLfyy8+YU6Enymyc5S6wLMlQ+4NuwZXf/RdvdmRy3OzUaBtxZEvtPObJKCLH8cIKnQqfmbxBP5XvQEnBf6ARY8pV7lNauQEn5t7tl32SK78zrHj6VvDdkNObBJah8GtxH/A6KWnLAlygps7ItOPXMHaL/NFxZjzfbC1cUnHQHGy/ljHXGL2EwKQwo+8GYO1P6602VrGZT/Y+806V8/KAN8Z+K4F1+0K2ZrPiutF3wFMQdKa3NmNgoOejdsiMnoCp1Zi9RWKLrKurV/jz9jZJuKOBooEs/tKpwZizOv7KcXkCnL8jkjKAgyC4FtTwpxQrqbZz+YYWhAgPCcmssgGLfKbzCbL7DtRi/U9rqygczxWNuAK2zebRqE49E+zNx8Vv9kF/B8B1UywECEF9k2++LukCO05IEvevvC/sGBVABGFCP6zYVyl36WEyroqKI7mYEoNdL0ieX5lW/arBhzX7MM2LzGMyCBDD9hVKdQRS2Ghmloyh+BVfrVDFeWviKtbJtgkxbE+NwdxbVkEOigqlysdj0aw420SBoFnIXDCUNoLxaBreiLZmwMJk9sOJ6UGvwCCzi9LpvPflMhGtaB8CNcvIxq1oPJYpProppmMx3GNxtwvRpirnrZtidkSuT1+l55b5VqIhbxM12XaTm1fwYiLjXb+sL3hgT95Rmrelf1r6NT88DYIzmJs8ovt94Bfvn+3RTVWpEe/5SHcXMO9OL1QM6WmV8ngZRBo5W8J4DOtEaXntTjq3rpHrU011zTel1PzlXsAPLUypz7lvcz3x+DintCBKMcZwwLEi5+juBFMMJ26REqVVq2oxlFv09S2Y16UubkN8Jya3JWmmTJohCCwzqc9J0AEbfpBDi7WkyXgWJGkz3OZo8DeFzH9F2TkIcyplJLDtZnql1FgDZA6DY3LXz7eaqXBhS/hKdQXy55JgXuNFH/yVQi2Z3VWqCmAZbd9RUF67XDGsKHPoxDmK2PfNlz9fRygGpuzJjc5GbvPgbfah3rtusDwcw0BV3Hf7+aB6uwWACGT7fe9ppmwrwWHQ2CHicWKjVpMbLrQtasZiPD0H81qZebTfucl11bs7DiiUpQ01bi4iHwd74a8U4RYRNaxvyWjZD9+24Qg4KPoNc+Dexdlt0fD61b3ANkrpGyG/bJChZXteTGsCrsfxcKKdz2JyJLBDw4eZmglnoKhRklJAxcLcOivKAqvt8RI9wacEbAQOvU1n0zWROjDeNw8fj3WT1W4Zb9LW13eS+K5COfLLord0pd7+Ah4bglMgh/bB16/syB4uzOTMX+1dksId60JKFg1KlEtwlg0Mu1cG0FiFGOcFoHTVLBN1Vni5LJso8X6eE1Uhd33dwq+q8HIzKHqPbwoDDuw3bhqaPqm18i0YeqK/yOuTCdtK4McSubPe7oFW2QNy1d7yCgbpUa8RA0MHHzNGcbWuUEyhE21HJjlEZrgAAQwmMW/3N4xQimAL1jb7Q0lfX4aznC0TFwCXOPcCJDGbfxH/tRzZvO2DUiHf+rwf0D6kz0p/KP+RQ4tTskTum+u0C9Iv1HqnJjO5zrQOxpe2HGU8sD/ny8Ux3DO/D3SNKiDvmcIBgv394ZlhzE1gD/AMNIn9vp+ZCm1Zx1HqjLRq3/zzqFPrKREKOodDSEUm76tIyh6k8Prh+M8KivV4oGu3ZmU3bk7L5Kl6uTU26h3BAln7j6fozc1u9f0to0W7itUe0csgJt+zvhaoZlT0xBR7kWsHLf0eS/ed/wFG8MIy44PO5bOL69o3ZYPhC+A+jGumOlJnV99kk/1l5imw+FyhPCArhq4+ElnPMnjAqc2ZYAFKYe/fudwjxafMXhRBrzG5vCAalHvw4IxpO90vF17AAGpDQODZPZ6rjQZWyJ5ciRZdrprQq0KXn4RxwovLOoMzzOHs5AW4NgBTx2LLPx5rCnFjy9Oj3XXpsqmjeWNSgB9xP0zRsWZKd21AAsmrcR9tpbe+Q99aOz+HvGtsiHZuQGj7wGFZ2K54YHdrnh1qVeGx1hSeVgdMU05RTlQpxrtrmbLNmHUobZwkX+woasXjASjV2f5dcDFIWi8oDEpWv6nh7lHYBpPJ3hOOS8OeaQ90gmy4DiRUMv+dlAtUkxxZ8MVFsnyuqIbZZVbILgKFTgDTzPcB+gwjd/Dn3LxXJKzLcqebYajvCf07K7fabUWvYTkkyv5AW1jZsm7aGH5Hqw5e1E9AtiSndpmZDfhIQQ0sBvsdud4N94NwI1OvJFdugeiLLd2Pqe5EAaozR6EYllNDLRd2MGWl80w5jWP2hXOtJ4XRR4ud6Vd10o6t0N5Y2F7dSwiHQU3z8FhzQL8b6vRQ8YyWgCyVbsg+0ljjMT+zTiNrL+d1GBZWPWcfZkmGqm+I1dtn7TjrGNkxV2RK4KTG8Sndpj7LiUnP7/ScewN1CVqg6VfucKoVz/ZK632Xgb5vABPw80s21NPZwyWWMfS6J7AS3aDdU0ARnwO2f/TD293sfPDpLJtNnrA5mxXZjYymBp8swvX0kYCK2GgZl3IIwUSB5sMNfuu9n4kC2GfGRV9N87q7m8TgbTlKPtKVy6kZi8G6Ufv2+nxex18MCAGDWv7dUz5ok3pTCjWN3gtntmEbXqwTE+WywEIqTsUdVOdudlKFLuPj0UT1wnYc/oyTBZhfo9+WZ5/8uhgSmJtHdlNUoJkI1xTjtUmOWVkZF0VT4DdXFSYpraFVLQItp1SSA58MiUyDeqtk55ZlOLedKvIoWSnnokzdZ6rfeCeA87xflo94tzn+AUEBAkVQQ+i5J6cBJ8JIL7F27w4zwxEviaIW5iMtFCSa0+/KGjcT9RKOvfxHjmMBddxrT6dh2uXR98Y3O3yztg7K2vzGX+Myq2QG+LKZppAP7YNFAgnbHeq2o16XO2HkDaxfG5o5pGjHqtNaWoHroywzfj+KZHzq9cNsJDGEeclqmxUsUSXf1S5fRK+283ygoAFMV29/bwEdt++3QVKiKFJkFt+BHi+RlX1Ga3YFzbA7mvdXpQtzaOmUA3vluO6qgyI+RQX8VRSPfdIlwVcuFlZWvPugqtD2rdKB/Xo54kck40Gg5OKyIQq+D1Tn2s5p2ltz0gv483G0Zdwlxh6AwDy6DQvNjnhPsgBVSXZ+6/tXssedcuXUiCFTmQCmlF4Ap5KKsRaXGJ8EV1VqzqLwenDq9u76AE1hRlzTxJgDts3mW/uyulfje093XSYN48ASz/fxzchxhVyXkKwPxgm8YGYFZE1TYnfmRSjOh99xDX/mTsOOvTJubGAj0w9RDk+4jC+YzeYD4/bVQeYw7fvCK3noz+6Y76aZ0/7DK49DW1nEaoYLMD9lmZBCDXYi4C+CCjxYsJW+QjWPTBrm5+gi79+ZT1wcQnqBehmX9XhL5ALStL2UHYgGi6fTV+ds+i5J4r7JlVuXFFyBRO/tVQWK/rDx2kSKPCbaPbR2mlIeCpvfuSZ6AvwvLfIvijjggDDWmrHSsUk5G8+HMHFGfAOg2JRnQ1obhhPxyupIelGCD63XrmQvvmKwkmNakHTBjlFpk79tSnbPl0l/SyGS1Cf3ESozsKz2PkP2/GFWf2Fhodd/V7Xo/P8vbH3EeYlzbL7x60+ZqSLzNDWFDAmfqcjNd4MvbOA6uo46JrEc3cYcHTYUjn1yvuLGfP2v83X/8tH7paPnSkbvlYx+dr7uwXi9xOUKqmTsQenYqeKxrcYzjNenI7PLg89nLd2J4sJtEtDXGWVWrHi1/4BO3plWU731rr4LCBvt9huVLu9GseHZr7vrUHOxaE3AoFrRmllo2PNL4Q5bxFnNwZHvwShosriSwSL+CJinYD2X+6FfM5aa39P3m7lhXf0bxzlec1HT+oaehJTO4dUzLK81UbNpjb3ChKs+IITSK8feRCAc84F8QUi9sx2KyLhd5Dn3/pUz/UrvHTGzqTVdbG3n8MwYz2tD1Cp9Y3eC+AoKgZCrVZCsrzX8avh30PXHC+ZM/vRUY0UknApvjOsqOrygq12xSsHrkhqVM3OVRdhT1hQOswcqxiD1yTvypuIZl3117FRh2Cmq7Kdf6MjwuvaE/Q8rDiGLRsIZHNTGrS0sjMGXGhSxBxnywJcXEuKhCbIb2iDvm8rmEZ2gjl/wu2HaTY1t8D9iW11vnVduBrYGcTkHsiCXQ08FJtoM0v26/ctbEXXZkEvEdW8JKoQq2OGbz+ZyfKL4tNvVOZc/mBrFB8l2v8Kf0UJ9k7fzfxL0KhEYszeuebG5cbGxP7C2RQfjsgAxY3fcVk+WT7kfW74+ZT2OZ4PcGPaX3eu1Afd62UieTRJxxBzk/u8jm9ugawv/vW0L/JfzPG++r3M3P1s3RM4oIe2paYL+S3uVcbKv3yxS/UmQsRg1pFXw3S57JKbojNhQpYDZHDYXsN15DbWYXObUYEuPKfY0+ORcChFEfj9V3XKXpPkLpDC7E9C3H2xUC6tqOAY/FZovETIJWj8j7fnKi5mqL+UzA/uNirXapoKbJ4/XGOwe2lBIlm4DoKJzCG6QrRR/JlTLrfRWRoUkxhCwgkJMehf2ATe+wSOTHJMYHyWQKDV98fH1l1Kpi+I1HXtViaMpRunamdxiV2C+29TKHhVrbrjptQD6e2yIEPcWHzATbhc6toX4eUtsyFvf8Ig/5nyrfbPbbVUMfZT/GEjU61oWOGrPRe2lpGnrsPwE/2S8IMW0IqbYjZcpuPrgO3npW1Vg6V9BBXtkWVvbitnnhsdeKvwtQb3HilJ+na4I/ih7UDHPZ9CiJkQHgwrjKhyriT94mfbEjlPGpvPIESBUzStBc8Z2HTErQ69WHb5W0fc7RUYJ10FKY9h0OSNSHx2r6Q0J8XFCu7BleVBhiOuesnDLa8iTOKvffAvQ+GW9cWN2tnj1VLkJ2cBX4k3MovxD90wzHXs16rGkbNVYb5rYW5qWFtehyzWdeFk58YylJqNVhIggFYv5IMHbyCPqYsTpKWe3j0piMFISQyiII3ExCF4Il673YoLozaBugLYKQi+Y4mc0xM24SoEOclZuELNszMjZWRAPneJN1jccFTTXHUrPuLMlD/aK+ShzgcnZZmSW43vAy7/DqKRYiraOFetB8VVQcUSKNJyc5JVHUvIToe5zUAVTSSYEJSVG8hniBKY8N98ZFOmSMzrZ8Gt3+G2MNsyJ8eRSrLO533Z++cKjpUtzsb4VdP/p/Vjn1sWni3Z5h7Z6bo3+kqDJm9rsYvnCWRfRayyTkGkYGT2IFkx5xOaupKjRmgcawmNe495Lu6YyhAPtxYqIA2x8rcJ3l0Pqv7MeRKfDO4FZew4n/jVw2IDb9+bbDEQ8fhs/uNbtTCr6kHR1ZdUkQycuZznzbdC0MlFK8eTAOhl2jbq3IXdtTKppCno2e26rI9UP7gAOTgiNScSUeDTEtWcu3MlZX3WPvmvFigPMN109Ge+f9Jrrr2JykYf18FehTdFiwzC0kvLQVe7FyWYxC/1rycIeUg3upblsOcmM8tDc36pBpgjAlVHLqqBLEYT8j2ASSGHe0nONWtxXls4b7zUY3YDp4PIe04axm1bpc2t/rvkFhNhUtiBJrl1P/DHCzUNESWkMGUM5Dh0E7f7YUwnYyUUuq/hy6Mh/+XPdJ0P1YWV/sZDD4dr0CZGpg70FdkC5oXPtiGwzWu5vde5ymBOzw++xD4LYb2CC2x6dnbKQzGh+LhtnaaUVCavg88Y1IxPNJRCLEUn/AXqpD8n/PRRVAkglph0Sfm782155P/zf+5XxHmOgnz4w9xGmW+e7qzsdUzcXncGlEYv/5gQN41TtZ4ub56kvS/Oihpv4WaF8+83xaNtwi9A1f6X7P8ZAaScro++9JGGbbC2/B7ciOBRUZiaCWs12bdvjFI5J/yFEdgRaKolucla6KAwElx/9ARvbrlzR2WEuZ+Lk1PXpL9mSI7C/pDdFtcy85ZCmvk5WZgCpHPYnH7ZyZS6HyZkbD8tzYK8DAz4TNPHP8oDhfLDl7Xwg32PEd4ezrG8j0gJGNwYJmOPW4TV4aHCvi/0cVbozpDa2dhqXFW4tcwM7PSZAe7501vy9qRj5XHqrfv/W9vv8Vhs79J8ViLfiO7X7Nrf9wiuwjM4PTpEKK8PHfQ9kt9euqYkrJug1grrwCe/tutSoliKaXP+EGN9zN0d/vKEp5eS2Fa9jO6bzltnQres0HVEJRWKtXpU64EFO1e5mWztYs/tFK4I9YF/M2zHUoQ3+r8Obfxvy+ArPfPD//O1S2faBMi3UKi/hKr6iHG+zgBXGZ3izKYHKSGmKxMjz6QGZzLi3LknEHRRtqNLljyhkBCZBGE+6VFzAHTaksdY0VxykFhedwCcR8t4IAnsCmSiGO/oIIgzNFce2isNyKsN6lSWKzaMFZ8neNo4v9unJFt/uWaTO/x2BNKCxq8asg7V+1uJiO/oUwS5gLG2VlzJZk5JYSme3uxrsAkaIdkN7/CaHv/335BS+7Mc2yDK0EAUwWqSTlz/wTw7S67yeF0aHnDGDXi65Y4YC0n0FS48uEwEhIob5mAco1MGCHgqyPLZUCkRi6rAVWNc5bxKyzJzkOGGhtijVgYBgSfiQL4N+FVIW98/HQ9TxpTlL1X63bZ/wt/p2+3rhykMcFtopK0RlIiVirr08xCMGfh4/9BEa9nMT8gL++Qd52E9wIN3j7t/3MTfvuZDk9zA3Hcz2I2Yrh6Vm2w465uadM+J++h+iA2wZYs487Ew3P95eOVDpcIju00327Qb677s/npwjKah3Cz/qbwzOagS7jIAk/aKk3UOmkHvqE/XDqxU6djaSzy0EUvreOLzQPbUfABYmc4tQId9is/X8KUdlhbUYx+Zp4zFCSnwavh7cy1bR1ahUECsbyeOsAEb0vXbd4IqNgXZA8qB5r4HRAoEhhCHpFyXuHs4P+UV9vH5klXzlN4zoYAj3eaSmqmh4ISFKHpwNMdllIkU8PeovUOm81LRvqIrwMPVIf9chQbFhFs7w17xQZvrT2CZJQmfQFnUcUpEQTE5oDGHAfmcGrkE5DePIPcP5t5JcR9cG07kzQOulfNu0Tr4R67rB9aXzALBQyy1Ckb7hEoiRcjTHtwgS81JGg1j/PoJAzWd1BcdX9oisZq+8qZiYP7ylTS3sX5XxlTwXamthm5SZnaLuD0rFPleh96MfT2JLBwg0CR5vIlLymbIaMOY9Xufw9tvfQz4xGrGL2m7hzJzPgFnmLHMzcrqN8ha4lFkKthY9vvwVGcEU2VKPLuJfPLAv+eZq1G5am+7PfH/9zWhLRsfgShwrkBbMVmcYQ6j4mLokffR026WdcYUomW1XN2z9dmRVtb8ucjxjYktMro9r2PSol8enB3HyDuc8+w5qfJ44X7ZOEs4PXQyruiyrhvBevoU7tXUEUF3utDsygSkYPB0Tqae4zImJfCaqSuj38eF8sEfQGwzHUx/hIohOxMB1eXdE2Pf6lvoX/gJs0iUUoGj6FcK4/nS4rWZtSy22o6eoBhynITPyS8UL4PLUqz5wh9s6rNtHYOlbqjKcHokWSIIiotWhDLEqzSlRJZfjjWLAiPzDjre3hDgN3xvya4eU34FWIO7LHtqv91B4JCiBp39Vf/1DNIrNcxVsrsa7hTppx/B6vXK9uhxNyzTWRwpL6itBOUAULdvYFCno6do+3FPSuXtbQpgqnl1GnnJOTLnee6g/IlRFZ5d7LmrKdXtYUtsw2s86yFJQ/YnMvBOtFSG/6Mx9bUd5FU1HszLP9BRjbmr2dbcd4+l/I0qIcUnocvdOToSX+hkpXBkdZ0TVubbEaLjJTvT3bhm8V06bl+M0qjIyZ6poe0bkXRc24HcghZGMpnK3A5eKQR1OCWwZ8+LUeYQsOAtSEEL9ZrzecyQl3nn+xZeAMXJBNpbF7RKpp/cj0dOCBJwl3zu3DB7+Io5PjJCjs70mQQdHHaSEf3a2GFa2sYbM9TRaxfv/4EIpRoxCRW1xUWV/BxtBubM+DNifPPRsiAInBZNQ3lOcMAacgdBLiJmsUuPsMUlr6t5gBTHt7lwLjkYQYPFeh2nBvXRYljzKlLCiZNtNlfcEqHWmYNBTrSv2GvceXJA1vz+F/wghvPAq9grBLEd+RaJ4Lo+f/t7m49MF0tcJYgbS4LYlR+o12I6e1G5T1GfmlUpOe5a5WHH/9UPHZ2TURfh8Aa7TBWG4nkvEFiq4zW5fOVR4Himhw0/rQLssw3Rgy0/SJWuWJS+/GVwblFH0yoPjybLoXya1+YhqwNQs+/VTqH+gjrd0Gdqiyqrezw7guRZZsPSNN8TwKPqJX3yx4Lsg7Sb+O4ZVq1im8Fr6nsywLf8ynBmQUmPCKgZsGLqg8KUCqywLIxJ4w1uGSNtoCWajW/6PKhwe2s7ywsH2xp7oJb75hD5H2nYA/wb8C/3gVFc+rE6LOMCadmFlMzMxL6p7pG76aG/3DHXHKkajHP+EB9CSnBXxSA9TrynfHigDywqFXuUFAbtjkbZkWlDkM/ez1wHu8aIbDkynP3MSuWkPKk/qmd9TkG+3vEGByKusIHBPyDJJHCQX+cS/ZiSWVsCF1WoRB8lbQUyON5GkNJAttKfGQNyMiZ2rmI2elEweNNsjJLKW5fzarZ4siqpw1yP9hrnumKgaJuw1XBNG7yOEW+xkeePb8uc3rF7U0SV8ljwnX6NMye8EUBMIf6MCOnZkRwH6qmx3dc+qxFR7v5l52AzVOt/fQ/OSFd77b05MSdRL+ZvHDwxfP5BJVsjjrnb4H8f0ccxsJ6Fb5gnM4gn8714ravadSG42zROZsMLX26oQFH6KCKQJeRGMWQx2lrkZ8loFsH6ypT/l+v/1tRvSIaRwg+fm2uqBgfraaUgqmeyd3rWifnCwvn5TBiSUpPdarF8x0rdiRSckgxzulTZdW3u7naQkhCrCSDZMSSSFKYhEhRockIIQBg958G/g7n+9O/9F7D59/B2qSFAsCP/r3SXEiCA0NGYjsWcf4RZx9vt2Hd/sdukg03rk7ics9K6Y1DQNM8L7ERM3nwDPV0fk0+iEnCT1mUaKkZJp6jnJrTOsxwmCJCcKukNVaKqbAIGWxCvgYliuOiyPxicXqCQ+0lBDZGHFxC2RvEIdJ4+G9wlJZVDYsQBYpITiFfHiz3A2PkYgFHNCuSExXLbycl4Ha/ZFHZgdieo652K6eMHkMjdd6HT5inPp6mkn05WLpc7r5kYjeiByNrWAb1y1uNWpv3m0sjOuGdoT1QnWQ4KrWraNzZRubMeVegX0WRkhGaP1i0kb1yc/61ihebpu6wN9U/MjzfoNmucdHYnP5tY/ToIUvqekE6PL0umIGUlfc1JyvCzsJBCRODlzdBioWS7Sh1uNBvagOBC5nRiK68Yh/8BqPPLI5PEg58QLl10Grh6bdBe0JX/NuHinr7x69M+b9mQvxvM49mKe9aID3qvTeeNUb2tqqumXjz2HT6ka1E8zxCIxlcuhJhqW3Q6+g6/MXNO+X60AW4Qr5rw99jwQkg7OXqNMmjIaLG9NYnbOKvUNGYevUmYfjU+Ssnlo8VSNx/6oTvmLTxc9Q2u/6vIPEbIsVApb7/hrfJhaiKUjUEEBwdogTvo0l7IuKr9uoC5VEVdRm5NEW5GchDzvAn5OS+jx8Tyxpi6QyTVERiFgcQ2w2aRwseduBDIcE6KD/S8ZYWHHsJqs6iiynpxVl5nkvlzqzEqKNxTV7YmCOJTeB7sJsxIKfnY4J8mkxiSDJNflvGXoGxYQkzIZaiqNPN4zRD1TUbaeaNAClnmuBViLN/DV5UJ+jxc7ZmxS0h0DYKcMXrAHQmDKxCEEe61ExmfE53fFObk3S2U9j3zz1oY8+6VJkrG+//drtnvzwAfet3aMtifiVqVU9TF1/dVramgB4/L2lcqktXBjoMo5A0+WI+DlcBXIgI0YcVifeGzqIa35YbyQDV957WiH29HFPXjt1DslR/YZSyXh8Rj5J+HPNvwza+5MYX97iYJyjkVHiu4vGmEcxdXUem42P1vZ2tnXRKw3iz+VjDwS2oREmS2/aupTYupV4uBF2oVOUq2s9+kb1t2Unr06TfKMH0XpT1Bb2nNR9k1OjODxmJCRse4RGPTwGLIGMzrxHXn+p5gorhzFM/D7c9ZPP652HLEvq2m0tHQghBG8xbB6uxfaNKMBN7n7YwsxaXJhFWXS92C2M9Yp4flOkeudi7KvJ4WeRHo5MU0raCBPQnboPOjYfrNV50DCC/neuzkpazpc36s9JrAUlo01kQmFKHVADTT9PVyTi34VxKrEIL3jiwO+K9vmX2q33vy+b0RJrDJoeehYGgnh6HdIK41Na8vMydx4OWVcN+hT/6WoOZhlTKaF+dRvDBdGystEjFBdMvfUwa9oRKyQo5DqYwmGw44vFjxM+i2b9R42Qt0+9n0gbZdWsLelDPcw6Whd/7Q4iZkK53Bu21L65p0Tf0xRFGt2pNPoy99DYbYOtuLk8qqELUQa7Lkw8AA+Lb+H9N4xed5+wKZQzc1H4b5hEnCxMrzp8zabFLw4PoWJFVLi0rD1Hr3sFK5YszH7bmbo9XPdAtR4Vll0ZKyccbtpbj65yljH87exloatbXvVpBo6V6CkIuLLDtN9KzlzH5r5Y8dzSMy4Ga9dhtbgb4mXekZPyQqeYHiYKCHK6F4UEeAdk42ITWbEFvt2scQCTaDNSJecl774dPFrW4SELZZLaBEUKU0ulrLDD3srRQpNIfp2PA8Ye3LLhwICGxLSxKuIL4a8Z6oG8mVZ3/2bBOnirVodVwx589d+ipwck4QscCsJ9XJbbjyy0aH5Zt7p8w5eUaqw2MSgAtcysi0QMczfT/p7CAWAPZh4LWQ6ErhRy9fDiT07zl1PQ9wQnqqYWq3JYBrQ3BSyCyehUKVHAfGuNC5NRx93VqmWiYNEND3c7h8O+9IZ6Vj57cCRv3JXc5KB21Fh/wGyf8scXlj9+Vpj42mJFDuK7AKGvytciAmtrNwGwTbUlcKHG4P9Cjrw5MWVCsy9pP2drYe45TkzUnwCi3tG0bSaCn9ZI+O23oeu5LRAc+KcYmkbBZLf8AJidBKy3LWTo4gvEIRJoqIMiFqX5hgNJ7VkPba03+Q6gWKSuKB3d7SacnILMVJRdD4tayP4rGGsr2ZXgXg9GPziLVUVTlfqExVIutswVqxKs/MPvGfqqC9wd7kpd7Auv3BlQ24POh2LSUej0jFYSweHsHuuucL2AiqTIPD9a4dvwDflNvc8cUdBLJvAh77Z6Q/1uOmB3It/KUcJjB2D4l0AvRmW7T1ZBmXJ5/SbcLyn02FNhGZsTaCd9dxJmJi5m7rVk+nzbLRiXcoGHN/OuGwD/0Km58tE029M2QQM7awr5lLUM+5tbAGzFvV0F9gQ7JoDM73LfMH6GVbfxiqXxBiY5d0GfR8pG/H8NV0vw2nz9qr1w5tL+F2NsRKR/QYFXSVFgu5GKhAI2hDi6FHsaPM+eWeno4lvtv/n6+RK/2H+QD9jtqsHjZ8pSXm8ZjxwdwPUWEWrQ+xsj9525NOn6k7TTCifWPvoWSo6mlpES2kI1GgRO7NkrYaA4MDdniJEnpzM4HX7M7yXXN0EDZ54cePECfQZ9JEbzWudrVKWAa+i8xfQy6GWEvttsPRrJn/TjXRUXvriwUUgZE7qN1rmu+NXjFVFaDlsY7nfqCp2B3Ku89v1YF9LCDiUxmr3fG/2rfGPYEiC4DRkRDwp3o9jd4BPL1/tjDyQju76DYEs6mvOlUbV56oGMFC7IenVvaOIAyt9hq/fdfIJjRlb1Z6mq6jMC4RFqGJEKlNfhGyov0yjTs9SQ6kwYSpPm1K9PiZphnQ8OPig8rE4noKi1c+sZGK9vJEBFkg/qnvc07jIuc2Rc1siF7ZE7xmhSGM5CdJoSrQ4OoEjjiVN3MQRp2gkFUNVZ+ycH5tT7otgBEl20/3rseFx93GRYSx6GD+aVix08hmKUdWzGG0pQs8tlNX6xr6EtM6R2VFjgJk5llHQEh17FR4pRNa69cQQjvnAKDx0hUcvA7/LwXeB1r1h9w4h9njJzmuFc8hSu0z0EYocFJGcxw7PuQ3cnU6iFxY2GxMIK5JTmsME24OPQNnBeAQqdNSDDcFdBrsu0JBSm4zDExp7mKE6hpURbP0zIzAKi5oz2g+7JUw6Mbaxv537oG/2ipzzCH3Al4HGX8ahDvuxg3EIyOe6e4Vta0kDUsHRsVQ8x2POLUs4FRWm3v6sbZ+f6p1UcIpKi80ONyEKYeyUPxecToszfEnhwrX7soo9e9zEfZyNhdpu+yu7r7iQ93Fy5hw3qBkp6UnfevMewtr7XeQWdx6I//BlFKwKuasLu++PEfuTDUYDrH2gJGy7cP3Xs2hCgV/tvBsrO791PdYOpgcXrg8G1ugCYECPHDNw4Z6/gOeq6974V3TskwD0PvfkH2IdkbV8qqesroz/cFoEs9arjlo+YwSBADRAgkhSZ027dOOZztH0Ip+aCkyJXlAaQiBigywHHKR6NW/CSNIQRlpgeiSMYHZOqA9o2kV703M1ERVKSQjRi6ohxKYJmm3a5YjV58QkYSUfg/ytoLSrgLgCsQlTLDAJOedGz5TUOAy3iUsA3NFdMtidkrOqTS/S+AzCNtEL/O6wLK7WaJjj7nQcjgBcueS4FBE6efsMCfdWd+1jWjuLBC4qjL+4ksFI/3Rpx7CUJFRKrbTq4nlWd1ctJXfCalJQoS65lCLCbo62oZpfjrYaegrhEPXOa9fqJ1xRpmtX+2HnM3bB2YRKWi/TrvRbumd3Z8f4anpnuOzOmf43C+eQL00z275wjvtZ4vwPCxBj74qzfCo6uNKiHSWOdpY2+qSSok9LH31fwvAz93mr/qESctYY7AOOiOEjESMixn9ETJYR0/8iZutEzN+PWHzTZrnZGGrh7YL19sGvMxHAoD+pWzCGXARF3AAg7gBgLRT7ErbmZejj+4oJt9DxA8KwJyABbnrrTw7gF9hNm5zjtTQbpZdRxywA/axm9rr6v19sqAf6Q+1CtT447x6qwl9WfNrdNhky8szrg7al7MQGhoyLFt6uQFrQ/VOhGi0Bnt9ogFVxe/hxcecMXp8jF0MGQ+pDG6e4s6BrmYYni4MSOwygHYjK33bOdn90bOkOCFuhPY8yLuJblri0FjeViBZq9a3ACYAvBlTF0djbPTx3duDa8zVtVy7Znl6jZaXTrUCG90wh5qwGSsZF1vWHsrI0bW5/r4Wf6a6A62V7qAgaY0PORptz4qSl4hU82906OxRo/DGQA5ODK05a1e4GbmHreusL0YBl/e+ayKkF7D19mfpcn3wi6urEEjsWRfW7faUlUG32jUjDJBHA7CM+1FufrIJHCx7dw/DsblfQAiE15rqWl8e0SywRm0Ginvex45oZN5EGzhD9WYGK8P0YKoQCFojkdtmNDg1Gu8BKc/yl7YPiiQiSk+tNCUI7R0QsvB2hSHBmorsJeYRnRb/ksh0asVncimi3QG0AEH818y61PkJkpiiWFtC2c70w09kGSAbJ+cF+8H3hFwVshlrG6L2ZLjJLEUGeakmA59W8kO3MQv/6RxNdgWjp6obXd8jquHTG2xH2O7VdTqe+DgC4EB/4d1Z7cXfbC+/l2eVDG8+yRDAPSmXD+iwzV3s/VLDU+BQvFvFZfRVfR+iuh6cCpQHBUujtxZ1emGd16wrGIQ6zCBgA04Lfhjoye9crkWJmRyoYqzGD53hgH6w5BGk4LsTu+pkt9dGYk7cK0J5jdmUhfgpsMqiI0Kjdho1EIDfBbWfPgw9qCWJKrko+sFGUGyPWalUH+bJunrzIbO1pDZZnQ0HoIEXf6+AXVXa0VjcjEoiTQKJkZIwK+iYXrd9+4CuVFgXoQigYmRVAvOG8u7kpSzB212zMp7OJ0Rr7qOa6Gi7OOnwkeKjE5ITLFOg0zOn8XGtwP28cbbVrcxSABhkkt7FZTenB8aidMhoJrRT9XxBLr8jIVB0vJMlgLUHtvJy3Z+v1xUXFhDVIj9nkIfaZCZP0rbeK9z788LIJi6YpQhueMC0vA2AgjELbPKQePDxy9+vhPltrD2kInpCtBapTjRe5yhYF2MeJXyD9LXYjRsksi+7FTFLJgWbMeA9USvCgaGZnGbDA/LIfalATlCJNTzfMDoSXAlIxZAbbCG7ZEDFWbZ0UGiYXvRsdGXhC4oYS2yBsg0G7cZSxi6voWjoVjJ3GY+LD1oZYGUKX915SgtlokmxbnXuyxAK69457sNcRIlRVzjCvpzOZMpv+9vl1fRU0DmxSW5DfgjNmnRendbWHGGaL3dRrURDsbhaUPjBqw0RtB1TzU9+P+Xk2NKJTgl2U2tFaOdAoOKZRe16sydFgPotIWiznwAtAHWhAEDlDC6Nnxj3gVctqaCqtLTaWjMKY2XMLiqNn9CHzL60AIv3tPIum1zDyqShHZCmnp9RJEIZpCiI3uGXfsu1E0zX7vf/tYhDHAo1Zrwun/WWOih2JjDqKIwGoOhzspAKkYmU+HxoPHEiat1mG3bN2Uzo5EYOVPLAEQfUAtya7a9oneZKE7435x9ed20dy4bbbL0L0FGbgs0Vn4m7hhWCpi3jnVivuxAKZAP7P6vcZkZSVM357LM4m84Zbbvx0tJLFRQLuyJWZmbFjowARrFocLoPHeE2I19e1Utgp11sZJRVnxu5Ngc4UhF3XoVQ/AJC9QQpkadB8cVF4TCDibgefAMJMa28pDA8zR9JkPA5g8NDa9ZpGGAtULdqzXKSqIhGmPKL/JOy82rWnDvQxEgTRYi9RBO/rmnG2Eje2HJS7uWOJMLxHmmVKGdltp4zJxipqBjt6osWOSuIq24iH7XTmPnjBsSGY68ZstLyG2DUZwssph42g65skHvhm0ZUtp9KgnOvsQAPBLPUgKyjNN259m/9F1taz+TidHRDb1U5rInZiw5G6/H4BHrNdWadjzjmpoEp1WPgahLCyFiYisDabN6bGWhopHlKeZ5n2vHMAZOKVO+F65ad4uoV0NWVntIEXdy1PZpw5WA7zvpTRaDhRqiFjIE0puwCa8ihc/J3Nbxoo/9/3xCgYfe/p86h1YFv6kTVKyCj8hrMCB5vPPVl2FOUy+OkY72SW+bC7ZXhuGgbSNlGkNQjrlICKtFUCxsTYMQfoa0lp40N64zMyoaUsswGZCQN8Ef3xPe4LwtR6cMsWCv+2M1bwMiHl6b+tASJsrINH/LGFcg6OWV2UWtpmCjCv6jrwi9Q/4dXihbQ28/1OVmQ7bmXcW0vrJmf+tSKi3HMZqYjaMgIwyJc9MTqU/R1wzKmMTVyF8z4EIvhFf4JX/6m5Z1NDh5XBJfVjSqWNRR9SZo6kgNaeJBUYdcBxcdO6auaM83HceltN8yj1/TNol+umb6DUusMq9Ge5ZR/CtlXC+PKUsBSfntLskdJdl4+Y9tO+SkSLbzPr1FXQQKhoCVCrqIaxjsbVajAMYDlcKKf7LBBU2jNRSv3Xy/Wri4i4RbYwTO0ikj/8i4cNUECg2pUz2segPHBmaBX7fU+vjWxo0DeXMCmAk4KIVmrOMa9hk8GQMRdvW/peF99m1stDBQ2RoNmYcnWZY3k2w3JvKZJZ1ke83DLp5cxETfSK3RS2lS/S66vHlWlI7Yor/r4WzZTebC/eLsuwZeJ99FGIZuqqN89f8mw+v3fP1LM0BhbPKHoZXPFten35qDJLYouXUFTay/fddPeu9lTpZ84shNmhB7a5mlGKHmo54sOcP8Vty2MZrD7c26onxDBVyqvt70ipuXeZUTk4uxxPtPCxV7BgYpSMTsdy/qm0fqO9t8W3mXV/UbGGcFqkD9KkqgImyB4OLDWYMKcyoBZolfzX1yc6CNxJh0W5WuqzM4pS5TkIM87E/GVf06ph8jRJQDhCOuEPHhAnV5OJ4cxPyL55jotY1iFJb1UbLLLDXwrMm22QomtdY38nHq922dNpon/TUI3UCJrNUVbgtH671yqa9Sjso5apcIU5eJcUT019xc2C44e1I56YqoY2WZjASsyP1W1Um3C1C/B5RmkyGMvsy1x1bbRo6HjQBpNYlCftTwgPB7RdixLjZgPm3lDaKz5rLc9D+LUJ8iiyY4WdKwUghEp1CbqzX+6Y61ljZanA2JSCUvBLUcyfcE06h2hGWpTZIkOJ6qhVKh6o8ozW9pfNqRfHw3q2aZ09LXQrJ5mN6UmIRyf5ELTfLucDQGAm/Db2Yz+Oa/BLetosWvROcRhk5aKrRzMu0iVq3yNhFkVTEYldPBkEqSEO25993ndSbkaWLNmHV91S7uTHgGRmjsPqT99725G3qNhzE9GGHpSjMt133T17mPBFi3jK+8Ys3wZPMMB5dNfZEyuaqrzEbQ145fHEUDkvLLm2bm5sokOHyXsLjr5HYPO2fNu3D8rn/wPRw1U+9uebmw+wjH/Htg/+V1cPggZ/Z9IAAw9to43/ZwdvesVEWy7ePd5wB39SLfIKJ2n3Itzkx2AWq7nQgkFlFgH9PiVtCwzbwCWb4dlc+allaw6Rb05N2hGK5gNdbciKeOz9UlXXsDZ+jSyqKMXZOEQWE8hAHg9LjG3M9vtom/VAa/7OPvmSmpbjQgmKS7TWHk2WcT+h3jDey9cRgnuDTcN9ULtHTT6N6HE2Y0BVDn5Ta6c3D3JwCOJg3q/ubOZw8mrBG2oxdDxjzorMwiFCi+Uh5UeeJCkXgMdDINll7MH/1k5MXr15B7j1Yf34D3WTN8QANT93SPyab/dC10bEBTyCQzUHV5BgMrqQYRlX0xlUJbGubvhe/ZlZOudq2kZmu1fm0WOtafVbFe2ylN+reI5rFmh134QhrGBhNpDaDrZDeYoEwAuRT242gNBuYk4cvG4xns9hjNYVQXKH/Y0nar2hP8XKwd9G9dfoY1udtbsotAEFDwGz3yKOAmxsOThhUmRziFGXhoeggBjE/XyaNS4tLua0/jdz2ykDs59DWuJhOQtnUoAd1GXwQ1DgAPBQsXjTwCFFFU4DiZrBAcrjBq/1Rda0XpDYxPO4B2rYIXU6SEnDHEfUZFTQbtyq4u+5l8CUvgWwGYxKCHUeh1MeIPp+yCzcOo4AgYcFN4v54EvJpQn4OVqn0TUBTtOmsThuocNd+bTm55ds+4oK7coAUI/+5bS2b+XEtarpkJZWBA+yrBpYwJ/xCfR7FagKkxv+cG4+91IRF9AuVUz4eX+jbCUjnZZ+ziZLkOXEKMOzcCiuxWFYgafg5bhNjlv+PhZvUQ6ZAdwph4PQBcckgNhi3WYsQYC1rF4nUk2PfArA8Yg+244njDl2PEMkt49ncZfT8Rzmijyex1ny47QJVPVjIMAabT8eQV2HBRuFzwpzwjcPzwagnkJHhpxBKGmjhVY6sIUIPgR+yAfcFIiQu5ASyKhDtGsgRlkTQqQaBEE8nS5aR6XkJFKJqpB3QTi431QmbSzN5OrxJl2lpEJdyPacmCaaL0I6F+2RW9DPbT+eyW0AEZ8IxDQOglsQdbexbTQQQAj4VSwKNjki5WIKreNmLxSg6Cyn0iFdTBNU27ilth23vYtlDDumCdVgv5LPXHlrCrGDkaJlli8imUxKJP4QiRJRjScFiiq7WUpyq2OOAeoPe1v3Q8Qf4Lvr+s+PnH/v7xHCz7GN74Oz8iAMHBr6d6/Xt9fhbavXs5rwsn5ldC0ZPC3beFwI7QunbVnA3UxoGWzRPLjievpJ47CVFcNPGgaN+pGoGzm1YzMnvUZ1T1R1RGVXx0E7zn7LKWuJ0lrCTv1DcU0UuVbYeAVNPIepKbNWEXllTcstvZyiadmFl1XMe2UWzczneMa8n8OQbzOTOzGdjt5UiqfP8FKynKZLvOTENW3saQK0pMBLjKSeOrpEFQ5TzhTMpM/tNLnrydxpPak7TpfniX2bQ+RrCL0I2pybl2Cj8S2Np3tcPetxzLge2yRYxsEw9zqUCh0UC/1k0nUkE+MkwjY2mhv/P7uyaD9Rq8pGEzWCMBMQCnQQDCgIMALj4wR7C/AGFXnUUSxwgwiSm3Hak3DYHbDLRECEYURk5bpfXYf4qpdYSaavxv7tw7OD2+XZYSjDbnUnd6sreVKwoo09ZsvktLVEHle3cr+6luNxyPeKqPCK/3bZEhQfmMfmC1Dpf0OpwbC6kTvVpTwoqGijx7SsndQ4Wq/iH/xk5/yo8VsfvY1wahH42srZabM+quFtSwZFfSkZ8UPx/fv34NM7wqdZ+cWBa6+QibLpJxpzup59YrZ/ciU+cXBwQpVXTJQWK7YBIgt8K6vBmTLETixvFtaRRc3F5ZqmkApPZQs=) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} + +/*!******************************************************************************************************!*\ + !*** css ../../node_modules/css-loader/dist/cjs.js!../../node_modules/@fontsource/open-sans/400.css ***! + \******************************************************************************************************/ +/* open-sans-cyrillic-ext-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAERkABIAAAAAgBgAAEP/AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlobixocPAZgP1NUQVReAFwIgXwJnxQREAqBuDyBnicLgzIAATYCJAOGWAQgBYR4ByAMhR8bGXAV7NiTgPMAhJTsjqso6hVppR5FyVpNBP9/O+BkiFAXWnX7HVCiFN2a3uqNOmCxPYqf1qg72sKBtlg0afUDYbUph7W2E4HfjnDetWNbo7n6rIt+YHSFAT6W+qDZHvv82G/5tWNbc1d/XAoo4ziep6f8dPQJS/1fYJnqCI19kus/j5v+uc8SgjQ1D2PJ1DpPP1MTJkYn6mVi9k2NAdim6DDnNq9ooyhiBeacCYiYhFioGICiYmFiBQZGFGBt1ob2rFo5t3aV/xf5HA/fLx93bn2bAjiMRki6ZZBFtiqxNkpQlKSrTP7u5/bfJ2NcEmRFy/WyAZ6oDmngvA6+i1zZ+an2IlADVEAICUkWlkvV+XD5zb/Zaa1sWZunOWOm/3vGvN13c6ZMbRmzuJbp5q4jZvUEaTpUCOruPkJP+gn7yDaYq4Sw+t1cD5iKL7MFXwgQQrCRFZ3dL+b1FfU13Suq8Utb+TMmnDOQDK3qULuOiXb2FgxLdW6NSVosBxnHdrWz5Mn0deEneOhPBYv9lfUyxrBewHqe7/ECYFnSMjMrzuPDfxwz7c9/KeYoGztAYyfn5uQ1KSWvGSHLTrjaKUekgF3l5k7u/0w12wFAikvlS5m8SIdUdAqV3dmV29CF1+/8P7OzM7NLDBbgiVhQFAjxPZOU7g4AST8CSlxAfNnhMi3nLoRE4jJxmTrnWIUQ9OQ2lq4a95W7kFsXXeEyFo2fZtYAPppeMcUYMIm0j+++Vcu4apFBBrfcuv73tZbUQDDXMUalBQQEFBQ8N/va2htBYAhgkeppL9JQUn2ERlyEby7VT5XpZyn3RZ6/+lV3nACRB7JoysIMAujQ+w0U6ECk0YetOgHyOWvCqL7ka+bgkUu+oQ2YsOSH8EljdhF/IawjQ71CQ47g9Ojv2Q6A/ALHGu9X4t2suwk6SHxKCvd9z8IQ6w9AGapwQ+u5EKQnnAIdnkGIgCAHNWIiMdIiOwqjLKqjMdqjN3jVWt0tScdjKmZjOTZiL67H7XgYb+IZH9ef9b8A0q/0NwMwxcekFEtKxdZMtdRK/TRNq3yXiLTj48CkdxKTlGEZmYxkZkbmtiRbmBVZm83Zmd9Z/5+/kEOfdzHncyW38iAP824+yhf5Lj+G/s2/XJjrPMBTSrkgpV2GBS+bcihUuReu/Cq4Iope8ZVSmZVf7Kqs+hoJsrUG5Z9MlKAWa6126mod1f16Uq/q9wbyn/nPMH9JGMJs+VZtzdZt47Zo23ZqdHs2oQOa3NSO6cRO6+wu7LKu7kbEj45AzAQbs42d1Zaw6Og0Ze524U+jONfB7WJJHh7gMy4jvocIzXTewyX0w2Adr+ylSqJhmllwao4yjwoCX8lGl7xKa9JvR3lA64t+2570/RbEcWXqxO1sM2l+kxfVeU4oOZpwkBWJScTxJTDPD9cxHj/rUieayZTgGtMs0uDTlk1WzdHHqI84K2RgLD7gE8RUDhORtvP3SgN878PiT1F5G1HAtzV0xLc603FwF+E+x6axD39ykbfUjqzOW+cwqjMcn4jxaMyHhIb8MQ8N2Zv1pybrPEE/xPD6xzFuqBc7qzHhNFiL6jwviFiCjAha82hFp7wYHf3N6SgUMKJQRK1pqCDvpzGW2WHy4ITjycyql1wO2UFzrBzaIhMTcq2zoM7XBxEJW1jNirnMZn6JHH52wIsDkLrcsdexhV01ZOFV0/56UZgIxv1urw8+GE3j3lmNMEkpA0ze1SXRfxcbI3AFD8zzZ4EwYN6ScyyNteEN8o/l1OGX5L079Pp1oA996Nf0nzh4sRBropYEZLW+AoOtss/4s/CsxxswfHHTj9o2pZUOG9mr6tUQ6P8zDtAuS7yqiCcC6R6fODBF9MvjOlO/mDSMhM5O/XrYJML4YuN2Ur33709SItQWRpAGyb0cpM0IWr2dXdUNK7lPkk7leqWQpBdottcHPfIyIeY3u2t6fGTDf6fo10Vd1vU9dd//3AXgn/XLpZcL3dg9eMnr7jhya0HOgpy2b33OgiD+NeRv5dFH2v2/nVK1u78BwGFHbWT+oPnpGFw9Xo9VjhjjeShOha1GqrbNDINWhK2Fttor6nslpgVGpBlwbqejzri03mdX22JXau8Rsfz+g447HshU6BplWnsGA2l3/9wZBhxTbIHlNoet8fItsarff8BsbEU2FH36pO9lyFVmXWCw5OP/bb2tDu1aZY4kUu4C1l0q+U7uba0tzaXskuKiwoL8vNyc7KxMVkZ6WmpKMjMpMSE+jhEbE02PiqRRKRHhYaHkkOAgUmCAv58v0QePw3p7eXq4u2Fc0brqkr86IlG+nKRGmB+vjhi1iknifW45arRcOeGGof0J2jqCOxY7nEjdMdZ6wxYuhF1/nopLHUjR96lUpLdB8XrVcMrDcSNUaz/UMp6eFbZhm29AOgV7wMJ9L5q4/uQJTXsEzZ5A0ryNXsgE4DRKTTjxiX3cNYm+fFiGv3dHW+cZAxxbllXmrqRD6oNZePyq+l5UQrbBwpTNIoJfpLzgTOiuRmCFte+ljkP4E7zfMM2whL4v+q4Aa0EEZfN8JBoE9WNT7CfCL+9vNMiWvM/xVdXD7Hcs7VZiQKRQWfZKcsuy1xrJZjHRfOskPxixcHjkU8nIrCkW9soCCQe1lhfPlR4T1Y94k90dHChKIjlOyYQXdNmtW2TZwGxQnVbAQCs2uUzGtrqNVEobX83rdiHsMHFpv21L6KGPPTgi4h5yOux0TNjPshOVpR/lufMWANhhOiA/rSWCyZFZK3I7s91kgWVyN5FQhUh8NiGe5NgPHNoWGPI15P43GvnpwymXnfsCNKgevb2BdqtOrI1j/7bPXjB7SagQvOHvhEuiAtypsAwEY/1ofOcOCLJ7ScIrwz6lnNFxdTKrx0MNj5uQw9fY1P+AdnDqe+BxvVzdogpwu7/gbvAOMIQ9yv6qd7FDxR2QorMRqrraJDhUxAby5zvN7UTCLh0Kh0liyhcjodUjeEOPACc7Fo5xl2h9oDTnf5prrunCOx3IcyK4I9mYtY+wFnA5QoQemSSAsNZfKI1aVCd4u067NRwn97kbvRSDUAdpFEUj+7TjIh7HdaxhqzTPG+p0PKNbk4k5xWUIWrVHvpKXQ4050jJQOYawCfDhWdA0rMWzRtQ3iJmZyrzJA+1Pi2ho4Y12Xzg+32m3ypEUM/YnKU6U8NjP2ov1z9hsFRGB5yUwSmu+5txguQ5HcMCDZjGfoGFtwfUyCJ9urPvx8EQsLb3vBMClj8Ok3pJcWmu7kX41bxe2Ei30OILGokgbXXU/OwOEfR1J4FADh1iMMBjlHW2jiEgEqVXxLf4LucS2ybaUkzBCiVFKqRCki9hgIsncWA/hXNKtgWcXqguJizHG8cbYWk6dxILZ7SpCBEfBjzKYpL2xRsZkSOvoZRB/vZFZ4agR47NRO96hMJCGDbROstG7YqtClfbuhR4CFXoHwM4ygEpFFKoxoe6G7H4qCNKBcvq/cKka5ziuYAW5rgUggvo9dRIIHTI1W++gDVwKFixkhoi/7jlFQ5HQOzhIe0uT1Lqp3XYRUhVus9hZj2ZLFXWpy000KlhD9ZHxt4HVsLCNYvD9AAejXep9EFbhoMxYV2ut7zw5AQRBO1qtYSLd8UaWpd9wgRUK1KGRTlAqOQCd6Yc8cQNrhLjk1Z0OvhCj+jx8U0FEi8L4q+ybo3eC8sa1ek/4iIfoZowDe5/TKa1djmgoAuUZK+He+JbAAZr0CRCXOnwFDmoFYdMitAQCIHQjfxaZHF/BDStBYGQTqKH1BoERm9B6hJbDbX7dJgAQ73Gv7rclUq4NrDXdAcLaNkt2gHBiLsdXHIhHfgHATm5/HZ18/JHBZJi3ZPYO4EKfaJHA04vxqqPipVjL9qDKMsbGRkJHpwNN9L461xskCaocRCWaCzQk6YU8gIdQTJnli2aCagpsLgqq+AeDkIZunEkuT4y0mJUWlYqq41LRz3jMhOWEXToSwEbljgesojwH6GM1JUaNIsp+lX2BvmMb3tSu1U4OKAVRU8dmt+ZQpUOSmoFFkYtWwiAHeP5DzNdBVLxRomvvu/IgTErXwjl09/Z2lDfotsxgjwQ54HCBsR1oNMaFqfeJkZr1OVt26SkY9k1oHLRFF7mzIgFwKmi9As/BTFrke7svZR91yCqj//ZxOo95ROlsMFxyOf5Lf2Ri1gAML3hndFwIBilg6avqfspwqi7iI8o/Olpn+5K/aIZgeK9BlWSuMOH7LJgVmkTUbCb7VPYHwnCoArdvudV1ntLTjdZxbtCcuCSsX6Mn5wEge3YB2BeLzCOCQC15S2C2a7c0Ku4HzHmoUh/PeG/7p/KslA+LESMMb3gdA3OU8njCuOuQ9pf/U89VCNtCcXkV4JX9F6CnP2UkZ0dEq0OGtA6rfThhJl/AYdn/YyljFI5jP5WxIUjFUO8Z6xa86ksvy/nXQu6hid5FiHAJDfqFoqwVKUUPjHZZjYYvVfzGtjPuhRoMJ6vkG5k2whWVdoXdpsjn/UaREIQty+qbHtQvx9+qpi04BPb2Z8lMLaq2PLYcdQrUH4vszCGaq2yxE8oBU4V+MxqFgxFVx4Sjz00hnJ2Ze6TKI1VstK7xZgM6RWKqQaEMOr+3LinJIPMHuy5hWPRK/Ab4lnhd9hqFMBXaVaV3JIdUhIgpLE6eLhLBRsCzuYRIfQ8aE+qf46M+W/ltBSQdC7r1ZrftR4HvBdQzh+e0sSyDNhOAKtQjHB1KtZf2YMsuZRH9YnphMYmACygWb8Cf9A19QEAIvP9vMMBb8CddyS0L/GvEf6elf7Pgr5b1tyXf3A0gsI5JiCIFPjrVOMyPELAlrBqYWM7/Okz8JEw5k6NRMUPSZ1EBk5ADrgmIaOFAWa4mYpIdOMP1Ue03zigQgqeMoiwRnZlOTnF9LFgiPfG54pd3EJY4b3RT4cW/J/EW1Mn+MdDQ2rZoEpPpNLDwcbIUaZjDm53MUnLAX02DVushPAQvtKGP2fvz//dlsI6sWydhWldVkYtHRX6zp9OIDJnlbLC0XVjGUnLEc7xJs+qzfpbFIxS04hq2iUX9y+FNfiWqdTrcG6U6dTrHn/vf4C/9r/v9qihKv7Z0UeOtS+ytdZIE9go/C3+9MJuYWaWHg7xcLmdpqvze2ipkLt6NpPswCfvV0cc4NfAEEn3D0iCRgEpLylY0dGE0fk7URrouW1JZn9tP8WlIVArdpHxFKJVKbTvgRrHPy1pcTs+LE/2okDHX+NiQLVlaAkMFfcNml5LgfghrjpZhMZDXrHkgabEBMpLWCuTMfnsBALK8G37BMaA3nhjtNpPr/BgLzZ4KegcJugH5Qi3JvucBiHrGrOVUF9UA0/5oVhWG+HtZoF3G1q+8IZEAskHGYJ6lhEkLN2R55ol3cb9hfl70FB/XKszgi0faY90ckvot2ydUH6P53Re9Ak50NEwuLJSxJW23hT5pAWSmdhN0gy2SL86yq1ozKTYogQQFXsnn9wjfbldapa9pUWblFOlLVrN6D6uA3eBYrI/AyTEdGI0GdhNOgL5nrt0txQ+sYYj3qqBSE6hIiz7RsrkNOTrkA8vmiPcP6JBK90kqIGzZT1kpOcJf5UHrAkLstNP72+Ihs1Na9YVXnoJahssG6ZjE1Wfu4KfUXJfsH2y+eZkfTj99Uc6SBaE2aEzeMgvQe0F+pmm2YVqVD1rHqmO8ZBYqVTsk9tCpE0z7q+DlFVo1ZJdpbZVXLJu1oMI2YYZ4xwF6BzdqUp/l2VSZcHGfcIdsTWMGjykUpaTUlqcVH685ZBW3vDOzsSATedN0ZnyhC3+tybSDBi5zFL+LZPLYMdAjKLx3pq8PdOpqoFV4un3wJ743GBj5G75tZpBaaej4Dk8tStGwwPpA9jwt6dUxwfx68zoOI4yRoUFVTm0rtFSTGI0ojwJCRl8CsMZ24+coMiRs4oGNRTjZQ4Bp4ItT3A4jRS6ZPRj7WEO8VmBPq2TI0jJJ/kiwDGVx8VhvoA416ucpGoZOeqLTHQqeYuLU9NdUctcu0B1YTeSPKXLFWE6PgFMK5t9GjYTd/gACQTeawZa9RIvokwXgVIl3qNrCU/q+92VRQY7K2uM0PDTyNh6WSGjGPvR/ckA3njQPr4lkMt9g5NG1+5WveAH5Twp+D4PcHrubaDuDbGqo7kBwf8et3qozU0B4m1O9QXGL3dMO28tFBydJwKkXWCLhcbuy+STwmEr2SzP+dChMT055DVhm70sjaYfuCRfdNWqyYvWz0v1xuNNUWOupbApx3fVTNTF+QEign3eFO77lZZ1feAbXb1foZWeEOj3BIzPSTasBV0D3AZnXBB+7kHfs2ZvEemFvAY0euQbqaUDF8EAYa4nfDMGfZpiLbGz4gRHx+1/UtY9ew3kFuydtNS3D+0ne7Ctn9r7Mr1n92VYUVMBR8XcN0B+dApONxxxnoow5SQFNeinru5iX458BATQc1qy+VISHhXvF5/ROstQheTwGCEUzu2ZS0qn1xWye7QWMyx7F+fBMNvt5fjE2OzTjyQS1lp678thx4dYLW5dbj83rIfXZJ0jehae4+Pkyb+WXPtGMo2jmrecrhnPM5M83g9TyeuvGm5ZZz4q5KGV4nt2EuD9+Uk4oAZbU5sLzPbfpx2Y4NUlw2lNDZDGPl3Fd8knjzhwSsLnaZTtuJifp3W5TFCbjHjLJGo8xw7OtQ5ik83lW/OCoIkMS3+lZfTBYDOV/pw1YjjVcoScJFAnn/L5rMlpD7fADRIYw67jU+BbG/y8wJKbpIrKEbNX2SJ2gSBt9tJmeMguhtPk4VCCDTEx5qDvURhhivMc/ZWF2U1uKQtlfYUN6qeEsPkJZXqisNYPbmTUHUtzaw2ToUFzv8j0K2L/yvC9Od+fIX4E+n2AKILSqv/bAe072D1AYYawIUqjg66g1r8meElBy2rJnc2Z0EtN7NTvQDCjEUD1c872QQnX3hYubMinDnSbxfA5x2FYHZGpPkDgK05F6tXpkFl4Y/BAFZv0SGZ+PtrOXRmnPeXYEggSMWZzKnsrgkrCerglPuOte4qiTxhd5BfBCU4Hvkxzj6j0Oc+1tTRj71dZrcBaiDhuByPUVOPDAHdIlT/RoPClDv7FOBfejPYPF+WJrYSm+4J8Rl0nF3vLU2z1NoUsDHIiXUGel6IlksSBzFml2Dlh8XDTzmtSnBq98h/Qf3yuA8IHUQ6ub6z/TbFwhthQSy9jWywIklCZ9957Ko5V25SA/kIHqK/m/CtidwHxI6nrbl3SKOmZWnhG3M6Su3RRfm0/htYBP7rOlEsizW+Q9G/sPK74Z23rlbL6X8JJ4JWQI89TwgwVPNfM4jZFEXb1qTLyBHqxAvdPAXBDdnrbcUWjtg0U3/XjBVHylapIUw+0qpDMaxLhjXAW8h3k0YjkNm7N0HNmy3k2kpUNR21sKp0t60iaBo9CDT+DobFuUfCXWHW2KaihIKa5/KbfmWeTA3zchfI/di2f7A1sZxaonwXzV2zdFtxpqabvnL3fG4dClk46HJ2VwDYYLzc3Kg/P3EROyn6ZnxVvEWTYsOupq36NjEFCGY5bdMdQVHoVoKl6EyXlDLdQbXIrSO9LEeLbsZ9lO92nuWBWdiyaJtSXW8R09nqMsDB5sfJOv8TugZ7nZIUv9juzcpOKCEx9apK63F63JHJUONwcLEiUZUMllio30ADDUERs1Gl2TC6Lu27xjQ2ZOcRHEr/rjp7b4tE4eJIVhMZ/hqHAo5SSFCvY7iBNcQfNl3UhaREcxFA81EElwAoFZx0CJ6/lNWxS6TXuFsYBIMxRMjqo+/5MFy6I+e/hJZj7v4/VTjnY1qlTNNPQngfLy5CPDK/+vuGiEs472VAX55t0ggv+6mx3HkBkFffZi+eZyZBnoM94xzaKvubKWn0cVlQ9egerrBJorsmIn8r2LPLExmp2o1xw/veZ2C1XjEypbiiYBCLYH7o1fM+m79999+XSfujYG3Vxsg5YsNkeOHOCV8Sr+Fa3yODlU+vkDFfMmS9YKgd3pesyZZZ5+0TAWMQbBKzZiweOqrMf6s434V7xgmaltIONIwhUDgi6yxkWdZyz93RggIjBuLr4X2hgKLlbaUeUI//8NUkG3j4d9QUNbf8VyR/6N5W0T5IafNOANF57f051rxWFWXs5Hn7nfMDxytyHqzLzK7w7/jDyoi5GStrtb/HBGLTnPesRErah0XkGrkbSxNL76lqXeJ/6AgivUDaW2uwRUxQ2eGJcQWxRDrmQlJfh1mLlowHPcYJctXe15ogdi/FQGOSmQXD/X1w+lyTY+ZeX8tbxd/O9bVhOhFSJuViFbqH6W2RzuvsQpwSzURsT5c7TKGmPZYGkL2eufVRRVfkCu+hcYhXh+lHIQiy0xwwM4EFuxQ+wJGVto7FA+Ube9qXaj4vFMW8u7/b3mBzAYMbhyOyv6UVPUN+GVud1heg/MV6ueoNWvkdD9Lr/gr0uTacJ3ObWlJV3nT3egAOG2jekEJTk/0A3dE7jCk0p07xJdj+IJn4Dxyr3By+XZpQWZtcEO04X2PIADqaCFtUtdbhbVzXumxQs8i+swN0svsv59VtzV/KQk+18LyHSxy2pddDKzPtpltbjIZbkuKmW0+6k0QAsz9SnLFRqpEpIldsO8H0x8kTkNPnoLo1KbanCRJq6SzSXE15oOJGPnwJxzbcqyNCbcXlvHC27mpKNtmmcKt4dph8DNcNow09N0E/Dv56/jaxP63wRHzYR7Bo0GYIKH2Y2ZmWQDL4vgkuUs2jFgTfTmiV3uWie1DYbTqsdrdWrQwrqtMmJ0vAwx8bEttrHUTpfAqri4+OZHBB5wTsy1KCeRge80ddE0z3HT3rKgFgwGalMtSOdpfo6doitiPakMMiMwiMRxxdYwtlVZdUOSvb8BIiwbE/Dm+k3hbH+2FBytATppj/MM8MaphineRsY4JniNV8QQf+cJUSe/FDyNt1utrv9AnF7iLU3/6ctpOLcS+3zkcXHI2CaxA7DIi+wG/JgHjRY8U7+SV1YfU2ng4o9AefqUwHwTx8yR6g2Px3WzXx9fLMuszqCoSIZkx2WGk2PyFxAZKXxtnJZ9MUKtWoecl+eDCxnB1atbNssARFoyJSYjw9YaqjT+UK/gqrPVP5Zdqxf+N6dX/EH/gy6RDykl37chg1rtEZd4PjRRgGzT8P1wbnPJfH1jcMN8fencBu7jhvOLl4MvES82NJ2PQptmxtqUxKaVFqbrC/LXhGJvpt/RCtTvOq4xaJRHbR20cmp+L7x9WLNfu4QgZxKTeVlsziW0rzU+ua0BNa1L77gZHDegLsUV9HiZCiXyWOGfLg5/sbcAsIIepOWJNJEgAzQJ+Nfri8pYOQF4Q8uek7cwHlJqGyHNGGYGgyy84ox9ImFEKMppXvmEWa68IkWM/MWPEPlka4X1YXKK3g3z/GsPl6dRI4as/Mz6rDXDdL3dYXBceP/i3229jaHNp298fyUOWP3x0ginmkJg8kzz7tg/m0ob/+ihAuZa0kaMUOou1UTdWwbMceGYI+s+Ej1/dATZLL3Pm1D1ATcS5Sc0qew9t/IazDXhkpvNN8STWwuK8qYQSkEWmG3Qn/DlxwaGHYaPDJb/hO+AZi7LgjpAq7IQ1cbgrGlEeF4wJTaVrCSOSGQgnBj4YEr9vk+nV7l0gnpTi4vGgnkcsUTb28/V2YVYoRvTUMaq4mNDCQU4FqlcC6thW+wLW4Cpg44wkyC1E2jmlAKj9B1gOnohQhQeZsCQvVcwCiAgJhqVGM6gDzv6WT3kYXjvg2wnkdnDs+PNzeBxDH/DsPKii395ZKRf0yy+EcL+LbvBP4pW7l0gb933N4aHUQmXDSkDj9bdrYIGJPbiSTzR7PLl+lJjfN7guUpIilFpW68moeNtcuHP3cvl/33NVrLTPilO7VDag8op6ES4l4pGbpeM64tlhMX5SEYnvZb0WdsUmJrtXi2+PSGxiGCEesYqm8VI3jNtVfO5anASndIgVaM2KTKOiKT5pOueZYr57M+pdr0mLDwFlAs+OXone6sZ7hOxHXjkdkMpWOYERC3shbv4dkBqT3jKcKeeK3EUM6WE//azxZGW+YOi5Ggm0jN4coMYngy1oYuuaaK1MMB2a0Wq8n1hykEg3wXLOGvPFveYxNL3JEksqfv7IGuQR2NHgzWDJ6/c+BwTNZ++8fOV3LvaO2vjnOoIInPCrHxeS3lT53EIJ+Sc88NbHa2RpKZVfMfjpa+cr4/BFBN4knl+R0Aktd5Lwz8f9Ag23mgneityfARgBSNJsadqIn+fGPkZ3A3Y3oHjdJG1aM1+84ikaefCXOzMqbQbTevAItTV/NpF92zKCMRnuvsc08EkghqexBc/Fz9v8gcfw79iJs3lHB3TOD4tELpJWWSe6jlGgzuuSTIxrxoiwmoz2OgTH8CGztZlFYG1TUUEsE3BRVluG6+D1y7PHVe/0HBDfiAnRVdl1yXslQD/47HYYAeo3hFG9QgzsvOM+bz5ecbGs1HVDQw9WbyWrOj83KFX3qH7tQrGG4qjCWCXBPMyo41j7WMtcqOXlEbHxkz8/SrlvXByu6E4fU9Fp+e4G1ifB5cZ7vqmKC2M6gZmeO8t813zO+b+25Erb7XfDWAGDilrN+jJYuUKKGXPb3ZVIPuO18poe2MCV5DL+8oW6yQF9Wsyy3bPl22AwxGMFP2Yy6OXo5kGTrHg8NKNi2W7SkS7ksDQUmuKSPfX3HNP2j5nbGm7HmGo2KgEiaxWrrnqxAIcP89N2dUWH6LpI9Yu5tdbw4qg6lrgxs3HQQiuudlecZLYoVSziXI3qJN28qYgl/udLdpJIvVpMit2hyo21CPR0Sna9KWxJXqqISJWlVy6MVV7XdnPhhG/dtHwe8243fpH7rmPbR8zdhwjijFUbHSCRFZLdI4OMd4JaFvcEiJtIsS+GjZ4FfSfy3M0Njcktjp/GcAM7Nl40V7vkbuWra1l2g2IIjDurq+MWXyAMXJafnm1smn1QnuE/eLYutAQ5txeFn/LvvFEEk+1GqFm7rZRxFzRFIXsEgm63o9jQMKd4oCZ0m9xB8I52Q3nz1x37gPuAhcrq+s+Z18/rLlSE4U/Y/ys0uwVtJ81IdnDfNIz/pQi3s8b/4dSpjSLYZXoH0y1sze55KWu8CL+IlHaNBJ7zFKs5MRSEtKS1G8azDgnRDQuOLzqKqHvBJ1ic3CaphjjEEyBSIowQ3mDEJVFJDkzk2yRKhG3iUUIy+hzLmjGIIJzIoI1wHA+aGcXQqV2TF05q4aHJRMKcRn4BihW07b47wwoSmzDxRvltqvEko2jpIf5B9LOnluufVb0niN7bxbGfRUdOhIbYnw5KpJEXew+zE56JdlzKP35nbQSWlj7Yub/z9hd9U/Zuf9fPH1a5/365Hej7xGMSj83vkj6epH0FvxqP9EBUlfX+Cl+g3h8q1YOVsnb0sr0b4ssNQpoQ2VNQ04wJVe0pICEJqhGTKaCsAq+yiGfR9WMGnCTSbgw6B+plel/Kzh8JSrQgEUbLr+pH2l56Eubw+4rNWLOSxyrEnRzQsUqIJXyqOZrmnTn1GBjBSkp4svHw96g9q2Xsa2dr2Nbt93lhp+w8bILN3bOzHFwzh9fzoecWWtoabvcQDozv0SSulzT3LpeR5ZytSbGf+S5QGnKIRzxPstesM/T3HFw41sYldZUg6OZuUrySlK2oQ4kY8QC6m8h2ha4FCu0Kb9S9nZW3Zrbr5a9YhvAxmfKfLSRpTnaaHtK5b8Nts1+i8e/tauH2WzQtqvpPCBC2BYmKO2TBcrnO/2/933dMlvR/s9F28QCof1voeJkB+lbX3/gj8kOHU8Z7S7q+8u1bPn8Awur0aICudXqmHc975+rH2gw+Zbmd4oL5S7X0V+PtidZjSTFBchu15mZ1w+xwTk3L4zn3CkFD9XCTScvlahl3dHRv+OuaqWOE/iqWNslQJNM8qBe0ukgvwoNplG4htHZTjsyyrXvpipoLWFPBaalb+2EPGdp4R/tJKNtuPj3anbgsyHXM2UrK1EsbLPprlPesxhdOz82Prjd5CFngSyz0MRBJpvaLI8uu6cZu3Dmm8gyCxzTh8HtJXg/+xjdZ055u82m2MyVqNIV1zNDIy6Klfs34qsY4w5oO1e7Cw5IG3kdK2ekrZVlQLSjl4zLwKYqaI28o6INtL6r9R+9RrlQTxmWnH+FZpJRuKaRTbtjJthKDXfJT1liBhR33j291vEGe5b+a62kFJUIkbTKe+mrpJ/PfnAUodvlHZ9oi3FnmJdh+Gg/jClOHh7GjkIvFx2VPijQ9VF6ZZ3/dwLEpWythP5rdjrxnxvFtSmDBKyVcx/OXlLSgrufdGjoo4OqQ2sMG9KyNwmcTswxZybh5Pu6eROihOfSkbutb1yHimPn4C+LuKEyszsSccm6WsH4boiNSQWyVN0utSPYa6m2ATfXGcC0x8uHVvHuFm4jysvQR3U7Zf/9kS53NlUkseGcszrXiaHKvREN5jsw1LizDkkOswg1rgMDwr8eq851jFfjS/l+chEYMIhGC4+JFiW2ivLQtLBHqMV6NjyoPI0u6pv/Jgf0L4YasdMp4tMyyvN+nNUzzZMlE9T7I7aie2qYX130K+HbR5q0L9AxkBoZFkt8bAAxhSyLBmBlnhYRHUVcpo3vhmJUSr+zk7thf8xiUJD6HsOKaY5I/hVEgszNvsHhRCdHN8OB2GkzotxlbYxk4X0P2YvO3ppOhcHnZTwQFzW9g+WIOpclMOKu0JglA55k4eBs5BY7MG+v1WPkFjOwH0QS0kHixtSw3hE6BkztFEPXYCJoWcdNohD8xRtE1FmWcJt/fg3GNEqhKnrgcztzuEhbYK1YlZmEudbV5a/BOukPJZKvLA5/cTD/mYRsNMtq3xnN73DGlIpGbZaI6+/NCI0nSETvEKV2LO1F6TjcYOVlDPbpCoXywADMp/8A092sLxwiSKWWhMULcyUi6q8I1+B6rHKreNwAbGxogg+cKEbt8LueAkywgm5EK2/e/oceN5e5J/ZEvi6is7FzReEm8KbG8fIspzoikDlqBpH7Dvqhk6ej7NS44hJSHhkZ1LSG73jS3ZHX8QOcomqaZFbQFhBJrfGCuFqcTB+6z7RLaY/AVy/aJ59CX3EcAVgBR1HsoamM+JiRFxA1tCIaWzQyhcgIqV+u3jqwPi/rX2QU4vWHlIdKstb4AAcvV+gT+xRMKDIlXfmipDIa/MHHJbEjwitv1BB/Gkj5lFnh73hBqFCDY3e5kpKu/NM/vSvKK2dQznQs46j58KwTV9DaCni1abh8pLy9qb0VbDGIqfoeEFQQ9Iz3rLug+yUYXm3MlPyap+C3kVfrwOmomVK2g9+C+kfwH5t53j9ruFv4jKB8haHWN9kKruQa57AC0+XswZTHT5LVLYmYql9eMC9x3bF3rIz/djaSf26l5ngxwSqNb1I10eyqqzePJ67NQr3Fde/xMdAYEcG5jfsBc/L9ubQN1Ez81krrbhZeXSb/MrCPFbZhaKrr6SJgbyr7H8oP5Kb2vHy1Bvl13Khe17AVypwR8MnAkI/hg+7IztyVLhyeEFOP10wdStUB7V+ts+w6exOq1fC9JaslFP/Y+b/Vev3vE1Toa2IzuFkflVivGiwXCVqIy44bbsB5TDzuzu5e0PNtEsSyfR+uABkdUMO2/t3fOxUPEOauzP8Wq18MDAcuB5b/C7onq0LA5+ZOTgpPih9IEE44vLfaMXl1lz4Wq+8D5QMfwz+gHPAWekXVd4DDgISfrd591Mgk4F3wOGgYsIx0mZf5tIK9UgV9kSmi1p2/B/WO4j+1DHh9q+ZuEjLI2UqC1ts5SuiQakRYgeliZrbdQlreBadk0zSxHzlDAAte4qDJ3+Ogzi8w92Ee4lr1z1OK/r26EftzNjXNLQ78oHE2RhORVXD15jH/2jjEU+Ldbd6C5gIfAwsiDJegn6TyXeAf8TJwbfTJuSaFf4iqoV0WaOPf8n9D9Xyl81f9TvM+cAJUZ++hkkFehjVtNBk46wIhsdvyWc1WhvjD4mawn+9ZJP683ha9wGqRml1qh4/mU8IfjS4lG/L8A53g7pbwCKVSH6rhFLbeysUwosFizlDrYvBZ3Km70FJftJTuYPnLmxnIxYbYdC1Sg72z90xWFq63yisogO3h0ZNblbyLs/FwloaAmwXsdKQo1K1Mr7E3SsGj77gx6b+OQtujtNYJPDfTxNkaQveM9eyKQxj49CS6gaO2DGpycqcBFnylDdl2peS8vMLZYgwnCt4D7Gf1LVE5Cvj3vLfKGx7nPySpYq1G6yRX4cNq+N+TLigfeSgiV3NzaRVFtUWXXv21sbDEQMejL67PFlFH5SFnP2VmEuHLFsuLlaaZ8ssQrjp3MVPecKBDDBI2mZtLAIiAh9pM245L/gBItWGAVZuSB2PxLFb1kgPHg0M3RSzwlwaAGp6WgrB5Vvpzp/fz36UGYgOz0CPOzerd2c7k7Xm1iqjfAwVjJFeVOgOChFWqcdKYUUqQbUUIasQws4zVEZoaQBBr1kMoXTF3foHB8N/PppxFnfor6T1uQnx4arKxlVdJo4dFChslaTidTK+189BEqkkwTE7WfwhPu/Joadpl1DAzL7Mha80oTXdvGOxw6cotkekMxJ0IfYnRtI9Pc4eCOuXLoUcdRLWH+r33tHndFlJHxomc3Bg9aQSvJuEB1IJ7DvJbH/Vn/8hjv4oWOheZXuRyWSx78vf10zCzI1L1Vlb0cWPU9xN7Fy8PpbRr+WrVEbQGNOLTllFlpR47Jwr9AOmmdmHusF/csoRdDXiatdxv3UVX9ijppcXdfKleNMW2IRMP0++xTWU43Yo6/jjwJqxEKHF/6kWZ7+PF0JMrSj4+p/soPwdHnv5gFk7r3RTPTrpYRD0+0arKqyfbXnhlNyq7Fd8tRqNWLUgoei/Qt6Wenz1dSUnPwYKsoetKZ3g//AcGcW8b+IQfjQN7uIygXIWd1jd5CvjAamdqnuVSdrb7bDlr2S7VLfW3zvAI80/b4Wt6ls7iSz1Evv066+d+WqZbPPh93Z04KNKvMMhtrrqeNDPmmw0LlqrY5GK4J54Iz+09aRV6k1D4CeqV37rWJLfWlTMFsJD7pxLyv2h80rgj7aNU4bmWG0mHok611URXQRwxVP2OM3gfMngNJq5rJNsjo+RgWjXLFhnOz5hYwsoI2yWQ3uQzAlS+ieTdXpM2cnc/12LyWstWaoetgt8UAKz+EzbkU0VPeLaioGU7V9F9efPL/3rp8b3IdvmK0VyJ+n2awXRjgOcaudFQp/SsS4e74anyews/AONXWjda5da6cybiqqeBfibwFubYIiP5GeMfKB801i/k9svztwZOalizPjEwPVkD4p3k34KaHmqXTotbAcksnAKCY90AK/gXDFwRB6NW/gaM2lqz3EZvzsSsphCJhQr/iuLqclIw8koVW2SkIKNnzxBIqi8qv55XJW+eJ2okTKq60YJ5LA/Nl0/Of7QAlZSUkpKU1JezJvXKV2l96xws1hgA0UeB0cVbgXJjoz6y3I3P0T23xS9mer9BmUsMp318nCdWLOAcZKS9lODmDhJez2YoSb19oTuWCNg/P4iK6+/t5+duAsaspx9qkfS7Qowew6NLJl0CSkLJURlbtnVszovjC60wayKGdSDcIPYqpmSroa7w4Z/ZAxkLMASkDam+bpHG6PMJ7IxNodcvo4qSU/Z+TalSmSGnAFcWBfaIfF/ifK8FchZUDOcjvAfIZfVh5KSkgNWw61YcUY98dUEYrJ6/1PA6Fx63Ft4iSaySQrPTdFit0b6u7SbnYry5KVH0eyuhtmkQTVOodlqW+Bqxc5OiatZsvPZ2unPvoOKy3uacqCUGJg5zqTrqbDNifmZVwo0IFmacNFJTTru/zLqP56FsgQLtyzLPlcO/yMLq1b5dX2PFbH1M334e61u/n+XW3YLdLhpxJGQFVU/nKTiJCNyy05Pio9Kz0h8NvR7aOFrL6SYZ4Ew9uOTixl1y1HwFxam3IuWefVt7PLCjeNI2II9OcszIswutyaoIhTo3g3LKQlrZybElFVZDaAq8ITys1oQcmWfmTqqk04JqraKufFFWUPmsuembbRTgef2Ug2hMaMYM2Vj7+Ohm9WHLcNmm0AbkRvGxgca3/cb94Jj+mBbBhSpF8USzg4SvA8wD3JSjrRABag7p8dlle7z7W9fWF4ObjGMjznYA1rHWCbHoLkjkbsVGySQqMIeY3J2Vx5p29bIgJkXXoEZ0oSrE4LSJ37An0FMD/ieuL6KBLQXoyp0qhoTCsfGM4jLrQVeKcQM5vNokjFytF0YwzwTiBNL1zdOl1pall3RgQwmZuGQsR8tLw6oYB+PDYJov91uuB8f1x7QsjTUqiU0oLU81AKfl+3MvdbraRaUhRtTjr1TcrFxAheQQk7g5pXmLGLw5MYlVj5rQhahqkVhTiIj8kIhYZpCSpHNijLNDLGGACxxg9ZkikP7lBjEtFdnVfG8yvtAnhdii7aZhV0yELcIgHpYCq9L49OTEpFz2Hv/+1uG6IGXKm3q+hjcj7pbcDeqX65FvlmcPKZd7rubSoqDIU7s1nDiIIyZCr0va9xQ6eE1bRFdfthdsr5FbQs9PjY0uLrXhoykmDaHhlaYh5FoTSrh5I83FIebdUioYaymwKE1gMZO65UBByqQ35UKt9T20ynsJMDkq5sDjgLdTGpOfRmeUlFkNol1dVmlKDqkzbe5fxtR0jw98DMzy82fbwAH0/03jb0kDD8wv9ePePhnFey9+znhlEqTnVIeFXodHX/zRkHdqbib59Ium0d7lDN/bVWVK551/ofPsN3LZq6jiuf9K8/8bv1ABSDibrGUDrLZNoRN41IRWfZkevlq2tvzuSmart2stxV8JVSJou9pVmsJKTkrJKT3g39+6tT6Tesk78nwNd6UNbHMRUx7qWMrIT42Ny6mw46Ippg1h4VWm5OA6E2q4RSPNNaQcrJu6H8mFljvMklgEi0nHnCpuZiqRlD7jVHG96uqdT+U1NbucWZ9W+Qq9he4AnXvabMFPWs58fuvu0rS8GC2h2Y9QTWEwuffJ6pjJGljKeGqOTVMFgIhaa0y5kGanerag5Vz56JKXrLBdYl+SwDNFc++sE7vKN1p2p3bY2y2S+4T63j3/aOuRhnRMEV6g5/sFRUWGq881x379pqRjJlVfrWKLx27F1gsaCWnMaQgweOf7f1+sFrpb2VC5kxX9eBXwIbo8uzcS1aPlB2sgQAc0druRgLCzjRkEMrvrvJJD6iDEgwsxoq2PRIOsGIjbfNVg9e8aIQ4JyJgtxTBVb5xngD3uJOh8iP3lglBDLM7jXYUZisyeRaKtDRW0le+RD+VU+1YxXrIxDpZ+UqrfZq1/Dd0BXczyc0xV7pB8T1lbx8DaGS1lgvrokWRilmxmUQbf875gZFYLhyoVaJ5RLrln7avMVcNaqWd4IExNjKmaKcYcTV8Z1hnvCJRplAjNAjJQFMkgYqmbHQUVpOGVvhYJamvt0yMAQHwEOb84xABFyfkvB21go6XWCDMdzX8hgksegphlLrWLjlioC1UOXgoY08TvD4WCNOSOhhwAWnIaGE3U0N+AjQOovi3wpQAmiIFZ4ShjjfyA4aWyThgm2ZeGPtBxcYASApzbmW26i3+3eboUGfMTo7fkF1IZ2QyHZzZfmxUJwFPrk4x9CjVNcqi1uSbYEGytnIZtjosflhKFDGJGZkl09cCPd5gP6QgujVBEQ8X30aRwY56f5FwlCwOspYGS7TpkVIK4Jm0F+19Ubxg9OUlpv815X/W3gAKtTlUN/0zi9/YLoAMYCyC/H4F9D9BUrAwAssmpBUA0WA0THrLXcAezuH/T1I6sUqAC8qC2D4c+N/uQD4fK72A5utk3TKmPYsJ/rpWK5bLCBXm4lSaQiGPq3MlEp+Xbe7Ja0JD+5eT799pvY1u4OqfP4f04U80bQWFzOpg9xX/PEWZ7y8oRUkrZbgakhpzHYhu43BZnihJry3PgImWq8kHuUa71Xte3b9CEYxpDRMHNiadmEUFedxhaP1fAfIS1aRHHVFciKWyv4pj8jX1S1wn/n9zCsv+fDZpz68sttXkVdAjbxZ2OdhDlwdyM/FuvdjnlAY0f44WkPN9huSDdTVXiR+Nt/ym+63mB7CPD8wrw1brlW7Ph2+XqISgQ8IRL3bU+YR9Izi5yYj1xap3Zzdy3VgoQ2W5bdfRwmVPkCdmcqrZpB9ZJvl2vIvE+GdFNCFAobEMOEmPQJkpQRj/ZWJOdLGjJlBMwALZX1/0MilSpi73lbf5SbbMH3l0hzCiU4Piafu4iugGkVwI7rgIndlD9BB2ltnI7kTw7YSDFYwTkluNr33vxUaJMZqPoMnspcJ6QNc/2j8KInIsqoazl260xLdLrOm7Z7iNTj7ifnHjord0fXdoqCnPzJtCI/rtQk0p4Adn3HhrsmMwHrVjB9V6vB1/kGK/WWkndfeUZKbcTX6R0c9ZnHjN8e6P53oZu4lmdnECex11YRGbahbYXu2R5Xy8ueAwthDX5FHGCJqiQxrmyABmNKuJ6L7MPP/Y7BbiwXj2ecfD3qizpRy2CoFnSHURJF2FTkPogBEHI4WB6Zs6TQwSBw2tWzlHnGEngBzMryUnj8Ig85RYjC8g/8gyCYGSra+/su1dOCL0DiWVTmILIHBeB67MZwsktJv2w3+uBC6OYBZBAeTpk6q77XT8Rx7yKEOoYllfPAkxdIo8qJPJdtlqJKw8e9Qr4fnnegxFc6OigPD5uj3XTtKRfMpsciBFwVl+Sb2UdHz7VeiBLfHfK5MIpRnf7JJkF96SFnN///3UPKW7DweaEUDMmnehOkYHZYeWW38uza4TS90XSR8d+dcGZIfgMTzFUxx4me9tRpFmcUBJ7OjGpwLMPTNQ7qcgZFL8zO6ValgQXBhTJw4ZGdaJ85JqQ7VizvOQ8CKqHuNa+xjxLzLrS7gsSHRaPs7Vm+kgY/125GyJ8MjmKpAf50QknJhsN4Y9xbIA5RoBJs/ZendSt3VayZdK4a33YHw0Gegz53RwqqqrWELV/9J+yjubMWjP5B+OzRUe25jZ1sKNdHFsJktrkvauHTWM42++tC3PjBvnKeARezfJ1G29XSR+Uigeauya7o9PsSjm/qQ6XMxh/9NH1u90+r+X5l20xkkIWtiY3Ebzy3LlHHsnIFqHf5Z6m9oVacYhSNKYcIZTEcBVgJmDzR34Nu9i7DN4UAYk4HK68SJI6v3ZO30RybPtsN52hD69u4m9c9F3o2Qh4ZHab4T5R9IZ6OERUBczq9DEY1wWFvcsOtz3sSidA33TU73ZTnns4XbWrFUmqcxivR+ljMXj+Swm8EXwCQWuru2fZQOVXNwjfuKHRSFdXJFIfhzBMCDDpFP3lyJScqnzK+YCb5z89iddIYijKshGHwQCo9+fGwxcINBqB0Kdi6p5zdy87NqHKyReYu+8eTxmG9Mg8bWRtpuO4I40tiiJGO9UIGBPPmgT/428t0F/u6/svtLuge3Ve/V1/R66PXLTlwyefh/X/3L4Y1IdGeTNeKUMChsM5w86nM/VXkKDVVy4POvMmfyYCAZl8oiyawejjZ03io7NYboTQV4hsMDu+rc5hK0QrY1YI45A58RwTd9NmmAj0K6jQRfEsz7l7lJyTGIJZfYWMYAKZzT+w/gekw00nHqiAdJy07WI+tz+bqKoqynJ9wd4TG0h6yOEWouK9iSi3OdfnJEJFZFu2VOwJkLBtOZYrWhy7iUtHoqsKbe78AWlCGQ1tooIaZHT2D5GTdEx+43FInFJLpX3s2LQG8Aew+kwP/vkCO+cWO21jjjfA/ea89cLg2Wb+jnfGkBYfTQQBMzkdKVZzDd3SfWbHTls2DTnxRY3HaY8/7uKrZ88lVoFf7I+KhT2jknXuPm/TqhIAjuqTWTNYM496SEHvi+IUZVs3R6HkpWquPUi4AQGak4oLMdna8nEOobgpuztkpsuM80lQ0LXINkl55Gsl31kY9RCSbWPNY0y2RZbg/W7XCuHz8ewKazgNZUSrwEinD4hOUXhv7MNm4EL3CUTgGdHHUctHr16VI42wOj2VGM8Bw+KlQcZ7nSWm99OMPnJFKfCfIw/42lB0+/1ZbNCmDijpnAzVx6jIwARtA0cs35fNisDxapZ/RN99OFhzcN0LrLHYr+JIag5c7OxSTcZ4IWBWFRJbZFtWEmkINV6SzAqhwvhyWYA21PcmDI4AkGnblTejbJYJ4ZnJOWIgJ6p5dKWmV1BcEiZQo6LM81TKNMV+tVKtObt7zLC4sZmeGPbhm2bLcyWzTMrNkls3u9TqHsxN2Lb45KVuiohHkvk7MeFY9XBoTO4KkQRjDla1TBRQ5+t6MNj35caHTOvhh0l7vel0vS4CKUSuWVz5rNMqRFBXsVjYzzqfNeAz+mWeubvvrLNH/93Mmnw2ZnRvOp9MbM8+oX81cohDxOJpyUyISmtVFy7UuY6GqA1GwvSGWMr3Q3K6ju3OZNoeK4ICuIOA6S5pjiE8cS5UCiF8BFEBCi0xcWOENSseK7EgpTyMAaLDO0ZXKo/j/KfCUO/kWgKv1rwDQhnKJNkdW6fwQJt3S2lXnq0Fo8FIGMbPkXdowOYiuFs+j8JI5IFJCRTChdqkiPxQiQzUL3k6XtmhuD3RaVJU3nE3XxacvACp7960UwpFmZvrBwAvZZBlzfB73geXfh8/BQbIm6jcvWumBLlZF2dO0aNNKos3Utn1eEHLtvGJ2rAZu6NHpy4hX5XCTwiGdzVRXynh1rPWlfuggmwuOBlEkP67CrRip0zcFp/UdgFrPZYj2nVpHum0a34pMmHxlZPItDa6eLvwqpPKchsbfmkDZGc2k1JWlAQ4GK2rHTwJnTCrsYO6BTphT/hyZ0eqwc2eCdnC+u+ZgeOxSAiqYjzqp6II3VLwqAz3CFc+8jaT5lETxiMGrwhV2MacLzblJomkSqFrXBDHr4nkmJhNIMQzh7UrHOYVvZPARnvOWeCGY9YmO7fJ9uTSSzYr4ZnBvhSu2W7tsxsTGmIqKOxWkG7XDHgvzscAVyaTcKWeaw9isch7YjibRVwdUDg27umn45EcSTCXGKfArz/EDxCklSkbAVNFMXwQGuc+z24v1nQr8xyMYPY/AD46qnPCYWckvRZPyBQu5A3SkGpbT7F8pDHslhEfY8jl+5P6ceKiV1KgXqhK0xJCCZ8ZmSk7pM/HsYxqqbPWLWDLd2oXHQJ/pUACkzMY4rf0ESAviz20l/8gReLDx0yovXLjER9lRmycINzByl2MVJsvqtg8F+4jmunxjj+fxGNJwKXB8An9ErLPPERXRao8OsxDpd121In11vjAqlKKjzQIbZ+7nFggs4lM5R790RwyD/yp8n24FuDpF3CQWtnE1RpzbjtKqZD5cUYLu9wJt2cu6EWBJg6u/FzLmZIRnnCGIr/HZKljUcgOjiLt5bEjzNnTwFk/srPqAWeM0MFj0DS9V2AAEACO597MejHcN8Huf/2kjrfOt369/QeWfe8XB/9P56ubns4rAkMFVgnM7P83SHkOhogFVETf7umrfcXqnAGkgdnNtJN2Hu5ZLcsC0EvJdQuzX/JY7vAb430dvraEwcS+sNrP8Yd6hZz/gFBpCBsuoQ4FrgT27QIhjmq7II/7E+Sn0qHdtTMn0XCeAvL3IUdecT/QvjDF9QXO3e2tQ2CxTnQmEmhOI+WEZpf+ifGhAIjpxLSu0L7KD7tDYWT5tBfJXFUPcesRFV1Qj9DObJ1TA8z3J0HeeA7a1jVithSsMT/k0jHnGJsq/9bBZtU7zH4k7rxlcHi8Y808nKWK+ynDXgXuY729Xz6suYqVQnqMid2YI0eoAvPRTOlhkyA7Q6XWFHNr6m0hcTKdEh/Snl9kjWVqWUjuWVeata+r1srskTehb7Afyumka50eejd5HED8BFHRnc4+8tssKzNNDvV77VNJievqUZ8dtHMKBsMIQR9D/0A/dJHzPeykZWYaif388jWdfDUrJK2xR5HkQeqgMPzTBRGZORMaTt4JAwgfCJOBOZZBa2K4TOGWqh7VvP4EDg0IAZH3zvYZ7zuBIWQgPCCMIPRq5h1drbYoVLLxMHu6hfXPbfRniIoudLqHFJUpfC43pO/G0TX7aBl3TLTaSNj+F6y2WOJcu2/1t1N6KrUft3tzErNHyYQZYY6ZMj1mTJivOENI7OWn/SrHtFyTmzbPOfgn+s/9D/Wv/7+kEbf6N9VJ05cIGEyVbAV2/Y0inGQKAzippISnn3IcLiIkOS5ZtPX6RRw1Pb1IoEQIXySRFVoXKVjhcGEA1YM8jgAfrcWLCAbtnCHKSVEWth6WOdh6VubmVn8TUoJELEzRotClgKiq8nHW0smI0WTbaJYmHrIdhUuZ3LPtMO+QMbamZGcLpUpJtzTTpkq70i4T1aytSiwcKtpI48MRjA3sKi5JpUxowww0kR8ZH5XJtj+2bD95Np9ebSRB74ySijGayVxFlY8662oKK10Vni1mcxhh3Yi1jNKvQTQZTWAX5U2pDNEROKMxTelunRhUGztLhoSOk1Gx0rbQPPmTMyTSnzR1rr3N2TjhydBNiqSYoyB0JtQifQIHjyu+XVXvgntn1mP5Tu8+pQCrnmrzK3+SzeiTk48rEw7NSjq6JJ6/EvYu8SuZuNUwNsuK3ayYpUv0FAV9WiJqYhI5uUCbNUOd7ygaOGOJGHNW+GjCBjShQ9YiD0UhgxW2RxPURSxSVxTYRRHQUpF/2+DX6sa3QYtYG586ZxHqLvgqH1dJrLS8S+NVcMszNx653sU9d8ItszCpcU3IQifGJbmjCypuQMZdEFwpxDgRsRyjIofowT4EYxdAl3P+D1t/wln/i/X1P9LGYlWKzKaWumqfB7rCM7ZU6SnyC5hTGpspz6QGEvNq8ADhQt3X0oaKPoF6VeWrshhubSPP28W46hVKn8DXL7Y9ks2SN34zY2/IBEoHnoI/9x14+z4P7MA3gHP7Q59IiJ/On8Gf+h74+kYo39cDnwZu4B/uwwqj+8/IM+4HQBN5ql6+BU/fKzAD3xCemx/yhIm7b0uhi1H7Ag08ZoNfhJaxEPdZDMteTIfF0Bm+R8zVewydP+3Z7RQKrfyk5M4/yH3XI3ZPOOC0BsyKAk8p4fDHLsucyCMmwoDZRf4g6QEMzJNMzLAYSFkLYUkabAHxgKliWn+Js+iW75QC) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} + +/* open-sans-cyrillic-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACdsABIAAAAAR/wAACcGAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjgbIByBDAZgP1NUQVReAIECCIF8CZ8UERAK1ijJNAuCEAABNgIkA4QcBCAFhHgHIAyFHxtEPyVjW9aw2wEoUr6fP9H/fzx6DDd9kNQh50i4kXKUCkpBKThHbCi4oaOY7luoW0oMKj94JJbx4NagyA2tHDqcIzm5GQh2kWQe92XZSUnZ37+1+1Hu+U9iy2ho/ddqRwe7UXCKlWs2IgYKcnbyD7fl7XWpax4Sjp4xNGeztFB4q2GOkGT2Svevu6s76QTPlgFlz9wf+S4AdPn6TDIKDAQKkIxlJkUFpBegokqZFusUJZDmm3u9uxxxCEqQYjJUP2/PT7OwE67tlEChgN2E+q2Qe34DtM0ORWUYY4pMVBQDo4c6XRh9s0ijpyCKNhgDCzOwZiWYjVWLChftV8IDf6lgsRvz3RiLMiwWyq7Ha1ygViSt2QLu5+G/ud47mTeT/UW3qqgre6oA0AOwsnVAwgPrugrDmjDJ+r26Umj4I1kLdXsA2KE8l8R+6by5MkBcJRUAbKD/djTTJPiFHlG6FOFxalQAGOb7bSsRsSVeJ8SCxyNeaER8f5ghDo4PAAORW0iB5j3ay48DjuO4+dafM2oOJrJrVEM3ZKM5uzim6WQ6Bkd0BHdWhQNypLnzQ7L3S1tvMyac72irZGhVh9p1TDiLhqX6bs03SIvlmCCEu74seTrUD4+6wCDWuc+/TXvbNxprd7yfUR/1KVB0wG2KNmWqdPPum6d5MCM/Pcs+mpGylqWQ7Q+jZWlRdkDWhrHHEsiWl/Q/22EuNxVgt22qMkVRJhX1Keo6JkO1SoDJ2DTFMgh0oWv+/4yrfkvGzJ7+WN9akiZJx5OKf517AkKsUm6R6yU2aIHYl3m95EaBhOocgLC6DAKM83TUQNZt8KQCMJhSaEUWsm99hkXizNjDF1hxgMHxk5GxgPuJyAgWXX0mPCWhX+zUtH2rMxZi74wjltLOxJsIcux25jwtDpDLFFJNqM0DhKKdSzioHzG/mqegwU81JAC+OK4B4L1GUPp4fFOrnCQXCGMGdxLcIOsBbI2zyv6vcfGA1y3evGzANpU5AEhQJZpDpFfXXfcTu34kJRpCReeOR6dAAPZPONMQVR0bkaa+z5SU0QFgJShBd3WAnnQdFGNA5IsKpWvYXAL1JlkLoWyOBoBnQGWhhCBGcIQFPyYXFnBS3UmO3N1JERI1MfG36nK6oTvV9d0j3SbAP5//zR4HiPJCz+hXcXArknSZg7rYAEGvtD+k/pr5YTz516Wi7P4FwPuGNJ4vEciTw9SZrFO1QeWp7otXpkWsKq24+lSm0wruZI/e+U2hCwm8Si4vdhgyLUx3CzWadcLJoImxusCIpAZXnjTWyNqO7IpPlavXsHH5KjSl05LxFKuOB/fLUqRcQ/uRx3xzQbYSdQnEwcO/bfVaCOtm5hY4kE0W6sjCVSPNTfesOXqrJaerWZkZXM6F9LTUFDYrOSkxIT4uNoYZHcWIpNMiws+HhYYEBwUG+Pv5+lApJCLB28vTw/0c6OaqN98pUJ1w7y+7vpfw/fWJB9pF1/M35uQD1VsbO4Hz7WDSEcxE7Ggq9QNjrTdsYcBUXb06rrQcEB6WxZCFPcVGoxmPJo1QrRmiysC8E7KnrrB4qwZKYoIBF48t3MGQDBsa3ja8LhNgSuvdCSylt41J+GY8T35JMek8o3BsWdZoVxIQ9MzDfbEtWK+UPVBCOYQiPVA+5YyoqxHIbOP7cBtI4brHLMMT8Yf21xQgSyLYihdj0Z4GMzbdS6bCo3OjPbEl73P7admPiG2nnQh6U4xvTydTvj3bSA6hkW/Pya+ElIR7Pm3p+SqRrskRCN7lZKEYLUenOdH0JhurW2nWw0i7zAg0V5B9D2GConCmnKYdhyZY2XA7bEJMVPm7HZELd9sHQmguQWkTeObh7pzg5pg5bk5Rh6KEffJXv+b3COAifBFgB+ukcqfNb7HqotMmS4qnj04Fmlux5x0Ex04k0lNg+MC8BQfPN/JbAB2Magqoe+Vn6bTrRBOOt7WfaiBVJdgK3vB7YklyLZiZ8M4HY/3F+AejCK5NkvDasE+rV+vxOoXh/ZEmkybU2MueKT+ig9Mth41W4+qa64KlBkvuBss8g6mLHNRqy13yooDpfJGqrg4EhYrYwNrjN2yphEyVLxYvdpHsoPHi9T348T3G5S8VL+Vs4jSAa0H/FddcU+uVlrwgghnL1mx8hCxhOILF90xi0Gutb5UPtKlOMOEedNqjSTJP3HhPFII3k9Z9tHhIx2U87fXAGrY69LFx3wMvIGpnGoPJAHi1Z9NJro7t50grmAmYIsAsz23TiGTnjWiwm89mJktzR6ENltHQ0htNl4A3H3Ta5YUUA4cPJ04UpXyilpv7PbOEIvCiB8m5LG3oFssN1IctD+djjYsLOsL1CkAlYjjESqZiaeW3zCcKU7L2o54V2wRLTb5Tw+c6eaSerj+ANvvI9v2qWxUCmLrMiNU08VEWBw0OezdmVERVkMqQr/Eru9npkZ7ks7Qq4+6k7NCjFWd4IMnCWA+mby5rwPmelqGi98VRNyXbU3fFObEgZU4G1RQFf5FBJdPGmuzwlDZxc2Hfjcb2pONGrE6izo5aSFNoHs6cGM2ah5SlaQ8rPIO5xw0BswKI6jquG0wV2TV3EbiGrQcPuPQcdxzXkJk6IQmi1BYpOJD2WlOz9Q06AUo4rpUJitenXmqcE3YEB652dGUtn9GlfdhRFSaz3K3vzpYq6tJam2gKOEENkPHXKRjpuYqJs+shGkdc2nFUUUJUPeZG7xB6XwLMCKbGaAcTLk4oCa270oTxLZxpxPnKPhQwbAZhjBhrjXCbQHM4Zk9qcGtsKIRN2MqXOVvS1/X5rNq+ugFxiTBHHc2suzKsHHNKMtHGogMRYkUnDECGuWJi5Hgc3qVMrZ+CT4cwAJ5PTeQqY3L7DCPCBka+w/xazAQBNrXWEwzGw/GFK8AIrzlfDUzo79ceVo5mYHGTVnHHh+A1cvsEDid+AeMVlvqRlDztyB6yP1oJxUcO8IRoua7TcvLVRteeWMv2aFR1aM9ImHVa2hb9ADUaHg5UHEHlABcD4KQH1kID8VD52ixkg8GA3Payh38lQBFfORO3mQidllq7G2Wq00Fd8qUaVp+oO8cCeDq64eAM5WbwrTq7N+02J4ejQ+mW8ZXo3JpqXWNESNS5lCw7QCrBmtIcjmQ3a1sKauDjHxN6D9RiNiK0f1UuYofRu6GPPUYHV6g+BPsYHZAshwkYKW213tvStONMgiaB3tE7z8FTV+EkaMmgEZd7Fqbm1oLCznYuhsT+ulXUyYasUP331qZLxyG2jrhwqedW6M24AycA4wVXPsyFEZzA0gfVrWQ4qi7iiRSfTNLVwaEfTk9cXJcZnOLJ8Ik+Yom8YxK6R5rLoehwCk9TBUtdg1PojXRKo88aLnB0jhPaqbV//IMs7QOY4ovLDwip9nwxcMV12lqLDmPoMao+nXMvT3Ua9PJ4WPQS+MnXL/jcpNwNsNdlcPX1/yPnHTDlmBx/B7CoO1sQx57yDuWSaF6Tvfn9y2eXzOUrgEr+bzA7mEZtK2VcB2UsxGeOuS901VfvylcfD/UzSnoVwZIytlloJzInmK7ZLpdonVdVfBt8GyNawY6mXx2faNYIV1Q+XzwffTvDv8/ICIEpqfZe9cAst992XLFPfqpXdcxVymqndZDKlcAcb7iXP2imPcAEW3NRQQ/VuuaD9j2nqB6dgenvyMSJIE+E8Busd/nd+4YVifcC4wz7+YOFoiPDTv5o6x0MKZ+JzQAOHePnvdbyrOLvpqq7UmOQIHkYX5S8TVXwk82ruYcEf4U2mOf2w2Krdvsr5BxrlfXBn577Pmw5i9tqdqYfBbztpxuIF0JrXHWnbtetbLmpCNovXB90yQo3Y0G5OvbzqJEcJBhg/4UB5eQvJvS1Bz88/ee1P5PhPXnn5b/sZ1uD8NFBYRtZiEMaRyr5+VNQBRhc6HA6waAGNzDD/WUpC2WXE5VMGkmWEw9bpcd3AeEVdUMWcg9iFhf+HdCyCbvTldcqumZveW036qbiXBe9unM/6htd2yPVc5Hvdw/kLnfdbfL1vFA3g971tFaNqz1V3tmjjyLLSOtFqk5zrXoilKfb5Za55btSdLzd2hSHcLUdd/dNhgI/2E0NjBUjYIprY2ek4j/HJe8I+4MXKl4U4i/K5MTo2PdmVgvCGOQHw00jU4JqLfNY0cJUa74G/1j36pD3IAf+ia3FbVGoIAoTGLZlwGTalogpjjQSldcFK1W2FNVwt63EeZQhAYFjFNJ6rkawx9UytZVKTqnx1r/nvLrJjm4NrpGuvSWEAc/CyKQ7fywg6Yz8y82WXFH/TobVC66hxcYAASn+nr4lC9jJrnBdrK1gfY1W12mF76M8L/B8qJaUPO0CBkN4IRfTLP5nw7I+7yKG+vPNwFRQNMc2m1muXB34hKHTrosPTD2UQRR/QaMwUJFsWIR/a1CGfLw3QNV3xOinpx2gnHqe5ZR5QVqZs2Ek8nDG9yl/V+ZWsDnMrAZHjM7iPECBaZCezg9+YMvqd1e0RTgBCUlIzni3RovLtLKKpQUwTT5WekJ0ddbTtLeYcLmZ6ugw190mapY6eNZOSNyyNqcgH0Ib5lh44UTFQXptAkDWFlZZEmNySJIsiggm7l59arH4+wYlDJiFXNMHqlqqP+vZ4KQPwODPNoOvrDNeJu2DlO8BRMUhbEXwB4qVw3hAmiT0+uZmUwfD0kIYvXA4JNAUE2yfDUFMJljieh9bGGbMyucMtEaC/QbQjikGJkqakujAkFgl0i3ZloKl/n66Wc+6P8smRdjdoW1LZpe2trFjYLfAVeKC7NvDRpT86NM6QrqCB230He6UKHHmlDfpTDUQLLqTaZZb7cJMkKHojJk2r/u1E/IZxumS4nGlLDoZxwazizqGtWMXlnOJWTIV2G1LXA6yCrzHvt8venbSg7hqDt6VqCSqyHA9efLeOjYWpPaW6xwtTgFB0JhC/tch9/XA81L9IJAyrL/bpPVWyZe+VrD+L/n3MvkIa5N7bU7T9V7V/V8PvuGTGgNrhh6Gc1ylaHQBPW4haXqAnzjbulxvtR8QUm3Lh28+KwmXIOfE94yAZHhlFWtGC46rJUtmnefjx/ZKOyDbACHxfZNMlUBZL1MGW6+agT3kMpB6UE6mjdT9d8uSDuXxEq52Uwce7UWAPVvB45jIrIKmDLpQyA02LbQ2Lpk94GSb1XKMUI7H6wfU2pBH+YFu5ZSElBJitUGYzGDTCH2UZZt4mgKHHNtFTHEgRXogMfC+4MAxjCAgqBdRtdl6zl0/S/HccdLImvz43Dww4Ki5laHPfix9VmkppzD18fuH7qtKHMuH57n4DNotVeBeu4Z/dvMh6R43nA5BROVKn0rYbhW+9Nm94mo1ItSK941kq/QgqaBXmVWLc3wzcwoRu60JOiPwrNf7QoauSIWl3EKJy0tb6soglvISMErJ4Z8lZuiPkyI6Uq3XP/RW5adUtWdmqnivVuj3vZg01ST1w7lOe+TEg3+eElRD2Q/PJ4BZuPCwqb4JJjzu//mGTN9wn7oxorWz3KxVuNzIGLpKUiap+JU1oYiKzumjV1VkCuc65BV6d3zsizL8AhHwMLk6AqU6sThz8U1o2+/wq05Ka7VZnKyx+LV/krXMtrqb8ihgao9tibp5gyVnnVzU5vasfIEl97ZuJGIES1KqJ2DGVTkvDBbqSe8EwfJTe9C4wcRrhmQ9p2oXdYEJ4jcTIGqTxoJHYfVhmAI0aR14H2AF6KFE4NgQer9F049UBs7De8gO8/88Bze0DjG0YoYAvBoGpKWB0wJ/GQ+1WTmYtUSqeBnY1mHv/kf1l3UpDH39L3l2Dgw4iOdJpBjA1BVlVIM2nw36IAd2/4ztH/onVrBHVhx8WUcyEr15pLfYRATXD5aYRx/XDQ49rIs6uqTyxfbvoSf8GBmEduScCvTp9ZCzguLsp2DXlJ1O/yuJr9mmdlYsnQkpSqpdrDpuf6wwjzf3PqydUnc0A3PQ6672wCIt4eJp7wRvDwd6EznfJBhb6R1GM8v3SU0T3PYvTd01JGtb8L2xE4ahobyTTjQXL/vIKu9UA57JdHRIo2rpMICuNjo0XlZo2ijLr8mffffntmglzjXBdWZrQflYkUaWa5J3jIRS8lkqgeLvRDRCymvXB26vjG985Kh3w57QiHl6YfQWF//K+D7x8SNSy1JOVZzkRN/WEy4a+KxzuDVLNxuB5FUpYWpcaHJAaO1id49WpEL9K07Wn6t7Bf985DSQm7CwE2UKeeqnWI3h7ivlhaCoJiLer1y7pD62CIPAUYMr9jKYzxuifhV7sXhpMLoT56NdS9bu0Ujs+MTL/XN2Mk3sYXlNcWH7qFyrM5Cfrk8noxWpICgAqc36fdZW/fqGhVbWBQiDz+YecovFH//Sc6Z40P8U/Eq3q8r3AP6YtS4w5PuXVMFVTKfY5U4+f8kzLWHOs4AP3ime4fzzuqC98WVh5j8W2OkClw0+k82qZbpsFOS7rPKjUoY7XiEMtYOv/YxWESX+ezm3zC/fOMTrq4wOLF5/UwgUlSp2ww63kQvMbMpZZX52Y5B8bPnZtQpaOqM43nGbt9n4FmflYMSMrtp0K2YLtV42O2IXLcOrcoIIxnjndHumTrRukzc5Oaj8Zf08bUTHHWtV4KTarEtkcz0cza0dsk4xdBi4BiKRpTxtxkWtYvvV+5e5qGqzVfyqxeqyKvAETh1muGkxVEIypG6Z92Cob7nTmLsfcXR6QzWRYeoGbyykvte0DTRxCMg606ysEMnC2+joeuFP2OvqmOWYLS7G6YScdUQdnJmcWpoG8qwzkeJPJZxNVPrVI8YtKUte0RcpWsxeXNET93aQRkd7F+l75o9T/ScqBH2tpZnFudyaYNupPGXBk9bsVpGW3b25pnKAH9xKLvYch4UBAH1PvxsIa8srM+/Fj1WnHzZH221Vt/0InRB7NfBqRuwwr2w/u0FPdNisrf/uOyI249wvvhvhN34h+/zcPr0FCs83MemE7kWFzGdy/MZ2z2vI2GCRpiQZTv1H5yMm+BBdG0ZoMZeTxud9mO3HS23cabzUU3Xl0fIs/9K1HQ24haJl0pxdUTZpQZpzt/4RtMDlel7VmnsOYxpLPWB+v9ZVUz4bi2rIrweCkTO7R2JHePumFD1n/jntIWO0TB5Ky0l2sJpZibUFww3aED6yrho3cVA9Q2SnMKH85i9M5iJn+/93CxnglCjtr7ShsqmypNwv66hc5rGZzbC2H6zbmCurovmzp0+UpKkfSBsk5CWMJJTe/JkZI3qC4TOVN4V/WVu3NpJM/ahStexn55r+7bm4f2dxXnrw9ww2u6Ls3RDAJzdh4HBiDfDs8eztRwNNfk92QHHq/0qCGicfvrnzNer8YsblHy+P/8P/vNtXVkUjsIdPVFxHn4ucA/gzqN7sP7J7UUnuOXm2jGD7MFj3YVMwLMPG7LxdGs4heUXZ5/uZnRXzre2+bfOtlTPbxB/bDm8P+g4c325rOtwNa5gfaUZLTaNF07W5vE1I7Hr6A+0Ag/Zn1Yb1KOfdq03l1V/y7t+uvlKz4hjKpbIFGUXls64+ViR2c53ztF50653g+F51mf65Ti8zSJJ4LNTvOAz/9rIIoDudLMXToIkS/lJH8L/cXFaGv7zeefBuP+/artraKtpBP/Sbpceyieo/axxqPEBQ0GWem9mMaC1n2eY1+ntiB9INWo+SZJw0buBgesYKnfKKBMU5zLa2TXmOaDyk+HQEIm6QFYy08Io3oTBwVC1n+yVl8RPZKCWaVOj730NQbKvjQbxGZG+2l2t/NgA6vjUYmqJ/y5x34+nqtPOQEYfHrc3YNErXvzSISU8CDv4AbnD80Dj+rZHjvPXJZmMQTMfdGYk8uBJSod9/lz6N/yV83/sYw1hK3/79nZQU/9e54bIqGoU9cIL3GB0w5tNu34l8xt/ewYCamx0q7yWzBGY5D2xeT+U0RSqcBdTut5iYZ4S8kzLiq8zNlv3GBrBHTuRAjmP6LSOHjJ3VXaqoevcMWeNiMYNblCOdX1uDrFc+50yoUjD1VNSEJr3o8rnSavCGWOGdxlswttdcfs6UIzob/2yQiOze+xHTeVN5rN5W6h5jwjO/1iSm7FajpkLnpTtqS3Ukl5qXogjEtfquvht14UeXls7LXuP39lyvocloJEVkROw15RKUyoKpvbx9xC05vvj/F6BtvuIIrHzSw8vn61deY1L5nwLcl/frtXM0pfCZ8qr8D6WoUiWO8lcqipvsuid5UeZJlE+1dWDVCjfsWcM09+dn3MaUuYDsUce//4xhJQT3kfKxgu3aoDrPSCaTgVk715wXYORAs4xKZ4UqwBiy9Wnc0IDqNVLLQ/Bu2oxFVHpxYHitTwU6CVNWQ8W6eCd75mmdkSwu9VK3KAArfxIJQTkbbVDUDuvOgGV0wnxDcjMs7aiQ0Yv5UBjf0TgeAUZKqQRZgHvIb/jVF4ZGrUbPDVe/4feR82sKyFbkhgJWtT44Y9oxPCeYFpsaioY5HotztI8jBdNqr1DavEoRieoNF100RObx1EIdb183BxdqmV5MXQmnUkgII+cSOYGl2gSN0wU+OBFOHXkXnESqibuK2SNxtO6rYGsXFkITPw/HOXVdA4/D8W/B+YeI/05uHRoaCUEhEn0wuOKlIHY2KfADLy5A5VfJw1tbCGN397MXTT9on5XdL1KkOINg42UjaKCNJGorpxJlniNpLBaI374IvkBp8VBsnooiHbxKuyoABd9p34Ug2pkKgsJFcFEIIk71ipiiPhG9MlkBv4tc7pE9vFF4KOzj/fzjYED2ac/THukfNwp/Fgp5Px0eG5ZZds2G9zK9Z3NyCHO9zCzpI3eo1CyZnljv2azV2fs4r+6MnoxSUChyEQlWmtFIKFgWlRQeFz1o53vyqQAUfA46PemUObgw3tiIYdwFwaCXwF4gOhAJRe9Exxnb4Eo7VMgJMuv90WI06eC2Td2aS0gpgxHQsE5qfS4KrDSPIJ5Mtubx/Rn0Ei/0OCjcNqqYcfGzfKu+DQukemzRscw6v6jIUu9clFX3X6AAVPHJJ1YsugT7/+gDG5ZJDV9BofaWWGSVN8+GbXuhwf94uEJICWaY/7BSyz+pixQokMw0KjWQGREK+s5UYFOMi5u7NMmtH9l5f1xaK/33l300TUxnmvU/fjaUX09PO4D1aX0XgIKrONmL6feuJJfV3C1K+cfs5VSZ7XoRPS62iGa7Xl5qt1IYERtbFGG3ovF288w1Z7lUEMwJ67jdN3oAChZQUh4R5aF5CK4xL4mBkcG/+mLsIFdaOhiDPe3uEeFdmlHI49QE203lKQ88a81sFQlEDZkNa7ri3ppH0EzvIn2PggmK/0Q5JdKmmuuhD7+g0PIxPe+Pjf2Sf7+lN1Ha1JvNSoqKVc/EN3iQG+FJBqVGElwvQQMlKbBaa5/fWoZBy5zWBrfhlXMu/qUMhn/DKqmlXSQrL3Y2MfB9Tpyf2oFkZs920BVsmkw/4jaNf038nPwtq8GfQa/0UrengruSNfPO/iU+ECs3j+/7CfjpDjh0GXq5kfBz8s/Z9djXWualBYeb8kChyFMkANM5PYr2u292Wr7WGNdvjLCYLd36dVcI/uWA2FHWXzZ4uyWlIFkqXoJ3vzh9SwuG1D0YTrIcWmblZJYvmS9+zL+Y4NmSJOydrBG/Iq+mpIH+qbLEIEo6O4WcHBzkk5zCpqbrnNWRhtHJxZ3OWbltju7Fkow2eHwYIe58PAXOlIef/vF9YOAb8eZq+cVLeU8Lns6rsXPOmDWaMXB2v4DKMyCapxIniMPwVJT7wNHPcRoB+Isy9rCj9pZtGkEHkRo+AlAg45impsC/pWRq0ONkb7Sc48A4UWAvqo9YzW3OfPia1cJ/FZdzqzkjcGWsMEvbVZvl4RThRgpO2vK2sLg9GKDYFULvy28enW7qHpnrjfLgl8ag69nogALYAjWNlFi4qpc0aeBiSUDRK6G040peVg8/akaLrbj1S1HX/rJr1i7UqHY7jUViSy73vstd4grdY1e6iavdwTWu00Ge40Oq2kXR2aObu96tdMnpHrP1r3ZM1Fxbs3VR68gVF9qpuzSdZrplxH4iOq4TKaklDzmE1wE2KcaW2N2cOFb1X1vOsjbKreO+JXduMqjm+BLhvHwAAD8ArF/p5WZUn+5gTv4DInGl28ZLZc4XYmk/M9kfblIMg15hbzEHdfNhugho85kSy0g9YUMOb5xf5LLh2zFksS1e4XNIZJEoeO7a+Xyqyo7RO+JKuUK+dPYS5mT51ZF0bpDQjnwlArGwgkIEG68fqdIod745uIPtgCZzbbfYsIUYFKTr5FRmYjvK7Q5rU9UQxU7KM3YB8ER5PXmG5vRbkz04u/Bwi62+mqM7v8clkFeVYt8FqSb6LZdyoM9P9H4xjVaEFNEZqYNxGsPj8zk8vrhcXNYt7TpwHbm3AAcrUwx+ottD/gAtcTFFP7WfUEvOISK6DHp2AgaKlCgWeXEYzS9IChAxSu+nKTAAb6ZHWlypB2Tthl56LgLFqlTq9f1FCuKpcXHpVSkSkrW8B/vJYU35qccv0MymyCwiEfE2D3HqsRiLcrBFulxSN1oxvJ0tQeD8dXNr91aWyJ731E2aglIcm5cg8dsxwkbP9KbEadIHimsOv6QCYiqvRjsTRt4VG4kj2zHe9Yq9UeIM3Jn1faY/Q09eEFmbyCL1YF3Vh21WPM/qWibsiOZXNdpz+r4eFJjvauaKyx1b1RMLJBxUizkJchcF1jlaue4MQxWca6BCh/50R55kOJ/N+4BQKyTrbg0DZG4PwLf+LjbC7IHhpd8oortWjVY9PQ3oGPhT89swnJdV4jvS7k3NDsbbaUKN21s/tw4UgJW7O/OjBl/X4CzLcuSRO4MnWB94v/7DRF4Af7qouoPrxM0uQg/yrjLn8LT+oOV+ESO49oiwkUy3hcCIrrvQOc28L6Aq4Ijn8CleoyWa6fliYtBnaDMRqbhge7GLTIcZjkW0nqlDx9MS8OodWUggu7i4GnVS4CQKq9tpXmlnevgUZBpVJPReFu48PrN4Ka3qOTqmy7Zp1OOYeKps09Fzj2GTrikGvXOXgJi4ceePBhb7eRpMRpxjdDQXRVekUm/hpZSQrz315DpQWSdpMFOiLG6qKU1h17MDof7wxXaMEVKxG/S59TSqJETnzAFyiFjTZa12OQ3MhS/DKYmAKGuOhKCEVC0045g8pyhxUh6dvnjT9+x0h5tlZAjLstGZxaesKs2I7+POzmN2n9TS6SfWZEq0DCrgIJvLz46PixBjUbDHQblR5RR4mHn+Jro6RFDAd+Zu0/h56FsjXmpDiCkirkHfR5tWLBw548/RYNUEiV49ZaBNk3h75OKKOKVsJ05Om/Rhe2sLnHnlR3tUiJpqyIyCHs6fktYpXVmuNBsNKQUtPwBOhooO6k7Ls8hd7EaN5jFWFSgx5N9FB1VjHQfNWuyUMvlYaMCfJcQo4okd4ZvKNooC7sw3Rb7RxeVwAJgc2GBURmcWl4PT8DYfaMKwOzHXMSxv/eGGXp6SuIgR7fR21CRuQs70WaYrPWUmDKV190GDMkTkJRmQf+UCwIp4lHb317ZaIVTMGaip1o42Z35MmWtxFT5giwvGsdTs4RD9D6CDYfvz/lrzPfCJ86rr8r4/2LH9tQa+y09CegxH7grsrduktRUF+ExHmn50U91QMlswrOa2fKCOyreB4AUyAVd/fWHa2D31UpVhKDg8L1S5EOSQhOIyc4BPrdHcHwSfYarruUvENeasUScb+1WWGwKRk52GJqym80jOaUj/TWspa7v8uQ4ODOev50bBAi5AnO2gdcU+pKk6CsZHpTFWooEok7sUc/gZkF0BxwiYMy+eqxxBXh4brfr4cWF+oZWGOiNQ/uKHWhAcBeVZiwTAvXlTAgKA5cmE1/44mn32p/BhQFn46fWr37bw23W9+593/xbTNooAgA0NNxD4T7SK+2BDxkDpL5/KW3HNRjkKAL7IfoEDV8HK4l2abM5260xeWrz9ekonN8cGDTOiyUcnycYaGR0fmu9hRTZWIwF8aiT+v4NlWHFgPOeNo8KMbogBKHrTSf5H+gAZ+vbLHfv1PKaq+nPytBQjSz7U0qQlVT+QAdIO8ZBXrTgEWRT6euwTdGY45ZCRNbKKQGMIoSJdriDSKl0gNsAm2AFx2AJbgSATusAm8BSVCsKRw+TIYyHL0XopS/m0JA2sRhGq1Znda8SmtGgyntncima6EIwsr0Dzc04FZRxNhmaznmzRLh4rCAYN+Q3wALZW3qaPWmVRElSk+L3xT7S0asZbE+Mlh07FaXIBX/gZdrVHpgk0VQFKqDb5JweoOfzqdx8U1XmyLQY80IFh+We+2cp+vtAz0rETHR5BBpggj+nbzQFYE0BF1q9JCpatv4UPJYwExDPVAqBns/OJM9NlPrcqccRd8THgdigakQjJ/7098cDV27HtJHY70STt26nNZHubdS+F7gUBQJBq0e0QQKaOAaj8CkSZ8wNSlfMzEoNvfZ2TREk4WJiiREuBhWdWJVhUxYkUBIRmmcAJRThJdkyIWKMyRtc0ocRBapbRmmaxlZ40GmVSkZxmek6jMDkothDBBC2qeCrNMnFaiBOJIWQCItl6nKgyZp+Op6+FJJeFKKnidmcxZ8LsQ+EMNwTpJrhQeBpijFa0bTkO6TvBJsl04AvVvF6yQwDYifY1DWadZKE2kSjjMgCTUf0sgStPfi70hfRzml5ob64kXviAOKegoa5OQwYRyqfFlS+tfYP3TXweI8rnOcefnc8pAqnL/5xehjk1XeN1kt6Jqej4/D/HxqKjfSjxvTk8aN6hwTvYFR1ooohu1tjXsGA0LkS20uxuRzNnLYGIGvfCa5NVbMKqEW9nldlRneSlZLOt6HmBRSYtovDPXcYvr2MhL818xt5caigp7s2kRdMJj6lETmZvIjbjUfLGQjMalkUjoT3nAm/IN4Oe8wY80++NFjm7dSRuUS/XWMYYet5LTuZF54GNTeZ5i4qeM185bR7wjHnAavs1DRmLXmRONDlpks8CPcnQXmKVkijcgls12kug3OJr4GmCHh5g2aJuqvKLrWRiKYJNsiDqNO6qtTzfdZRTfscl9FoWN+y0tcvQWmW8+qtRZcUchuCvmc95eWuRTCohoxg0AxK+91kaSJ8cgYe+Cw9BPKq0UIYiuGvqYw6BBjR3DuO3eKeZc6PstORRuFN7wLcbNVu/1kwa2OEpw3yzJwnxVvrt5k3Y3DvCnVn51YJ5xieiZNL0mNW697q472tC+TojQ4GCveFosPygCsSqEmvK9ZKCl+iwfOVLeOp/4s+qBQAA) format('woff2'); + unicode-range: U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} + +/* open-sans-greek-ext-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAA6AABIAAAAAGuQAAA4dAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjIbgS4cPAZgP1NUQVReADwIgXwJnxQREAqCLIIoCwoAATYCJAMQBCAFhHgHIAyFHxueGSMRwsYBCH5/eQR/dcAbii/dQgwwl3bdoc9Y/KFiquobhCHvVkU31hBuSnCtGH1wMW6EJLP+83jZn/vykgErz4KzVSql8irbZsWCM104K3m630KI/3btk5Im1igokPBQDsi/UWt7M2jmN7sNk34RMQ2NCg2/t2bWPYQ9C6SF0qtl2TkPUbcpYIojeQKSYWAZzsmrvV2+cuocl/Zd/pI0HTdgP58/jEKVPVaFQvgtJDiJUQfP/2+umtZ+cBljJQ6haZbf7YYQzUF+nPpJn+zkoluLj2V4AI6yElpC8p6sxE+KfxT9Kd9e9m27Yw50BHTNgRYqKyzAbJkbYsSo4oBNZy/JNSvw8NvYOvArhoiwH2Htu04HgcEJYCONRxgIglwMhFu3npPVQv42VmRjLLGsom48PLMW+zrgmeeb0w5Py5yZPng6ZvR1wQMOAIYBBoDAKrgTzs72Po5Qi4WGxB5IGEl6L4IZBBl2ELIRjGLqdeKaeDskuNVaB8aOxn7T+DqeLoHYOF5FPMBWS8m13jQ3HhmPjEd2Rl4FvDvnu2gnREBM488BOKxnbL9QZrshL0bxiStXYyU9mFCf8P5q238XAfP/bAtAJ7wfqRJvB1iy1G7i24Zqn2QU2MLZfS1EwMLX0kcA/cUzTrFMhWAM1CbAKBqzYYgocNpp2XtHgm2PAzhGGSKJJX0xx3CQKATVk9qdZvs+vO3DIfQmpFDYxNsRro54lQQYX4v5Vt/1f3j9fQ5D9W8AXHTZ/m3xeav5ivyevU7Y4ZLznkSnzQ5rt90RS5y1LblY67DTNvse6yxKFdZZ4rDjLrslSHWdnQ45kQqXBPLFeVcDIp2vDko67yb45PioS5xxxQ1rbHUwueil22DHuPQ5y623xT7TO1/3PRZZYaM9qcJiuvyr7XXYhfawsES0ItQY2HHhglJz6OCB/RvWr1u7ZvUqfeWK5cuWLin+r7/8/NOPP3z/3bfffP3Vl198/tnN9dXldDIeBf/k8aOHF0NnHwzu93ud9r27d263mo16rfj4vWxluZJG3zvjs+lKqZJEq/9yqyVzNSwJ+3XQbQi+Y3Wra/NzpbVTrOHByNX9YSLzDplLcZL2ML5eqdXjVmdoKZcZgc7N+kaNG25jtGEGJEdAkxlXHcbN/d4ttbjNan1JJsBYwiSCDn+PVxEL3lrLv0bRbRxjzrBmO83UolPSQt+fgVnpS6VUA0kqy5PRfmz8gEsUtaGF+EtXT+0BDYCn9Upo8S+mz+QhYyIY8KhtJQc8szIv7lp2F+U2WZNzZfYnpJ+IdbUSSamLhfTZJPr0PxvasjyB59mAfU7qzJk/dbHIdAtIrEQaVlUY5VcmrbTXjZydTpX+TqxHhnXmPeMSTrDFZrhLElps4I4YDUVCsBYfU0iCt8wtvT1cmCP3KXeBEQLjFPh+bKC3U6yiYlYsip05WEw/lfHN+qJ3E2Ah3DLIQTbo8didd5LenzkScychkKmZ0GkqdL2Yw3BVj5m2pB1wE7Ull94Tm2+xw0H9otKQNKfgSaqVPNLQ8Pbd3WdAMAF3e6e4GBST7obvWcour7RbnTt/gnayb0CWp4pdrH5FdvJYnp21pL4ztPBqfHqcXaA3su3RFjfD2e6sQaEx5sJHdzEYKzes2nhAHnPeXO2irJBYIeNA+kEQjaR/ENH4ID1MDiNqC2vwxPQUiThFLDtKjiIL7FZglP1fOeec3riReR4Rwbftlbp0ATKG5wAWpyqyUqe1eyOtViiPMDTn1UqrE/09076wDuAKknBOh+cYxmFwxrlWrMXlwsL5uSNmubqfY549KXOn/DKbb9nIgSbwHTAIMOMrPxxSv0l/aCW984R7NvpjmaVxUDR2SkbHzO88r1bSFZKbzJ+kdM9oh37A+PLr9FKSkedRySND/PgWrwRf0leTnptxlR7jIWnjfEKSmoXWULJrNU0c+tFlwNhOXW9j3ENQiLJdyveMbcSK8xHk56rXuTaFutKDcUv1PCnClTTWFDaccX25gJsRiWS8yznlRdSgxvqicTMOIMDsgmiI5vlkR0o7MHVMdrxuRdxP+HBsGd8vwwScWw1Cs+q4aZN35L0LE6fVKXRBl2Ero+OvabcLvxcPLYUg/U942BxKu2Dn9oabctpom3X8qg30EcFoAmYWkJLA8pNuwChuNQiaMGzkcTZ2DIcpxKfNRCgExgfCEgU9pHLWLuoJnFIH7i5Jmcv9UvNSCIRJb6CxJZUiOzLyAg5ZAs7xwBvWlFFB69wFBakzTEM4tyfpCtICFUbBKxGbJk4uwpKKiW2z0hwzzybA1KLH1VoJurJrQLHtEHXCKTgdWvAa81BuruHz4L1WQfYQaC5znpuGj1xZgFvGOBDpXr1jm45uDYxTiMC5LSPd+9rN2Gb1QivTZI+hgsp3G4KFYuaEiHTuCwvGFJOeF6kh0NsNH1gtqTL7fVngPQvvXDWsi0hEFcPKgBpO01t3XUKIPowS22jK1cptLK2tOzK6abeg14BmcUuZ/TKoBnpMiG0KTw9OffjBIqwMJuR84UQeiMZzC407Nx21C6s160VlCjo9EPqNzLdx8JTdQfMkgeAKlBacFNC9BkQTQNTT3M6EgM2BtJM2+Dkp6PD2CNyTI6mLUKNHpVK2viY3Xif85IxdbVtAV+1HqFMgEtHLE0eGAXM7n5pzw72GOF63lho59npI4E/GLKPGiY7QRAkwYJSGcutL5AcgLEUFZxNoI8yIKbdjKeZgdk1taYLzg5kE3NxJ0qHtJRzjiji5caCGlFt+9SXE2IHdqbaKo8MXBjCugnUWNfJ926A8WX8jrAY4y9i/t3G8FjYYq9A0DmWW/X1N0p2BhZY4tZsOQlZjJbtmCpX9xxQiPaCwQEDw6if/fhxwSV6D05C90hl/wIG10UXUd+rbudS8Q0zKoLDL6y6uwsZOaoLz7Q8jDbRdwuplgHpHXoDik6vMR8RGSp4NXJpqRcJSCHGLS1a73tcbe7iuU6neLw7HEom8jeHAm2hLOOMWNP78/9RzD4wOivQ9QFm3vwF3+oN4atuEaBOW2ivXLBf37Z/EWPgfdAosNLXK6j9USdWuPrltrnj5T97jzi8eGxLdBLBMhZ/xpiCBUjjV0S5ICKYJRen9TPZG863uTfKr9IaWM0r3k/27opwfN0qWwLBmc8cBz2X2L6ctyjxqaqUvQtlWpC7yEvCCR9PabNl2jAmGaAT4npCAp1Y01jTp9cB8MMtWGq+0/p3WfX4zbobCNIGihDf/ojmplHDkX7VdYQg9tHEHeFcGbzsJtJnCQ9X4wGrKCRCqhdLulqZPg8zNuQSCvyE/6aXM3oV1+s4PPsowJtNuv+gXbXsed5qC40pT9nQBokJo6TpUZULGWHOIsx9dL2WG8BYwp5HJ7Xl7EASYYYUDJsOAC2AOR242cGEXM4Rb2EUBs8yXYcEuW/BS/c1XX7Vufv31t2nVO5/Ytnz01qLvW6/Jm7/xDq1527r51TeXqre80eTjKi3zx3dr9kb9x38O+n/xVqv+krp7+L1LaujFx/9qP3f53/bzT4yNXPpwz5hR93zy1vC7Do6uevCzu1tdb++5dPnNPfNcd8d8O/5z+Z1dbXa3e9jeD6LaM844y+4IyymcU90ybaW729YyvyUjszjZezQ18qfbJ4YPrFTEOAwDUT5AJgj/7zIOCwCQ8a30p/jcHXFOwRcuWnzwyl45JfU2gclOhjvrX0yANz1dscfabIgKCpK4TkCyHP1sJSenBaXt3Vt/IAiAgJLDXjk7zZX/m9lmBgC89ezDfwDw3kKO+efof69ER80zAUhgAAACXl+NLOcpSH8EEMA7c/4cHpJysLzPB/Hz1IP85By7hGMaEQxuJOMwsPtdayDIwonrhhG3jOVXYS0hGFeZse371wrIxLNrOQYSWysimgavleChwjVOpNPUMwiw026xlmCl4zfhaUYUXdoXOba0b+W43Cd/EKW69VjMp9U8Lfp4ICNFDR6Md8Sc0Kjn5C4J48wQ9gMenQ3d2nw7ax6KzT+5xbM+nBkeFAf3wJCL5K2YpxWJ/KGZkjBrmE4rntzdD3WYYy5Idunjl6xT5/7BrY2oDY/FK+eZr+NUnzQkIUVZmYdKjVwJNLk/uIVEca1tvCYkT+jUNttay5t40l2/FJoJPdjiN4tv29NSmxQ4dEhS4asno1GFOk3S2yTcBOxs7mwDOnSakeRqB0/ULbOMZZNqMS4AXJJxFGR8CaWW7C9WF2sLshsT5mcb9GVfSfBnPocvE8nezERPlkF3RqIrbWpCZ5rrSPdke7pskxOtOxTzaCle5KrwMbcoZ06J3KR8ojRfNjIzz8kZufNZcdOyrHyclR5lmai0uIuEkROTkkvm0RxrqSnewyDG7n5UZD9048Kc7IaJTqDTDvjeKe/67o63y9uua7k40XQVqh1Zt13NUllYLreeSJSZezgzE6c8Ry3uGEYeGaVD40OBLm5fk8SefMmV83bkSdb0a6ddeg1KqUVMGJx/guGnx035MSmeOzFkfb8pJ7rEvoF1W9B88DCRINez0iMF7bLw9nlBVTfma/a5n+8iusycokbi//p9SN1TUoNS3Wqw5tYcsl0VZa7aNa65+Er+AxdchlO1yVbVJEsqTYM6NasmaS9IP0gM2oeVbvgB3A2yyGZVkJlq1pjmYivZD0xwQ1AUke6knYHx3to7TcbYVsAyelKANgaGjAvQxoAyZmJA2hiAeic19xNt19Zt24a4ktrAznHNNwUgrkTrZ6x0THM/F7ZrJX544fV6/X54px5eoK2pdlNSDIqV2sMMvaUADcio+9c+1oOrz/XCRAIAAA==) format('woff2'); + unicode-range: U+1F00-1FFF; +} + +/* open-sans-greek-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACL0ABIAAAAAPfAAACKNAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlgbhRgcgRoGYD9TVEFUXgBcCIF8CZ8UERAKvnS2VAuBSAABNgIkA4MMBCAFhHgHIAyFHxvUNyVjW0a82wEkJfqvXhRlS/P44P8/H8gxRgw7hprVfxBEuVstc5JMKfGy9t7di1haJQUkJFV3OfEp09KpESfsKJlhZyReQd4zaj5TVqUErdPhVz/5JS304BtFcvYK9FCU1niln1TyXODkCPGgMNJok/cFOL21BH2R9mcz9FcrykXuvZmBGYbBXzC4E0qP0OQUrfZ9Tqvf+yDpW5YVQA8o5SQDQCp7CIJbUYA8QKAF8iKckJxBz56Jzng4p+4L8kNdvW9Gsixbtnf5CLH6FCCeACBVqQCozA3AttGj4QLOgb8pzkK4ICOoTIqGeyC4oDiAiuA+zmOzZ7NrxfPPH9HO/W+ZsZkWDzGLswADSbA8iyQtgnD9vqXLlwwHT4aDug0AduS1GnvSeScd0ycokboAHi7dZf0a9yv/TfOdO6wlLFJgVVswBhwSY9GFhOYsof3qbrsoEzsAMmRbbJcK1aSRSOYvGRHzy/1yM+eyh1gmjZYoSQnGV9KztmhEOX9zIK/5FW0BQmCbClf3D/sYY6kG4VAo8Pha1fjGN2jD6qazA4RBqPcC7TbOewl+adZ+BmfnME6YVnWoXeJzbmYdZl0drcFJ6yiCzMdQTZY8EQ0h38SHSXMK72ccu7mCG+NBmlcDn2+ZGa3ukqxSfDvOcWy0NkAhMxtgE9L1a2q6q6pnVdOj3dc9rTAzWlnJYUYhb8iOGQUUHw9pJGdpHeOFTH3ojpndsiPoAMEB4APsHvvmW+jWcErJ4v/FNLb+GxDrJS6CsFQIxo++8zf6ifprkSLyEBEXfbhsJgiMBJhayy32kUcBCsXrOKEUZVOmAs2ZVgxnRrGd2iE7lCjAmwI+CZ3QkhKwVCbYfJFa3LyzB0Hx0umj04kHTu87cuLBfeOnTzw6dvb4HGgAuIsQRASbIjqjhTIEm0TIl6FJbLKXMoy/lwZVNEWnJXncqRkn3kauTs6GDyr4zBOe9bI3veUDtvGmiq8doKuf8d4lN9z12Etu9a9+B0CG/ogmifJfZympJo2knfSSYTJJ5mmV1tHmJLQt7Ux70v4kdBSdQKelPk2RpTuDGc9MlrInh3Ii53Ilt3I/T/M6H0XlxRNIXTnSQ6m4e55IbB6zfHrhmV5BD6CH0E30H3qPu2+nusaoDTrkVnfyz+YUQJfogLuuU/W6tSfxlD2XOUofQsvdS0vEwBzqnTkqq8llC8vG0TbtqYs1+nUhcmIjs6OuMwxNOXAbO/kY0sEr/Y7ua64l3H1K9BsIDxMVwBwK6Odu94nKM9lOVTiavU8EEe7rLwBTBUSG+ERLPHFrp9uTzqaz6ey2+XlsCc91dGyFv43obWzcHLmcwPufKB6FB9NaYAvAoFkLhurY318CjZ2NGDOOoFGLQcxgc1JfnCYKUAP8fQC8SQZMn8GFL4FdO/Y72vJ2zxZ6qXh141H4bxzs/08D0I0AyFX1BCCA9ixjoUwt8Xnmgo/ce/YgEXDhw8GzBND/GStRpef9WdRHcTEqh90BYpxJ00XVPEd32FQBQyNh34ohMqOxarzo1zZKWGjEAC7gD5LdYn3izxZhCJePVBMxEaEGgq2DLdnXUnNCa75Yo0HgvtZvyer/cP/pCsotfgPgKzkZyYyqUpO5MVcfsQnlN3NKpnqd0ol0YRsmDMIjOg2q9x5fSbZOip0nesktauG38SYd+kKTE+Z03RfQOMBWpRWkanHw/xKufv8hk2ZVa9QehFMq1BLrMoKrRgMpbeMZ75UoIyAJGkuFCG6kv6WxPYKnMctfT+7FmBbW0d4mq63h86qrKivKy7icUjarpLgI4H3u6zz2bV3maRz6rm3qqizyLE3iiDOKEAa+5zq2ZRq6pioEJre4dHFunlJNgY+Wl+a1smTaVXC5TcuhDYv5XbDHEcKR2MFYymNjrTdsEUJSLm+KCy1yBD6ksnAEreqtBhMejGqhUkcBV243pfpivesikhKDPRJsdmP3kW7xEd26G6DbeF6VCejQ0t4EgT4cmkQrH6z8K8Ie5xnjji3LMrIo2ZE7TsPR9Sh3tZw6YFPjZzN6y/wVNwQW1YIgrHw3NAwG+IxJg2X8ifalAoI5ETQ8G4q2gN5s6Jmx8Nofoy1syfsmOWzQ/YbYtluJo3zK5T87U5g/0V1L42cIfvbIb465EA59wm/1eCoJaOgyEFbd4CzsoB1drl2JspVwh8ZGMgQaLlYIn9Qm9xmhhUPfoNvOHQ63SBry4sgWO4ylWmc6tutPuw8mlOccFk1gh9YLjQrt0AldTnN2gljqZmv6FQEO4ZZLaZJJTLsqFYonIqVsRWOh682JsUVj8dHB2F1hEKFcAm7XG8ny3v6+Wy7SlH2WJbhTH2Iv0W6ViZeO69ujMRiRUC14w+tEKKo1hBORqQZjPbb++B1oss9IwkvDPtXe0pNl8oujgRZGdcuJz5lp7Fx7cFp7qLiYi826CILenKtgrTIkWPWkeH5CLRgP8dUEFZVubg4doUX982unbYmytnw3202UaLdspstDpKaHAsfuZXuuJlY/KGT/L1xySfc+apFnRAiH8sGsfEQwR8gRcnpokozy1vp7ebtFZcJud9xuDUYpfOmGr0UhdCZpaSNNnGmP8zjMOraGrfI8NXd87CWDstpy6FfByUov1CoWxzZxpIVj8QgSArp5FdW1bP20FnX/TOxE1hvs6xjNo6G5NxrNM185brdyTLLbnb2lJNJ89hPmq8PMJshmgWeMJ0cQ5jv9ANTKvQeMuG9WkJTGdTuXCyeWQYQVwmOxtPC182LRIUvPfWkKSDYYGVR/i9pKvPHzk2j5AGo7qKvlWQGSpwJFIgO7WBw2OOod71oR8ThpUPAmPwglTod0lFqU42K8pLRuQS44/XclmRnrIVUFbTyvcd63+EQcd6rXYALtxYIJazHiDgqeQlDJxlozO6pMq1hluH7DYVzlYS3RJ1G73xEhOktVWHvZiJdsWWwZn1/sEFz4oD7QLUBWSzkt00VR1dYighK0ekfMS046jksEwW4QZOjg9lCzBK1jpmTrDbwjp0hgreFo/OHTFzUXCUPBQbGm1RpsaN8fDBWZ2c5P5OlsqaCKSm6jYZEM3QPWb+XcE8xB6BH4LsIxl4bOt23kQN8J91SHrbkEdAk6eI0FiQpOKQkP6yYkIaZtfTKyYBEEn+2FOAkja7QME3gPC/Jd91SEZkM+D6A95tq83zQljRuNU5c4xLbHXY6GdRFAhJXXDRqcz8kSEZ4KBB1MFkjAVYWwmkqWsbUzCIRMvEMUGdWZJjmElRoFBpH3bhjbICSFCaMDAsfrXdspgYCPuynTC2UPtjFQWx5CRIZ2B1UAP4tpkxzKoBjkDIEBwY/TKc8f2UcOhgvpwrmbPCGan1Oaj77rWPRarGV73ogOz4yEbqfFGMMf2Q37twRndqK84qyCQktQnwG5bv5QyQgEFlzb8iX8myOqcusTqacmjq0yhUuprrh6pVRk3BcWX7AbhwKsNNsWJEU7HfZYn7+ipvXI2ewZXzueEl4orREBzjziDv6SLVZGtQ3alChqGa0NBOBdX5B+FEq2UWKbFK4dIG6lR6ALb+HpQqV9yMfwlAXVp4A425GWrrhyGrp2UhNXa3rjDRg2YFF4K3IUXPVE6HDB2BtiiqYSUCFVviKXDaqImL81zteORbQxwpjTJvnvv5DKJQMQn/ws+aQW0aSAyoOulio8dQVyJ4oX4gLf8/b3zRAHcC9cvawUX/B7WTOoNlHdaCpnsmc9jKiAYDOvVV2GxVtdbewu211FeFBLqa8DQJN/AC37JvNJESnjtcA1125pye4F7vTCprnay93uvUqCKY/FhDFS/j5GRb92KmHWUyi+/3/3PIgkQa56EIjNwXuw7z9tbue8jlaR/a0H995lpvIdGUv+B88OlZXsUpsUwqpo9a0n3De8+vsuq4deC2Jzoo8R0nkuGg20JIgU4mdx2SVaGhN1XMv9OBPcg2gw/i757Sa1cEH5drZtfqyRP2/UCUEi4tIND3o3ySuDe0t8EdSdZcNUAyrWLN487Qbog0fTLEUMb3nTALSEOcMffVoSRxRLrnBpxwRSP5kFl0BdAv8HrYf9+hw+TXqWgqYNDvInm5OGBsP82coNjIDeiN0CWsOuh15LAdG5n6pKJ0IILkJkIb45uV88Lkem3pEZxP0FWqZPk0wqtvbbHiQXBGWLvnr9ig+g9iK6EWIqGSszvBLIOcQl6UOjDmo/Wzbpikz7lH6BTjxuF465kvWBoGARIoa/dhED6yhi3xp7APTJZ2YG2uk8smGbPu3PLfcHDYT3RXtotdZBVFJCly5pgHtSAffApA3fTl4OVABfSBJ76PFFhO1P5Dou54ZRpFOlOcZxaKMgnD2+Up2FEaoY4/TNpnT++dpc7QbVs6i5lnIcdy1k5PuZDT7XZdiCcVHqoKW3fwqqVT0t3J9XtOdmS4qhC+W6og6omKmuLUl1B77coeHyh2L4Q7qhsAdBIK20Vrk0PI/iwfeu+6hT5MQUebHCr0moeHUlomKaWGihr3NnNy5z9RS7jEjbA1+Mcm44sxeJou1wbE+iyrmchffve0hb5aXL9tN6yLqIrTtqKXWBJpzkj0Z40EF4Fjj2W0tBA24iaJqpCUxPyeS0TCxOS+LBT6XpK424jqSuKmCGCHNgjFyK4Pg1Rn5nK1eKH/3ar9tpqKANX3XEy9jcjYjj9IpAn9jXkUmMtTioipOhLs/Xk+PK+0ZNeoV24FeVXuRoEaxtvS2qn6rye4JWAUXmOqaGGjmMp+8kPW8oziXyI2OTHK/sJrkYKlxHyjH15opo0yg2MqM4PXVeNyp6MjI5Yc0xKd18Co2SD4Bvk1MNjh1J0XO70dLdWIKTwNSBO5ddcfhKZekHXC3kahRxCKS3oplUKEpt+i5paCddPPc7M0XGlgpbGtn3pOzAE2dPtm3JSvWsk8ULeNhqRFUCgT3Vg+YOxrjRRRSoD0yJkEShjHPMpdL7tsUN2eemz/arpWnZa+Fy741eEX3osqDPdezWGPaewGckjv7uAW1z3Ea7q57KJsMhvsgPrcQmVa+co3kc03V4B0RsqY1qRjwIJNMgrfLD4UfAm81YJ8FrG9lyGj10KOIofkyUqq5/lE58r5WhbS5M2QzxefvW0M82Znf6kcYxWejaE4qruL5MTFSl92VK1rorHSVZNA/RHT3hXBrUSUnBcdwiKiNrfsr2FqOBOZGWw/lBCWVwe5PgZU/ktryN3aNSqB62WTcFiC9KFkB4srWW/wW5/aoVUUn3C9ilW7scUnBkBdL74Eko8HIz6QfcPrtiRADPRFYMjTz0R2tUxr8FOcwIf+jAteqFB0Gy5ZHT9TqnZaLzLT/ZtqNONvMU2zUB7co9q/LpHkZOGPKVSh9whO6nN417e1TciFwH3R9DrjifxbTf5zAuhM3+e/3rClzBjBs55Ns+XN+IR1wCk/mg+vPLWzBJRRKL93comn2/A2vUBWsT3eXwxWEXd+KTK8FBgeYE3G5q10YGFEv9+6khvUcnkzfOnoL1JVv66vH5zgiX+RXkoRyM/wl8NKRMVDDC2RWJQCGRfq7OwX7K1FsXwxYuTpke39dhyt8n2yk/F60XrU+qb9fCQkOKp8/pg/iKXk3w0HFiQE0pKU5dme5JMHhxdi1n9xNa9w/loWCdgy1cFncm8+BarqnT0YH2Kjy6cNBPAPvuAFAKBxlvld5KN+TpRh8CyOcBSS42yrMB2XLdUwsD5jLQ89OqJ7oavIFvseoZUFyBCJRfO4lk6YUbLasCV24qFPXo7l5o8ZrB10NbDJMO/ba+0/h44IaqTQWzgTAoyAD/EbBpr50DwrdwZGMoOvIzPeo8fGqL5qaKja0BmH7t+CP3JoiQ8RO/0kfka+mjJ3HQiYeSaLu9T1atdrdj0Yee7UlVuy2ZkN+SMNX26L/1+yO/05wGUjdLVuhvvHuB6jNaW3YX3b/g3/XfUmbTMUJf4x5vak1Oy26Rdt0k4Cz8nCxQdgbcfri+uql6+fmvY3v3Z6CyUEtHd+n53OLdXTHKL98mdzSqrt2jjfxR4ezW+7P9ZIVzSK+1Lmq9RS3yanXznoiiLEUErxl9tXaJtfaY1yN7yOesucEXecjDzan5eS2pyMO8auSBZmbBZO8jdXBynouvhWWki3OApYVTudNyk7kF9b8B1sLcSTVkKRpdq9umBKVGcKyiY0rcuUDLDSgiL8OMAs65jR7jlwsqOUKKz0JloHGAGbr3ySHGieyfolLuHHrOCLe5N2oj4oSV8Io+nLeqf92ArsMEJ8Uuas1sq0OKdVSdny9BEH5poVmYaO1fJqmwLNG7Rxb2Ls5wCwu4s4v9E7M2sZkVgFtLRVvd/7qivQFw1uju/Utb1YaoMORjd5JTDAujDIhwDVO4t2muYerMAf0UeKaVBsNKF4l3bs1v9e0nPLLfta7dJoUxVLEIBS9HmOfCUi70GqaY54RDnqwswb8pwMGyRzKPxAXpG6nrlSyZWPYSOoHBOG2Hf/g/W+roxlfZ9+yEZ9v1YFQSIOeG8ZvUcOk6TLvM0tP97NKLDRri4k8dKf5Hxd0faXPrH40/Wlr/KUHY43M4KTvwSEvrh5ip9UshIxtOJJJmS8p2KE4ldW5UftjBoW/jSSZ1hcMizZzYYUx7pniU5XNY1PKBsLh/dP/ie2KDxPtQ+hP5Ax516jihC7Aa3dkL+H+Pn6x8DHP+tm3kFif1xYAI9bHrQlmcIExWHBvccpj4r/tMj5XN4NWbtv1dlmd7CP+b77igIlmYoCK26yLqc+Ng+ovbpTAQyBhjvN3n8utj/XcJ1a/U31zskt67dqXlelXduW/6OtBvFvfYgyRXIqhwOp7Oe6clBPWFz6K0zdVRErYUMaYVQQvXZKh8IGOqHC2td8IEl2KKpiolPTOtOsBlyL6TuxuKjtxL7ikcsgwxMRsDnHMf5Fy8w6irJ4n9CJLKPLRlj2Pq4uhAawa5cSA4J0sYP9DWUVXRV2kdsITWDbGE4e32ay9uX/LRm3HYZxitfw0x/SkmyLbUJIcB3BHkW7K3PqJBrRRaguNB0VbbqyJtJ7yYCRSSn5s7loVneLCCpiTxCtYA5/7j/M6Wh2nl55qrMo8dqeWaRdnl7fArjGi82LSsiIUu0Yon62mR4mbMzvRWfGR/vkg0b3C+XNCS1miLJAWFROD55sScKddgmOTBrBXnxb0lAVtUwtBXpmYz2Qm0tIq9QSUFYxZYM19ekJHIklZejsdS5dgWGALQT47ocg4YUfaim8SbwV3SrNM1q7Tm0siKmjb634nHD1bL8+fi1nM5SNV/5l6e/6fNe2S/n1QQze32zdZigsv9EGR92yRK1SyePCdUDE/WldZWlTTFByxU+42ia3R6lKzTo/hW+iES4BqDsbp3/vf7AdYaI/Hmnuk/X3aMvqoPdzltdhJstJe6Kie39ssMlPRqlPQ6DHQhx9BbmLuTibZU1bbKfanqrnF1iMiW6q2q7tRWT89+47iohBgzZkgtRPZUJ7kUSWi2ytWSfLt+0UNbzaKFc90mWdsJCXPZHjpwatEAp4+Hhsdv0Qjy7ICFb9kxDT31qmirDduikA8suy6B+WPPDK9GFRzAjY0uQLNHU7BdPGak1taQasZ292xMIr6sIRKnNRi1kcKOwfUHKz3Jcou6KFwJLrM7d9doxWTZDC5OTE2Nyexzz9RKgZYGeJAQpPBuu4BekAcNFm8Og2fYZIKrtRaS40bMt38sMLj7nPcjWM0xI6ei/PLd/cP7H4RL/VENq8dC4w2Rj8135/+9WSkj9ThNKYWIxljbcePdBV9usaTCq5WFa/c+98guXSAsdLvGDLeuXr/RdM3Q8isluhNe61rP4BiFrAw+u81GiDujhUYpUE6AB8mbHNG3r3erB8043gLunG6TDo5Rl4RkFHrPcc9Vb35TDkFe/iXLe/dQMNr2gMv6NHNWtKZcWPnQAMTsTnjg+pFXFLzczCyY7rkxEWc5ECHMCL5x8ZS210b0M1OZrHRGvD0N9JN7Nh3sTe/yorTwyy0jpf7a2eD5U3zcy9bYUfyy5Gz/2OD730L4EyPWGARr0KY6nOSzzl4d4oYvJ0cwqPebZfSVYXISMLsydqCVM1dD+zx4VLruF08KXB1c7QS+K6n5cWysUPOmZlBsamVuJnAyhXGsucprMZlqvHVjRxjt4Z1iECFl+9Hnx//f78SOuJ9Oetc0K4md1qRs/9ASGKGjmdm3YPAENXfCABMU4wo2v16N2m3iLtMEqDa20vzOHUckQuN3sPoRWA3so+Biy/o1bj/wzuCdnk0fCvjfT8KHzToTl0fxyZsB02FMcENbU90XdHenDxB/yhsq8hrp8DglozgRPYczJSB/H03X2+0+b02b8Bf7bBw6W3ohDUlG2rAxiD4Eyb6E7O8fyqRsU9QM+WwMeM70J/e/oFaUcdYkhtuOvaPRIG7gQbWNBgI1ak5fzBamCr2ISWYVKC/VrHRizolorAv/aVoIp2m7JWCZWEeVNK9gPTWZn8sZFRDAF3R0oH/Wu+Y0HGIRQwWdmHwBNZaCwzK5L9AH1oGOrp0gF+R6O3ieN8GGzYSOBdZ3z/kERhi7Ga784C98VjWsNgtgRbbG7ou9YMaATzsafqndo888hm74ZRLlMqI/TuyOuSbPqMgV0eFxW4zjRPTsPSfefiLC5V4jZhGQsOaA4IoGMBzlOWgiJx5ld2QkMdqLTw2cIjmVxPr7pxd3HyLqjTsO2IOQvyAJ9t4JhpF3tErvKYzypcbLpjgXMtZcY5O07HYoyCKaHoxudixYhRhtoN4zawWvJZmQPOI9wFtel595bARyV0zq/ltRkIJ5XCJJDbg/I8SjG1NE1XvexPc6vpUrj9hBlga4nLLlwpW/RfZWi7MSMTm6cNi7vJdDQJuBAVjI/w++Et4CAsTRmAGNW33233duX553fYM7n9aOcAvohgkNdQ1vrrxOpHzjQ0B5eeH/ZWADVlRRTVPUo4b61NKAhtTRiCZOnDaDKRrP/H+Jsrkl6UzeOtM1g3wOD+ct98eWRTfvLOPemNlUswmICrkakyszWUXSiMjK2y9SlGmxaLojX9uyyZ0abllSwktpZkaRzQ8DiLUvdybXgqY/3jv6TCo2GlcUlU7rxOQf8urdqLvUix1cNnLfrobvPEB+ZelRy6z92H4ku5S3hvec7wHkc6PgdvGf2m23LPWpSuoi6ZLfdel929XM9Gv37eyb8+LsqarJ2cyBc7SjW67azhP2nM9p89P3bZ/cXETt1XjWl/8hPac/6smJvFvpbP1Y5Zw28lVMLQjiEzvk9skrvGuucBZ+XjiTM2z2Cxq/Y2GXj/Rd1skNt6DkBHMW7/Zv6VhlKSuPxVLWG1um91tDOdCyUSawuUwpqKp2JAs8Fg8IXsXrmGuCgOIedBnShx4cWVYpz5nrkmfPRNJAao75ZTzFNtFePJawMj/mogLRpiA8pQ2J0/t9Q4qjIOfvHhU49yu+upGSehGwwH/JVBC4JGJJ+Q4yx1e6S6Y27lyUPWc1hZfVVdcohAJ/UJlnL/W19ljYWnVAuc+6Lx35Un/O+/IWpxhasAA9S4y9javSwGlVKh0nFEotmBkqONLb6P9BT8eUEX7WMSL80KPgpCw5KQAsWNx8x9jEKdUa/ZMWlL3aJX+gND6EbnPF1JMQevBdsBQNfdJNAWAqOtUmSKcTBpC+0jIN6x0Uc1CHTJrdNPo5s5y0EsfPyanO0xo2UDsIPoi/rHWdO/wyZNUw53xfI+m3xHE6gZTxMYL398b19fwBobJKMsl5YV0Y+cF+cQkNgdy8fWlRWEFgq6qYxQ5KVGJo+N4ZeSGBUm3rOBeaErMoRDXUJawVf73AHa/Rrh6vcrsB9azbHgnHpok1edY3CwEhHb/VdvJ4g5SOfcsuravVDuA5yzJGbv9sdY7fNl8sIJ+Rat3vx06agHqM97tfnqK3MBnPlPhGdCo8MJGZI4yqx/u5ha56XyzgeHxIiVytKGcmrS0m4+ve7VQeQaGum2YSqAqQQk++m2UylvieqJTUwFb4zeshSP+SUkRe8Ek87UobfyZWCx0LTbwZzZBWHhf1hVRMArObh2PGN8iUARemZdCTqsNU635/V4ZxJkXMwDwWvVvnP9IPMgVLJ2iJFwosdzhM9T5WRFvSZa5V3nS73OnJVfYKU4460gU7rHB7SexSFVfrwEj9R2QM+8w8zWXFdXQcf6VC6jaA4xuVsdgl1SD3hYBprgGxx+EBNasO83ntVAqNijEZACzjgucJ0ievEIwdWyoGVa7F07KMpH0BSk4P34CtZsNh3FtZ4rq2+XOgOnbAG9rUAtneepo0idW8p6/7wvT0IyOZAFv3FWX1t7pWqd5QLBTswSFZDl2+K2sBCwrrweTHgtQYc/J8vX0HVLmi0uyI76rs5/b0n9Qwm6W0UknZdCxJJ42j1Jf5XgKl2zqdtr35mcmUW5xTGGxbyWytrWODQqE11NSgUwXMNfT643oSPhMQAIH5N7975/TM5D9wq0Xw6Kzfvx/54Qf8/VHv/3z+d9XpfkwEoMEAAAL+hS46d0DEDc6e8kmK/b7DRw+uGDVAdcBbnXdm85wdH9WaPbiw3Zy1XnB8f/SBnYJqeSOtjwbkZXZ7q+X1rfHgf/nWbryp9wCjwHNF/hj08m/rCjtP2YrZzO6yvPv5rNzr1cS61oPaOiAbPVCb7zLSVwH6QHQBYfOp6JUKbO3GqaZ3xqGO72B2wYmdgfVnsu9n+VpefSK2fzB7VnzUjwx5djS/pLUh0O/LwWx9VoAO9x6ncFxXik6+XuMYARDvFlz3KjMEZfJDw3U3NvVbefU2SDabfev2dsnHVcKt6wyHnifvKx9RaHifqX8F0meCfk69qr88Hz14tQ/i31MAFL2gHjtRYKTRg2uAX3iqJqCyhweMog7m4z6D8whZ3KcYbX3hPIVhvHeeRj3xeR7KqfE8g1qaPjfBIO04iwCXLqHzCCHdcDtdU6TVonPrV5nc+lNW7LP/2Wzx2rRqjQPJhdMpNxTBccoEY9FqogQvJbXPCdaWoTrf5OEk0KlV45kN01apfFaLmagcT8pMLcjx8QyPMevR5VrN0/igVBnZk8NOkNWFfborqo2K7bNqp2H6RuHA6eQsb9sFyjBk2J/uhKN9XuPeQPWbcG2qFeB+3YFVyDshpzRffr/NcqWGT04GvDjbYgGGzvWn/DNRf8MU9874cDJKg8pyuOaS5uK7iRYlOLqxZEfnG4Q33WbtP/9kDIXL/7PLZP50Pm/i2KkpK2f+f2LMOt7TyOzt0UFj6QM73GUdapikNE0ONHnsbJAkt5zd276jjtFiSKxjLKG2o1Wx9CrKaFXdUOXBWRY7UHhYXFEXFUzIea0j5ZKYnLe9WWE9qcWnMYZLszqTCmyi9mgWFdtdEWU7Q7sj5LPCwgBCA7bVt1u8ylCe3eS9IyvElQS7WXnOB2JDPMzfqVvvXPja2a61ctYa8wPCbLrK3Ni23hMNt575xM5NTppsWAlDO2P9kihcMX/p5996oNfia+BpTwsXcFZgpipPW8fEUp4p8sl2GofqKedDJ1eJhe7b8fd7xjV4UXXv2iK/90ZURFcXu6AWS3AjGWXkDTnZIpN4kFpswFqsgUbQ60Um0tFvO7mM6ARu4EtMah/kLLZBLGawI44yfIMnj/AhwlBRhZ4v98zZ0VhJV3jZ6Rgo0xPltm41Fnb2l3X91OjtH+ibIHo2evSZZzA1Pyg/3913U2Cq8xPMhU4Tk6IufwZzMAepM5oLZoh0c+p2dALWtPhIr7QDySOYctz3Sk577uReNwIAAAA=) format('woff2'); + unicode-range: U+0370-03FF; +} + +/* open-sans-hebrew-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAB0gABIAAAAANswAABy7AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlAbiEocgWYGYD9TVEFUXgCBDAiBfAmfFBEQCq04pVQLgRgAATYCJAOCLAQgBYR4ByAMhR8bGjEVctNpuR2AlHZJhuD/6wNeRCTuw2wrQvlAWGsEDOOwBQaP02t42gbiWsKJ749Em6o1VPzN7nT+793d2X2i3unO94u/dIgIge+E6tkCP9naUrBX1Qk4NkKteFWxLWJMIyJCaURrRKd603m/jJBk1v/KZb7/G6XWeOQl1Ja2OwDUVfIy2DyeBQIpYe3hksoRAG85X6Kf57f55z7eI1okSh5iYFIqaKNiFCiKihlbY9QydHOZriLcfi1/537U3P/wlO2pvaru2ZMIS1AKhcWIveQQGOEIf+5b+/1DbNFE9VBJPEoS8yZe71cVxWd3KinR+gCAFv1eW2X3EfYeGWQovTJr5mLgAVyCUq9Bapj1BZkxvnvlLPky9oam/CjSGjwHxouqH6yOppZ0V2u9ZV+aUu+C/r7aSQfsCwoMwCHEO3uyNbvS3Vr+Yvlas/1Nvvr2t+q/lNZgqbDVjhoLC05oAENBML6N+V4IYPEvKGb5pN3bmHYBR7uxiBhZIsbxrb/WVBBgwAUhXAMrIQJFSo+TjQLIBuQ0hI/DZDtOKo4lmwHZNhOQSpNoJoKB5tCXQ9h+5ZeA+t3nmQDqL0/zeFD/aW7wgPpvfeckUMMBgC0Ieh8AXSGqCmc2Ab3CBjEC6z0Di0+Bwkag8PMYMLv6FVVq90tUtO7MLQBn4OCp70WBGTAAnCfTJTicHonWXYW6v28KmvEydf978yVN2f8xR3tJgnPiuoA/Ncbz6Wgq5xpSVuhfUffb/bQS8ZEYQKuQBoUgnZD+PMpH8chKN9pOVJ4+g70iEdpIU6Yme1ym0G57Wub0LsoyFN1u78khesI+lyvpt/Igb+dZ+oedl8/zberPPZI/8rqOAaNibExA6dKqGtiwdENf1dzE9LTOa3bt6SWtaF1b3Akr2uppL85I9pIOp6/ti27uTrrPPtULeM2y73QU3yX74375aX3fV/2rbxAYhU7hUoQjH/UET8SYgIidZAgr21zJAq3o89gKINR4MhD6o2Z2o4V2AggeArYJYEqGM1zW8gCby09EFEIAkAS8gISODGEbcLDNTO3NZUmQaJCax+x5QK0OSf4ClgA2k7JYiZ16ryGBrHZtoV8BhIY1sVfslUp3aihWYbNYEkD4FpB5PZAEIgEGBAASWJC6wtkVVZUSE7EW1iJbuYVVA08CEYzJ2VQ2NUyfClK1GlZ7VN0UFMCXed+xJBA0MYthaUMM9LeSMK+NJYC0z14LSL3/QZgpFxFM4L3NAFoJ6z5ppQTlehs8PdVqMcpY3Irt7/oA/DRiQzm7jZOZmZmFxc3NsLVIwK1pfE+csr28Ng8GSGlEMLPKVaJGG3adBgYZinhw3BA3xk3x6HhM3GxakDG+dwIEhESkZOQUcHxFhhEAKmofAXwia2C6OVNXEhZHwPCZbfrtyELXzrF/efSh//sC+3+XAtoGAJl9zgAUcEBJVykAWCRxem6s57OzDSGA619tnQiA/in4GEgJAyoIaAhrZyTXFApA0mQcDQO+pKaY50exkChngygk2zj0fjIr8FGASVw6V86Nc/d8/90xZh5LHEseSx0bjS293kAdi9Dr9G07bCx2vnVsODb5N/ORpeabzfiJbn/bX/fV/rI/708QCA1aiEWcId6fabMJQfe9/JEPPvP+zyiS6n8A+NoZHLB2sPeYgwepdqptlttvfDL3EEtsNN4ym/TbZSjx5tlopyV+dvRm84T9VN3qgJNO+L0ybINtULjfMby0xyGHPOzNcSpkXBlwt2/cfO8jDjpqrkHrE2+qWRZabpPdpltgqTWq5z7iZ94Mi6xKtj6z2O9ttY32vm5MPCnhfVCN2Btzf9n73NfZa47eZpScYvDOGq2k4IwSjCCwHr49WbVNXcXwzddffXlcejk6PNjf29ne2txYXy7ms+nksw+LK5cfz5NLKx62V57oZSl1u776hLoQuoJ5N9jlCHFH7HJXxiNjrTdsESH9uDoWGx22cD2EGRxA23qs5R4vd0qhsc4BN5r2lQ6u6wHGURTB1RZio9t2LtmmXHaoze3mbXlEJmC3tkcShLeHo0lU88yq+mUcu5xnzDu2LC1SlyyurdsPQ2Fe9kg5TcEVdXlWjRvqI+4I6kpBEVZ+Bg2DPcQpex1e4O9UbyigqImgPVfboutAc2zU9q6wHhizkS1533XXlUafENt+LzEGqczf7Ekx/3BfKV2eoXizX35l4ioMfFofySRSsGgwZFBrFO3ZtnzbrmEHvOniGVYr2SCy4WFH0DFLTi1CjL3coxF4gHJMdkYjKmM2VpsPU2vkk07BBOw7hCBhhp7txRUVL8XL8Rr3eGWiJvw1P+y/hCwh/JZRj3RSs92Bv6n+BSmYzqG/e6I16FgtLknGzhZd33WMwEEHEtnyQCm/ZbhOKyUelAPhIfq9ceKdjpd3ZiyCvUpoKHjD9UQg8RDinpgMBmN9r/1oBayyV0nCrWGfFt3RC+OUF8OlVjvlmhPXqWlwIQSnSw8WXJGLR1wH4ec1T4J3kCF9j3OtWB9SduchflSlYqIbV4eM7CNhSWLhE0mfP8ueJWKd/ZyW7QCuHCCOfZ49NzQxPaAl5H/DYx7T2690yBUR4racmJWPKGpEjpDlwCSJgbX+7bzfo3HCTjfq95Y7KW657WMxCM0nbceoei7EOhbTRtaw1TY3Lkcjb+iOWf8c4xiC1tgLu8hqeQNHagL1O5CegH18FJSlaXS/FM2O8KD35Pg5XuiA6mio9kbHa+IHRv1e3pPsoPOblJNJvvdDX6/eTe2KrApcNVw9irA/5AngKrwLC3jhV8iMKrqVx00Qqm4sDaLaFUuNR9+3DOyW1mfLkku68l76NH+sNIln3q5Gfz6exU/ISbU9QPr7IgsCedjB4pTBGe/aPlpEPU9aFPyIb4QVOiVTVAelehgfUlKvQa7QxeYklbEeMlzSqSsvk7mcC3hVnHO2H4UJtF8s2A+rHvVuCp5CMMkebc1MVYlWcZHB41dup8Xf26VQGHXfigDj99IgzH45oVuGpdUpTy/MEPThmRbAPgFWalvqzzRu4ORUA0EF6DC/5a3hguPYoghh3YLABfd7ShI4LZsxW+/gFSiFERzqGNXNZ1VrGQnTwUH5NV2gxUM9fIrpIoMM9WFwbKmgCU25jkaE0ZBz0P4xdXSwEi/cCHGbgLMuTV/0miysOu86JW2YScBewe62yjCi3ItGyEsfuGAUirS3fFNywgKIdnoecBIDa5wME3g/8+VZzm34RiO6C5BeMGw2buYc70qLLCMJsfqco8x5p500w8q6BhX/8o4pEd7FgQAHnz4hDKVCLVhQbWoJ9jAQWAGlGLkaMV13rVA4CAwZhn4o6xEMhQ+lBQwcjnPbMQFETjScmg9ll2aVMmkiBIwztGY1AVkSu7vuGoGicPaA6BX+9d3p3H/kKDnhNcb+hY08JKpbN9U7bzrqjsVatheNSnlqJOxzOkzRe02ut9gkuLAd5RPOJlBZA5ZkQDnLbwayAlQ0mON5A//KyG35YEeSiYnJ/ExLHkqR4vq1dsj9qtA8Y9duC/CyeeKBUZEJhzmW1x5Rk/bL+ZXn/NLpCbg+tSpI0DKb8QC/pNMQKi3EFQ4ClHYGErC5LxlfDq31SqxyokxAbEqXIVw6eWcnqnsBeeudCYCLERjc24G2j7hSmr5xp4ZZWLNrbyH1D2FGiFZQVL3jgN19UFYjdsG+DMh305f3Vx1YIOrvJc6PqSFaGTTsw67zfv+skRgNYHDlzWnnOAGtNAx9kZMqhpecQMcdxRPJQNx188/5IQmw3bTqYqvwjO+xY0epE/Fz7cu5lec90kAFhH9Eqxt2NLLWV52Hm2Aown3aupcByNadAjF7lXm1GNeGIu46/63Q1vYQh7ykVddzZ7a7rsvQ6DwtqmkFV72NwRiXyUKYcB/K//z/XioydqWgo+liIPZ9b8NufzLdnLMuzECOmSd2z+19+RkIC/9HZ0qlE2xVmjGEoGKtrz7vXvHKn2cZ374WpDMSvYqQVV4Gc0EVFpEg3sTDLtR2oMpY1/F+xn27BMvdN8mPs1cKF5Q/yZ68K/L540ZECNKL2vjQg+a67jvltgU88NNqzb4WVKx5ttDiFmiA98bZOSrWbWCCDmgu8OcqbfGQRMM1brftQYYPZu6VgldK7p3Wpf74sXaS3DSCyg4n+DtLSU2HGf7e6jWMgr4Uvwasmh3veW2LQZYfqgqHIolWhMjT8OrkQvW8GVndzA0k+xP6Mw267qCSbfh4Q64LRaceM3Xlx2HpBTQpCbFgrMnwy0DZI645MdTqlE6wZZdEUV2duEBNuGAFemasEl+hPyodmMABmvfqg5DMg7XWG7cCgQDUtwDtBMAfUDoBoLwLU+xWMwdWXjBeoQEDARSguATJqTRRQr3tQJVWoMTxpSoL4R/HEvDMgoBAmdyQJ1YocHmogd2ha0Qqq4BSWdl19ZdqZc5nUVSpwecpXsxadSdSq+QTkXBcg8EFJQfpaQgMIGBHfdOwUkuF2UIJh8h6QHPq1Cj3PwXtcIBn5qUvyqwHWOZFJBoWJtE85+PSzveSHuxz5UJSwDMNhjuz2kFuVA0icgI9ap2x/iha9qjOxfyDvMq3yR3phN2o9LcI7+d6+Dx1TaoCpUwH0t2WVjselFqN9FzwLLchvgLGkHKypkVpynqAKYjISwvrQ4GcterCclG3PutC27wGld1E7r9J3MNpjkJYMnkTACW0RD0OFtlp5KtoB/xe4sLUdjkhiaS28WI4K5AtMgnbTmboLv8I1GDwQSwAZ3JrpN1xH1PLw5C3iB6JdzDzUDLOV6JUosagkmi2iiUKMXFTGVF+riC3ZP8OnYGBjHoKLSU7PopobOxLeTt+Ww6emU5lsVwmp1HrJgk/Q9S6wxyN6RF9bA2152UaZJ78RDl2tl18Rlm1wefFo9MM+YUL3sdoEiwKMT1LY8GZ4Bm1DDUtyvf13J61qr13Gyvny2Vbbh260Ap/d9lHpyAnsKY61SXZacz0/sD/ZeBzXbETLc3CrlMjzN3wM/MM0duWksUy2fRP5Y6Ml+iKxSdWWHziRxfYe2W9lnEG8AI5yK5Bc+8pObFWtbimLWuqdl4T6h84dLgLdbOyNTevgifKsTHCBYkH6DdvLl1l2YzcyrkR6yKXlsr4rp4ALvQS+ySA9b3L7A24W2RDCVKKjgvLQFmZFzHHB5pXRopoepgWMA/wkWAuTOxuZH63BvlFnsatYYzkzW1drxDhm40B1ppBTfbOaahT5apl6y6Z1bZdltNUYePWoAGMY8Jy1LddmxSD8qASn8u6zg072nNTiR0rQQNgB92yvexAvETAnlVNlTZy2Vz9aeHt6eW42wNC+hRkqhr2jJndfHBdyhnxOTJO1/DkfyUuVub6j8c2svhq3P+j7a5/82RAerOdo5vc/GL3C5ds1vW+6myrD9p9/uaPxvKY6dLUyXekxYs72d3jJ7dx5/0Rql9KbaAuzaEOU7ObFvBvPyvKWvjaj5YRyl+9WHiCprBSXaJ1t+/422fmam2H/Toy33ZFNTsDChjfDZUJym0NJOdb7XzXRwuFj5gub3WwUy8ZN9Msqwh3lG69tvjEgE+xcf7l8dP5Z9d0tU1u43bmEoaUUdZa9uCXbmKlA5+BG6YO+r58WeSY8Q3bFbPmBLmPlBwFwu0DwrHOviz1X397QJ86X7b4+jRHATH6h7i8Pc+ueelzFAhzvWOkirqNmtYx5PviZZF95tfsUvOaA2t6J06dwGmwUSJ10wkHsUiywTdzpiK5pryWtAU7AkfnzN4/e130s5SCjqg8e5fZEZ+j/XygL+hldM76aVHZwnnpg6ca5ZkDypQaZ4PCRuap705vkRyQZKrcDbPTQ2rnqEU73o3dv6N3LXfkh0vVqtUy7ts77DEzdEX0ssYsX9vwwlTO/DWVhKnlpK17NDJNrM5Q7669xJ7jW7WBn8nfwGwSetjm1JaACIUp79k34knJxydFHmXeWhDjSujmv/2Hyzr8eqB5fg0e03LK1n0pMi24RtnG8ViPl8pXHGlKdX5sS9odzH9U89PlFae27OOcWH5hac0fwn1AmOMdK6tp26jpXcuFr9cX5C79glMSNWIYXlzrl+pfGrYmW/qkIxPT66YTdoLXSIxcF7C5qqapsv9/FCcsSBiRSGzVnJv5CY1NM9U56RP9Dz+lks9Vw+VF5xfz7xX4d4vjMm3CCOvUoBBa7iui+Am55xtQ01b2DEkvEVocdyB+KK1X1MkfSgY1zexavOsMsz263yDJ71VT1CHF9LvLysqp0fEu0e/v3v3FJHTH9JsYUzgtdXN4Tb6DTZbs4HHz1bWSDOnB5u7AK7mrOjTrqcsq8b3UjZRM56B2UVpRm8KmylGdn1ouWC+wqtonrM0Lb08cHrR3WVIdYYv4W+yXc1480dX7m6PzUYerrPD1ydX6dzmpnRbJ6aUs7amD9wRfdu5Zn9bzpjpyxfrKh+y+GNP2mEhacdi6zEVvnD2cLWfkbs42sTTO+KNnjeGdN529pry8RYbZFaETEwt1XV88zfP75ol82nDl2kz9bv2KiuqUrRkb86N4bd3SVPt8tdOvsPKjoILgx7M8EpdvkodST7PNW+xmHGOU50415ozXLaTn5FNKoty8QWGaMD2zYfBnG09b0B1qeG2ZkZ6j6+niONSfviefvqKuTrrQ9ab5V/WMnAn2w9borMTj8fXFS4M6H+WW7Q2yax/PGYx4EVLAdLviIvv9ZIIfZLyPjsJd3HY3x6dkWcfqfetrwleOiD3WPE6/arekeHH7DGS6fO722fpsc4nDUfWA1S+lbZP8b2Hl+NiO3Q3MKXkro3SeYLDJbx+NQ4vS7BK6MkRORf3oYWvA4ie9J4trJcXS8vY+UYWomeOWKrb98O3+byWn13SPnzKO2zlXre3AeqjvDpYTq4ik3qF7+mj78uf/Heyr1KesHYmfpvH6Ymd8qxuhVyl0WxSR7PkJVxIzLek7HZ2+mAFJSMmSH1bnL8hbxD8UbdgaY2J6Uu9Fl8aUDc2vD301rLD7zacIn5+d4wrPzqluSDJmEcbBJtpB5nI8vmqAUSFZuTG3YOINVolpw741PROnjOc+twdVYM5MC7dStOF4QoNcxBRa8V/8gwe0/gEWXm/WYP7a2olBWgtP/rsmz2s0njGLN/vlqBNIU9Cau2rL5GsMrTDwEYC0lTrykbPVuVVrktBk2RqkcWofUTqy7sESZ4tzyYPQ6ihfItwKlq2dr0C/jdmT/oFFxsKf4ryg5pq/HpRl8w/WamPUAdqgYC2P/ueeTIRaaE+DITAnEvwyZedvOCc6GWHD94eKxxcP3WeCaLqtICC6TzDTwfadfxjLP6ASnElf9afo2NgY3LlMo/XUH9s9VFvVWsSUMVfQOQjKAlA6hyoEfqcRO1aBnn5lMQHDPY5ER++wgAicu+jVIvoRIP4cHb48perhwunrp7Xbls3JqVaDeo5TkrbxqrhtMDdzRdvPG36eXfX4bs/I5SAsuFfJAdEg8/hYwhdlWWnRFnhIxqhuD9YU5bTChK2laLYBayvuV3xpasvvd+0Z+fBhYnafohilxesY3hJ3jGjpNEolWj5FjJb4cPoMNBvymKwNBVljrLaUcZpsVmNyVKK5z3PGpvo+wEp9AYbVxYRtTQrfFNnuUHwJ2Jj3sCm1sxTGZIU4OJMLMjmZCnuEg1AJPUxacO8ZgL63S96We4GqeXEhX1ZsNa03C6NTr2bTDosOe6QFUOeZcYJkvP/wxkoEEB/b9Cipj9wrgMqS5b2bJy+1774/7urKzbyXPNpc8wgpjqOSSfnpmLc0AzH88tP4N4VaUhfgl4STcFKjubHVeJKaFqEjLvlhuY1zZ4gD8CItLreH3DeyTR2N55N8/POzy+QsPzoOAaPPowToTeEmgSTOYLQyGHm/R4EQmJBi8okKN1kPzyKZ/mofST8NmB6o5ZSouLiU1+AZR7dLeMbwE1A0KpkqFY022u9h0Ij61HOK+tSZI++soVA6x9MKmEqZDNF4kSnNWhVkuEygJADnWYZHM+G0AEB99ahfMHQqEff3ARD5s8sgj74TcU9j0IVQ2mPwKCovnlltolLQ0HF4GH5QIDPaV6DTyXSfZwCxZTpMgVadtOlx3Mp8l0EVFid7xqh5gX5FV/56LI4EYSpZRAUu1UGW1G2ZIqFYDCaov7EQp+8WZYeEhsLKuJvHsCcQIosIfRFuFDdjPMKhL4OMeFZlFArRrGmfqAE6i1B1CrlSyWNnvbuIy9V3Ge4/ZXgj9WhWnh+TudhXKKAQY6nE884z/4fgWlYxAwMFTVGb+c6XFE4+MubNjxUre36efKxTmUAAGqY9FWVK6LE5+pgYakBoqMTPD0b1MipG/gOc4FviaZrzxWIgTE7/SEz6yMgioVwO9ZR+uXS0DI+DMGANVEGlZgtUjs0yUKVSFQcCFUA2JOU/NnWMIXnimsk4qkk1WJ48LbtnccjFALT0UQExi96D0U1Oa4zj44EYvQarD5/P5S5H+CU6fYGAJCGbEx7NIGJ16+n68j0CAQAF0o7P/I67xUv80zoLAICXozf+BuCjnlA0pvrvvURlGwBQAQMAAATw16U8Y0+IRINmV+Gd5MlH/sNDmCr1sFckwzM4AxEEFUdLayU1vKl6xoNhd3706fyWJ/yYT2XSd2deL+zbv73zn8/x6NqHJu0ZifsF914zaT5Gwbs49qaj44WIs4/zCIXIGfLzQRXGAGzPsVjeK6vu3TjOcovAc+Gd0HsMC+kMgO76mPh/e+zdRHfB1NBMmk0v0ms0xLwG+M+quKs4X9mOQADYZgWxWgRgwKe3EfCVb3NRUDhy50IeZ2zHfQ8WIxA4hFjUvLKYAmaji3HQBFtMgDyBi6mgTvIiLkSnZhoCyNBKWIyAibYehIfJI3ky96EymafQD3vt16SbbIo+Hu1atemkZmKohmolBm0OHabMOInCYvWEHRsWouFk42zVeA5Tdc3YZikPToY45RtOEcN4+qHUqh3J45UGOo2bnKjlM06ulQmatQipk3TqoHdC+x3FXKHRoFNub9VlwmSPKDqGSnuCLA7MEhzjXHGISNhjirtDYmmF1LCdAZ8Lt28hskSIgsdUI91qSqJK5xgnzEActsZqHTLlK+PsnGAZq6ZS2dHhRPUg5hh85tzdyEkmRFGggHBO3WYmb0Nw0Xsrsc/V5+6OdZBdsV6dsQfJDvMj0mOWrKnmlCkWr8kxKZOiasiJUXpCtGWNj7bGmVLaDa1km+FhWg0essWQQTYbJd1kXBFpNDrIBj1m1et1nS7pWh1q1egi1TozWRWZdGVExKqIiLgjWsnycI6Uha8iS8Nl7QpLVkmoLg7FLGdoSlHILLIwBB2zZdfqguDRyg/SeUFySm6QlcwJtLIDdJaGrUyNztCsSLH5ryLT/VPSyEdkKqmtZMRKUUeS1a1kkop0oh+lJCg9ZLxyszilg7RYb5hhHR0lvGyjIZwMDXGQISKFrEqriCSDg6xkEFfePvVAuZEMkJGkRublT7aSatJKkkqpuEolVZJ+Ei+l2EthkpGV0lixpVIOhuQPLpIli737GgUuHyPfJXDz3RwT20WYcBfbjbt5+Ez8F5zC83IXWCami2aiulAtuLhuppvqfov6CxUD92SYCUf9IpA5UGKiuygmzEV3Y24eNhP7BaPwQUQrgc6h4WMl4XnnaF5n3jFGYeUxtOhYULFUthZVHKOmVwyuisry4wgtc88fGgK/tLxjw8XlJyhQI+7jGJZe5LJwSiStA8LhsQ47Zs5QAne0HdLBqCKhXlSzmK7wRgKOAEon3/PeKXY9OxcpBQ==) format('woff2'); + unicode-range: U+0590-05FF, U+20AA, U+25CC, U+FB1D-FB4F; +} + +/* open-sans-vietnamese-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAABwcABIAAAAAOaAAABu6AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkobIBw8BmA/U1RBVF4AfAiBfAmfFBEQCroUtDoLgg4AATYCJAOEGAQgBYR4ByAMhR8bgjSzA3VKVO1EUSI5RfJfJfBkpxr9AgQTJM0UCRoOP8/9xhddZnGl1ERQzlMJU4nphWVitrZ4mCjh9ghJZtuf57f55z7ee8B71BTRfpgLHeafrrWZYoOFndhgYG7TFatKl6299keEX3j+656dt3v3fYwgaybhgKLgBxFGEAi1k9NUkm1Zy5LH/j280rGNUAHt3Q/WYUKKQDYNKnoHoDRWrdnshlARbnXrAMlUjQ4QCPf2fmvKkvxuC/t8YAuNCnusFwojixCqVqaW5KbIdUhwGNQ4Q7r3piBSyUHp9gCeAyBKWt/j5/i+rfHv03Dk+hf/T2fZjjTSSotH3gAfO4BFdQ5x0adpNF/+Xs2MtJ7V7t1ZC3joC6yP7SPyQgDg9SmJDpDDFVCXVOlTNqlTFF38/V77DqhxSjeMXkp4277W7/fT/lxMK6a4ikBgRMSxZ+vXezMDAgwEkH71s2BAwhRiCCQsILBhD4GjcAgUFBBE0UKAgAUAIgxBAJxKEbv84FCFEjiAAw8xGgFNhvuZg/gs6atRUwozTk1eiTjvnZetOe+TVVO+NFsNLsNxA1q1GgDCG38KYHPWw8YbvcZqSC+TAh5UYrDLYY/oMNRXmPQIZ/n/BwE4k1gvANrhuElOnH9N4lFJzlaKM3lusPrcmkJEcfVnYQ0C939p6pENS4NMOOQDYMgKckGKoznC0aq1vLrTsFrbyDGklAeJsoNwKIwkRPBkkoiFpqDpqAjtQiftfrH7ze4f6RGjEQBhSISmoUK0E52w22n3q93vqn+6UWhkTf4weWKyZbLqY8fHGR/b3r8ABGkBKQaaOA+S/fUiBzEwfiu+z3ZMSoyThZvN+d8BwEGHrX8P2q+dH6HcKjusdAiemAdQpsdmJVbYQmuv5TUHOm22W48foUtDyQXXUna7w84QMDR1lU12JKJDTmab9jtK1qLVTghZvtr0dnZmHPoeR5zQYZmNNQeq6C220hb7NOvWa11+08f9CA1aLLGm5NBIL35va212oG9NLUGBeOv8sO2sA/7hmzZuWL+4u6uzo71N39rS3KTTNjbU19XWVGuqKivKy0pLiosKC/LzcnOyszIz0tNS1UaidPbJ7ePJeDj4/LNPP+n3up128eE72dZmI41p9IZv5lvNRhKp2FcuarupDIdVuIPBsCHI0Or+yOYtpbVTrCHQyB+TwkzWSz2X4EkyhHXzZf0x94elpVxWwGCPiQRN0odqzGVA2iN0mb74lnbXrHrr0Snp/VwmwEziLIIPVpeoiB82bPTnWQwbx1gzrNnO43nRC68+8TdTSfZ5KbVBSnV5Mh0PVU+4RuSVFuwXrpPoAgvcZxrX0ONv83vkwRURLHg6sFIDvLGSDRpZVndlFLIm5+ripo3FCWLdbESSwFiX3o9GSe/HS1uXJ5DeT9hfyCzd+GsX622HCVN/3cIKCvTa0CQi7Y/0cLtTtfipXvdLJ+uqahQ5DZMHG4lBfroyvZGZGmZoOmKs4Yb3PQuzWePo5TM8gDXJyX0yDSP0zsYut1YvNy43L3eWdpdUxGL+S/3Mv1AgmOQMz+ymGnmho/Yavf94varJgtFJ80BOPfdSRrK4My/5lWx80eMo5lWV9tdM+EZlWEhcp+/RbOSRJoaHtjMyICgEO71TXEQUp9IJGVvzDq+0+yjXysMI20myPFfsYvVLcpLH8uymL+3Dcry515nj6tr73siwg8GW4ey45EGhW3HhfR0MjQ/vrjPVLdVozZvvLGWFdI0MESwUZJ777Hsvov+99Dw5j2jXdpC4+TVSd62MXSQXuiWuGZhh/hvOOafXnsk6T4kgA3unFi6AKwgHaHetopZArd1rabNBeYSJaTUb/WGUz83gqYUELyOJLcquvB+qsJmlpRVrKX9jXavlrLy8qPwyyn3Izp3rkrOywU4ONIMMoUGAJX+HZWl3KJPSSvbiGY9tlEtZpSooqpyS2Yr19lazkX5IUrT6hsKVWJr3EarFbuaak6nnaeFLg/2+1zvwRXAJEXKvSjdLcar0cT4LwWN1YQalI6tp5oZNCLN3x3JqjoldBIUKWqX8RGIiq+z8EpLfraxvRPEY6qHxyF2FJOeLaOwpHDij90UBL1MSzviYn1wHWpu0uflqfKnCAiXs+GNLrTc32anSDpo/UCujzqkM1Xh7MY6MW2dfAFxZDUKT8vEyIO/Ie4PMlVZSM420CAMMll4xiIntB5WWoiDj+RD286gDbmXdmTlrAHLnlewBCHODGj3A0gKKElnytNahOFBAMIRl95mdC04MhznY+/SYwJ55fWEICKeonLVT2QZ8Qut11iTZTzueI3WBsOgNDA6kUvhIZh7gnCXOL6tuvWFNGRXU3SooAC0hulDuhJLaNhcuhXtfhDg0cXH9PWkSDcfmhTIOZyfAwmJETzpBjHcKI8oeOqAFMrgoT1J3Vgilo7o+SyTUiqCLQCsR6LPovh4oKdGGFS7VdSpkSmPF0t5pRgLx6siQcxR1hGtSihby7C9HO6KC00awAtUFpNRN4AuaNOZxlRKgEWTcCQn86Kbqoi/GcugZoXN1kL4ysHLdS9lAo+HYt28PUNbc9VR0m7FkmUyEcMGBGpvVi2l9ZLClLvrYYxvuQdmi8Hxm4twjm2THn1kGa2/xiKg6N1E1/MGhntpf0MF6XSkazRwI40bW4/OfM+v33hBsWojSgpMCZlUAmQTgOulTeyIFNgUqVlrAv5CgMB/uSGT6SGYdmFmQVpPt7sg6y7qffVrnDixgqE51aBEStPDFxJVhwMquqhW39Sz0r7vVZ4a5Uitmsh+odWwKD0vg4IJYYiED6HvD8jmIGxUSL9O7CHDfSM+CGyd/uZOaetDP/hI57w0QMK9DictbY1zcm6VRxgMr9wUkOIIbEKjLT/bBAGbVcw9xF05sY4K06+qwrfIsLv8e3mylOWJ9ZcjOUV0Y/3W0wJZgDFd2Rh0kAIVwgrsmigf3T1EAZ1OwPVN7y978WAUJcF+KRpodwqe9z6QoURHLpiZ2Ra06JKQMCsecdnAbDilpcTkSoRtCrRK3vwJgNe0BRJJvmC8JeynM4NF434HEjYSy1w2F3F1jT6d3s1CCUyKbKFL9CcNDVIRBMMsjGPz0/3vnKTRaRzdPAaVofQ3+3SeSN3PK3iTZMneWngya2J+Areh/kNSw0VA/hGo/8OiO87HH5tuu+KmHxZtLJq5L9CxAa8rhis9HHCjBzu5CF0kMiggfk79lvNda2B/9QF7duLScUXqanKrfNPhXYxcsQcOeqiMHvNXFNzZuuWK6aD9yJsKUHdA8wi8A7/hsYzxKljuiBZaGbGKPBommEEHBzpL0j6H5p8zbanyr1fzKesZ/RkcQRSHQ1fDjbzUfOTVc+Dut5TCYvrBeBcA54zedRHqLuj9UDbc2AxoESRO+mTzhZWpDyj25kMT/hOTpvS6OlFj7tv7Jn5urlaOz3fQXhl2Ix4x7r1favGsIcLVha/SfKwsyx5odonLFkEBGkk3QPOor1mwcIGABByjgA9toBCGkpd0GIh7kfwZY7QDE7jNZZbOcbPL/WQADBGjr5vCGEmlMmUS4Ch0tZvjfahRPBdiaoPVybCPNw02EYi7Ot6MtODhv3hELO75QIOWbTrGyFVoLpY4SU4qGSkwtBfSJkQgscZ5piiCJ0tGNxSmbBwettvb3WyRNEemmgAATggAX0npGpx/WFNXj+exR1DY2Tvd+HGnQjwzIzx0aQx2jVE//sI7U36cs+xKx6QlKvSHazvoSugGnCC3dKEJTdMcGBuYDdXnwtboZSNc7ADiVQPU5dur6xnMSUdsg1dOvTBgaKlJqEhyBdnYAQDBQMC4RLKKxIVVYCQdfu6LjUFx170vQv6B6XqG21zp9vyaso6Eh+hfUN+hX3hASgz7YocWqbiFoPNzNETo67dTAgC29Zygxg25w1OmC9t01mOqdqIOD63Y/Cp0AJ8Vd1/txBPTDHygeQSGayKJwPvAwevlXrLbBwbKeUVbHWOXTzaQ3DyL0+zxLAw3UgZzsSugdQtFClMhL4bPBuBf9CgrdqCBZfWcCvetlcNNeO+r2DDUGdg6QtAFE85QvpP0SDajuk6ItFU9JS+0iX6/vrMRXJ/Mxa0tvpQYY0oB1H3jH+jplX2Rbsi8B9VBaffWUEXDL6vvfcUIH7tO9A9pYBd383ITbQ9409LW0tqSGEy9h/yECEX1qIAC0bfUPLegdAH1/sJJKuP8YtT2ies6K0YYL2v7OC/M190kpNsnDltuOWq6Tw8tp8mgfv8TtIe9SkV0LGLlPIUPCTwnixmyWNOuXugbT+BSXrhy0kh7AJz7tzPPw08+POt69usmx6+r6/MNPYq1irRN7NkpizILrjz2x/lMGxHnZ+s6RjLUZtp2WDwA/PP4/wVPfentIJT5475+SfYcnSvbfjzM79GFNrNuV8ZFplzbGyPu+uFwkHF1z6PDwmgLhZevvF/x3eMxQzBPF7jt/ekvTL//JdaGV85/Hj5y5fOfhne7DmXHHq8+K5g13vrlgV93qe9jdrmPxZXO/WO+luqWcKd32zaGVUcWERdU8ZXR8UlCMm9jEaW3KnWsnbn7TyOzijOXEtE/LyN0ckrS8bC/rBJd9lR20orGqImGLZ4i9V/Mi5xufhc3fTz5hH6gtTa9KTl99adduR2dl6rL7uqJ36wr+wPouPTxUuMNZ5bQ6zmm3fcX2b/Vt/5w7VYcN965a3LXtmGBLMGTNWVsfZ2mmlMv3y5Wbpu/189033bXL169TFIq5LA553WG4rKgrP6/oNMhfLz7bOPGpc9v6D11NEz7SM50hNw1F1ZrVRSE3OztCrhsKao5s/ygK6pTLl5hv4lqURHa7KNpPxCed6Hl28NZSXXerdpV64en2AGtwkp/+RRfmmG+dpmO/9N5tq/xce8a2/xvn3Nx1K2Py3cOo9V3KrxwWpMgCkpvnbrKyq7MXzwuOiU9SRs+rsPgjojisstlkmtn5d4G7jy/47q8z4ar9v7cs3bJuy0bDqm/YNetq/rrtPnP61LsdxokmhqJ8TF/8amXG/GX9NLFtZnqkkRdFljh1XGm+cnn/5S3NW94uMd/C+ZAW3S6bt/Tkyjt3pK+Wjl3YtP6LJ4/Wjc6gKYpiEqTLkitzSvIldXFVeQkJ5bnxGkliZklSxVZzN+IrMkbRsDgoc816A1tXmGiZKF7gmyjR5poQTm/U9mm+AQoHd1m8U4Qs1MneI/x9Nq+moifDLfa5c3InR88572wpSr377SGl+OC9v0v2HRl3NPa35Hrl8wMTVcq81tlRZrXhp/vFTdV3m2SyRNmwfGfr5ULh6JrDR4bW5AkvW32zcOLImKGIbx2KuZzVTn7q3rb6Y3fL5FmBYOp3ZWcX+QftnhtjWis/2S9Mm2/IzYuwsfd32uUjzVgW3Lc6u7rGkCNPZm9P8DVDVu3RbcPWsfvOP/CngiOsdPEn+mm5mz4qXxeSLKzZUvPLb9Jn5jDED+ncxQcPH3QfyIw8pjlvmyT+dYAKc+uILGoISeQmDIArFkV2uUR0nhr85GDfD3B+7dPbCw9o/wuINNfFTLcYGI1MU8pFnPJC3lEFL8HD01PhONcm1zT3s7qpjW0pZhTFT5fIAZ4RjydZNo6/Sf9IukOpSupfrHLIsHCOVEWovz/6fbg6UuUcdbPNL9l4IDhUWBie6eh3Z0RiFqlSeOzjE0QxtyTTq0jl71Gi2m/2Vk9+4SWzfcbZKRozR2nXnxS9Wzjf71pQ5wSHzQmfqyZiojn6iz85O5XIJDm3ol+vmSnN+23CpyKVl/NSA4vjf6Tl8Q6pErMopUL9/TqbDFl21KxZziG2AS4/2E7vu5NEpWfoYlzCbAOnvrWZfuqMs2nXR6px7fJlK1f2sJvy2cpsn6ToYj9ujPSD2d2A8NCAuWmSrLnq97aymV59zfLlK1f0cNYbU+TLjeV/+MlPXSVRu4YFHHlFd82ssT/fO6kzg8LmLJoTnhrNSTv43smxxM285qbi8z3MsaHvqIY1vQOXcHSD4rO9iE+2wzVdlhkBCdWmlp3sL6uP1V1OxG5GtV++n5eVPmOdr9/aGa5r/XzXcTAXQACIDVYIRxXA4F4HLgBgJIgYpqwma6PaKOgU0ldtEOXIxeCXwzFKDuHAh0AAuQ8EEWjqwn+Cya3dDIKGOeD/YByieAdiTfg4otiA+zfj7xKbYy34GKJ4I2pbaVGkV4VKp4KixRK+YgowxBI2O4HilVQxPf4dSoq3qGNt+LeI4k0oaUcU70SsA/8cUbwpPLf30ohPFOy/iKC6AGOZ3g0oCb0XYJCPk4ASxXfUI61hP6rwSJK6E/LvX7PExD8CTPw+NSb+MWDiXwUm/h5g4l8CJv4+YG+Yd+lrk6IHMaoKYJWzlgadSaBJ3PjLWS0BLWi+gZcT+p483nycyCdoA54ofq2+fxOhvX8TfiexObH5/i1EQ2JLrJWoRz7oLQOvIPTlqLU3HkvyEahdkxBLMvMZyRPRXvX9OehWjIN4GDPtSWAQnvW2uG3MGrYjj1RrMvR+QCRUbvKNi+iTRifyA2kc1MW0pydMKV1p2lMLU0qTTXs6bEqp1LSnB00pjTXtaTAXDBLndiAwHpRr/OSTojwHTAHNpeQQa1W+YDbpdyruYMPP8Lq0/ssYQeriOBJ8dgKk7+9Zj9dX5gAiljhvPAaArWUrjEsBsErirUv7e8IKXQ727O9xP0bbiTeyVwE2aYpjpD3A5C6CT1yFdDmR9Tgp1Mb42DYk+stL8QVkq5xpgqjnLEKLJfkXSDag4RD5qGCvHNtSBGL055bMSKo8SDM1oChpAsTOH0jvT1KgoXbcFE9FNoDNHnfYoUrSYCjKiLcX4sXsl9kkshVSTRhpi4ipiyHzOYuanci/KCo42Q1skc8K9srzSCmsKEUTQ+sB+sK7yDmojTgPO+VlRcQnzV3EVeKpTSYTT0X2/h5DJJkI+vLcKrJVyyzJxJBIZhIIkpn0gSCZgAvIbPaqd0JYkPYyc9w0GIqQeEvpUEiK4VAH/jNckpdZEedhz0TcD5ePKWM8JA1CkQ0EUMRKWh6Y46bBUITEWx8OhaQYDp2H/wowAW8kzo/Rsbh8zJrjgUEYiv0n3tL8n+IvWuzP57NMMIxFYBo2i6MB19vG+ZBVY668qHkkl4tUp1VQSJRrh9U9WgtYedd5vkdbAUsjIbgmDI025WIaATi6IQtYOMbGNLhTM270oZJrAe429kjjoL+QiAT3p9XT2Z53wYTt7MztTD1A0xqc0pgD+xhu3LqxN5wLrUkSuCJaY6EBoG7BI06xSA12ZbYVzzWK+tK8pzk2ISMLH1i66xJ+QGzb7FRV+epxr2vpwGKKOvAAaeXW960eIRH1/JtKOA73fWpLdDCj/Lh17LiNDHTlz6bYDrC3vw4C142VwinzgGbBsNkZDgFt4VG7+jZ+841gSw9QhxD+TWB8bgOEnY3zqdvq2MK7wKkuNbfBSkAB3NOqtK3zPDZpeEqHerG4NG8jVmhZhtMkCVMOdFS5VZbabZk5Wm+VSV41BWu3osBJjaXUDvYGbeX6D890f4nvylhfcPPA6Lx89dI0BgMonAAdrJxXGdVX2XavAghsbPpYevjAZSyOJT+wO8HpSW39MgvFmvCeGsGqo0LDa1gt2Rc8aqhjQPijtfjVwi5AyZ8eA2XCm4RhwtuExMrG3278j/k2IbS2/yIsczS13jpIbs0sUTJsvlv6a8g3fF6eIfzzEIxRwtn45VCPZJ+wS3Dp3A3yLmaoisJqinDbXGq5FBq+rEownxJQPZH0OxaU/OqxVybsrQUCg0x/9E4+ItKVvKrgVmnlVmFl1hfrU3VCUXXPwlWLoGrtWXNrZc2spVVYV1XSrJoAKzUzyBn03tRO7IVNt9apq1kNUiY0l4qu9CW9vM122A7jpuPVCjLNAHohAGReWWpffENfy7Qtt8OfjcfdZO49dWrq4gaX0kuw8H4jO0/R0sFM9UoAlHNvNt1JtBwMovhU0ZBYnBjH///wr8xK2xHs/rlcxYHvW5bZUFrE+Qlmez8lidn1XVkkHc8T7kpv80Xk92QYMnZmhZVM5VTMsm48i1rzqN9MUrd2kH0p09xevZrCWss9Ri77ztx0DeQX0PcIEACwIPD33579VzXvDw7NAQCAkSe3/gIAeFvP2P+2/v+au5WTDQAkYAAAgAD+GbiOuz9AfEC6ZPrtduepm4QQANfAA2wePCBnQ/MacCmNAKw24wT5QVw0kJ4W0AwCduYFTb62Jxhg6onrmTkUIj3PuFAz5hmPYYRxKRWY58wQiJsmg/QANdh/BrkQmjNO07KYvSIngf8JquXJmjNvk3SIE2JZXqGl9mORCcRmw4o6qGftotjJF3CyPKJfmSYY/4qJFIcpIF8rhhTPSwX0TwGYqAT4byvY0IrGrD3ZBRgBJ8D/cwABQDcDiQwEYCDibjPArgs7gAUIAARwPFeHc3v1UTASgYmjHIuZ10eyYJYnI3FwKGwkAVblNJIEaS0YIQCfSp8FAfDQaoxEQKHtRbiPOmTF5kFuw+ZZbpvZ9T5BKlRqpFGkQKEaUl48HpGUEmp5UbRKycspipdFvLpHMTR5XmzJHMsoQK3khVhqTMQ0QtZ5JYjmcH83FigyYtGp2WRyuihTMMkrtqml8uRP8eVqVHNHv0H1pq/pgfA4NLRArdIZNbzJeNyGzhUmmodNaFmz6WUmlhnf0ox4wgZxyaIAi6S+VoweWcBNU7UcrmVllFJGGpWSFU2T7y5aKIVESvUHT5xkLm8yyjAqk5XiiyCTrDTliGMSAqhnQfpAxq3gZT/g+Ru18xpVjcl1ftFMrZ+RqfE7wlTPespoZs121ay4Sl8jU/FZXLl3OlPmrUp9sF3iYxd7xRV5FDCFHttZ4KFh8j1CmDxPI5Pr+ZTJ8Yxmst0zdpa7ypSxypDl7HRZtzTZLCZ1Jiu1m22nuHVLditgklxLt0TXNUyCK1KqGWwrp6v46Rk7bnpc7DQ9EzONR0s7aqqKdBm2wllFOKO4cGd/ZpGTLXdUYQ7FDnVQIQ75uGD7NUyQfVwg85QJYJQ/Y9sLpd0WSAuY+Xak5tlS3FwbDTPHZq7ZNtGMr/+tWUnl4z1tt6eHKzN9WjQzzczaMnWq9UzGxdmfcRZYnU+6k5Un42jJMA6WRsaeKWCkjD/D2FhIUu0sbBhbcyNjIzEy1l6WjNrCT+KrtoJunjGzXGD+cVNMPU1UUzxFKpNkUTLfi6civHAVLxlPFuKt+E84S2hMqmgvSsX2IlUoA1SCZCqZTH5O/kRikFwBrXACfoKLAHG9OCqWF6biJGPJQqwV+wljiYDl70+gi2jVSaVrxEW2cRFxkhujPomWnHSOz0zxj005SZYdBlWKOukUQiuSu5YvB9vAiJOr4pNOs2DrlnwKw4JiHTbOyg+sBldwdXWtliBgy3pSgShGNwFwHyl12rWEAKYgwfWy97hZ8owXYQE=) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+1EA0-1EF9, U+20AB; +} + +/* open-sans-latin-ext-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAADKcABIAAAAAZIgAADI0AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoEYGyAcgiYGYD9TVEFUXgCCDgiBfAmfFBEQCoGGUPZjC4QEAAE2AiQDiAQEIAWEeAcgDIUfG2FZFeyYIW4HEJVRncZRUVKo7Isi2DgQGLlZ9v+3A06GCNXQere9hjJR1GRQtwV0+jfjE4vjUAyx2/3kFY1g5UapoITqJEVjdDTqV+gaCn6zfLoY/dDgs6GtWWj7giCKzRtrpjjRf4XFxx9j36uP77N47751T0lxjd1HaOyTXINo0//Z4+5Cj8SpEbtIiYhWPHGgooSY0lQpVQs1T03T9yV5EKkboeKpiAcesv0g3+zO7L+7AimEeEASBlHWovFNjahsKkxd44HjgXf8T1ulegl778wyfNUPNXNVzg6wB8gwbKnXIA1dXWTiEL+z5MnYG5piD8A2ZYk1RMXEwCrMIkSJljYKrADRKWIA4rCxZvQUc9PpxK1dqqt027sW7bf+j/OnCw/P2cB23fV3HIf1BpbXPI+1F0hq0X7Vfb73YgidiuRTapdhspRjygFTU6AUxy5b0+3UdfnDmJ/m7HsD+AaSmSRt0vJuF6g9ZA2sxLNHFfqT0l/uaXX371zN4P+EGYLcVtv2KG5IGZwGnh3cVhdjVFXYVhshVxJJddtRGXSqEkMIMGjADpbBYxGCjZwxUbq+HmeO58g+vl7Gx9mW0ZjJ6fOparUDgBAhr8l3dEiVuJEXUtGl1FR71zSYPxgAMwDEIShpCZLKXj+JvkAq3BPlJFFaP620KVdbXshVSAqOkp0vx3Kre1ve5TLO/+X43qfTE7sDoLkAGzSp6Mp68UJdgw6LFu0ltkFKA/AsgcB0bPt32WxuZ3OdmjuKLF053HeSF3Zp+UPpVShcJPKcpD6GZodIvLFtSj3jihI6fvrqZ0svpvbQwq4J2WAiy/isaG7E/5Wfsdmrk8XVMoyJYqCA1BO9+38mCChY40jMiu0OwqQjyHzkCLJzBHIbcoMMFcMhRzAyRzA6R5BjQy7Pv7njzuWuu5G75W7uvse5p97kPvokvkCO4NtrE/zyF/m4AIDt4V4CXJaDExek14MpMghBY7/XbMZrd1XbiVmPf6lSXQrf14R5JfOh1wU56i/r7fTqcgT2rAvQqff04+H0BCUFDnk+iVQc8n+Wktob/luQZ5OY1IkC0KXvqUohgcEb0po/1ACDGGilQIND/CMayQlhKTrhTh/98slvn/3xxV/2X40SbaAUSjm22ta8sTVoNPjXMsuR+OUtUeOpZ9XXf++HD35+52XKjTcBTS8NHQZgwvIiYF32KfPy0LHM1XgtOLnJ8Wvr+1R6X3IksOtzd/H/u0HYPhYC2QwA3a/qATwaZDRMB+L7y/mjxr9cXUgIMP61wmoKyJ8ebUGcUGBhz13v7VFEIhcgAAFFaKIDqqnUqKJztAJQhHBAco7GryBy8CuhUwRHZihDFVNjWWyJQ/E2PoSZ0iNqDLmEuNzlMvs6cn3l8jd/Gb/dn/bnA5Nd3+ILBCQ0ZJETuZp8bdTFq72/Rpc8XO50mZZ76fKbtk2bI5+2vk6oYDP978pFDP//3T/sBmj/ci/73tS2qq1nW9qjG49ePdz/0PdhDjz4wsJSWJtnvAXgRb29GT96653vS0zE1OtEb5X9iMH8Sr7Jo7tTt7dEx9j+GrDbXqseuZ1miH3QWmWzGnuKX84ZZRZYp8QS602y3eKINcs6Wy3wzmwTot8sJkFjk73+20nTSZ21NguTPQ5pqjvtF6GCaIYQsljWFLXuZifZZp86My2yJmJVmWauGnfiDlpzLLTyZeeD3pkA2hTMwz7SDxMxLb3a9uMoLrHH9lQxeui+vKSRPbsQ+P6+w72NygaFXFZfV1sjrZZUVR6sKBeXiYSlJcVFhQX5ebk52VkCfmZGelpqSnJSIo/LYbOYjAQalUImEQl4HDY+zs2ONZAfHd7NUuDH3Fgf3aup5AdHdXyvchdEDPmjoNkS7MiZwdi1mtoYr9nAgunW7bG4krGtvhcKpYghdt9qMOHBqHTUkmHQYuW0cGvFmzx/qoBil6DKuoWHRrW3t1rNe121GzIBWiQbT+Do1rjVCR8vz+OfEzRbzxi1bNitZW3JhZPyaWiErnCjjDqgmKrjauE/unyLK0Rb6aDCxneF40AaNzMmFTzjL16+qwC1JILQvBg6KQcOsy5zY8ebj2gpZ0PeV8VFa/olsanXEkGRouzH1mSzL+2lq44rqB873C+EFIfCp+ttu0GUYXXCRiEedJVX9Vn9WHdHvK7smJEG7IWF42MVwtpwyZWFkKLweCW6oU2NUqzXYmos5aZS86bm6senXQEhYOVs4gS9st3DI24P7KE9oTK6lPBV/GLX/Y+gPIRfQyzDGkmN8cgRpv9kZV2VEo2/tBRRI2U/uwgWEvH93Wn1ik7qT+ws3a8hnOKlI+3KYvMV6rVWoibLMm37CkhXCI4Fr/mROIJwDHbi8EaDNv6pfFMHxbpFcrzW7NPpp2S5lY7njYHEo1LN2HpmGtkzwYq8QcoqnN/GNji6t+R2WB9lMP0UvbyynJNNRoN9NShvS5VCyIip4Ozt+3Z0Qqaz++p+QhJh7kfrAkFUJO57oB7ogsg68CzH/8gtbtFzT2SMF0SwQ/dYb3yEWsJyBIsKnRgUxvjnsnqNWgmabLNeG4ySfdMOL11BsIckq6DGjonLOJ/VNJqNxL88ajY9tt9ClVuJCF2r5RkpwZXLVnKkFewITBOgnV9xWeI3T0sn4Tg/1MQtd3goI7SMmpZeS7Lk9kizXsueRK3YBSYeSjL3RC83bzMrpRaBFy8wzI7rVR8HYiNYFMTcr4qdDZyUOm6tutj7kU5y4rEztPLyEkMLZCwzw9viOMHRhIfk+J0nE6mlh5eQfCpMT8v2Ph/A9A0WxoaInmEwqzHvbfpmEekoicr5Nh9YTq1DOoJ/VNOxaJmkUDuaaf255BbaeDCzsVeUzbY09Wp5IRYtOWZPp2KHMyDdlnakLRQ8hdAgrcpo1niVNlGyYHPDYVeqw9J1OInSroshMZ9RyA43VFmzSRANPE/RK6j2cn1AuwNckiySHJNCtAfbCNxAmN47VvOWLcc1VKjLV4BidCQUzqCkCd1i46t0Ah/BtLGKYHG4+aVEkTAQLLi+kJOibknPFQzkamCr5TxYNpRTm8Ssok7AANnzlb8DTibL06wo251hsGDTwL6OOH7fks24yzWfSIA2h5b0QAaE+ytFQudurqDlY9hWOsZLAQhIU72gITY2uuA4gTqCiH3LXr5IRwhLCWZzpdm4tBoBrzAQOyMkHnHVogV7C0+Tsi1uebijwQ4+ccKVxmOGaiJK1HkUHqpMr7+doRCNR69XbeR9k66KdaoLcWDfRlQduJUAm5ENZI7W4nNtlw1I9HZ6IHvNXxwX+EEg6UUyusL57i49ztWrYp1rmPMVEgcd/YNBcpMjE2Q6XBWI9sA7IVoe7LdgNNFQl045ymZfVzSaGQntVsa6Ff7A0bAPDDScRlmbVRs8nAdnFSDqZocRpYCkQJjO5vEvBJkb3VwSb2oilDmetURN+elJNsbPvrAapFuHDvBS362DEdKboV/lpl2a1uF2L+14ebGL/i2rwDgi1Qvlljn2Si5KN7koCExkOYkgAkf4ax8UeA4yt6LI7ckYns+A6FmYg69wWzi1Ptgp3CpV9D0CmHMsmV2rpoEz40xCc9FqvQZf34L0oJDxpbFvAS3VBm6ELeOpa0UUiKykj6silwV/yTVdapKIQGNgVa2KLzRzTMYABFhjx9N4QSgmAuFJtvci3GTb50YUHRvoaiHgc9LEw65DSpEJYZAvcml4Uglxp6nbubTr4RvK4ejbvBw1x5CpkterGWl0TmhIsgD6ER6/ArBqZPmSkMjLNwIHtl6TzC1LXPUgIThFvIeLp2fEcF1o+DGCeOoCtyQ94c+6Aa6//Q9unoJppuj8KeAkDD0HF/KkD8huMdOQSXO68yw3dd+CS8l/GKxhtYzZS8021MTUu3/JjnLltz0r3n0Wjm9J9CSCxVkUD4d7oiIJ6YFZuESykYqMN+c3jP8cxYPxxHiDSek4p+yuuluFYfO/GE2OwLSrzL/lgcNV8bs1VLGBT3b2LVNRlF/UbZ52DTiCj6zlyQFH7XkQwmDQQK99kuGA8nknlNVPwMyfMf+IxBF5v66e8Z87aZKKzgdGFUzzF4YPLRUM8pem1sJQ9LYb2QBwBI0vesnUQ0Z/pPrm7ogUguQhRiRPSEdxyZWH8wsJ/wzJcaQq5pds6ky/1bZw7ZVPe3rnU5C3GPuObFnWBm/8JSBqBM15va3SL71seEUa57LmtOCZWCMnGqN3sf92bSUEBytYmM3OQpIcuynq1lYDZwa7awFhGtB/wCYyJQb56gweEGqJTc5FguxhqRZ+iOtHZ957KqN8hJOeDYjMGrHxwUDO5hXMLFv30s33I6DBLOkQsHQ9NTWx2Ljn+bKddDqXYdbh3Mhf0Ra36MM+yJL1vOOkcSfb3dlexjWu597cnprRQoY2VHkzcDLcZ2ktnBDirDFyWiC+G+zocRuHOe7kRfXD/kCNcQjZMhCoNXp7im02+W2cCP3kxYuNbeXOc+OlE/OWVV7k7QXMebiObC/bQeoPXdU0tz9ROqffb5BwOt9/VCbJcaOxS0MKGI1Ix1ZRaYPgP7jiuk3y+cZjUUl51JEmGx5yrnjleUuWy8SRzbu/XVVC8I0AfBWIp1Zu+CBX4GZ5t9634grpqiJhFWpm4bRRSIoXUko3yNLPto470Hb01i7GBs3w5nqjAMImnWArBFkEFbLytQlXSoSq6TMTJ2UiFsTZ0AA78s/6eWtC1WN3SGuipKQpxW0pjLI5mnePyRipToXkUjlhNRbbuHhNTIrOXZF8saAtxOgz+m30bXRTXewBV8zlzL0fsdjMUIElCTVPjmw19te2hdMi4fTEuHI+tTJ4w1UCcu5X7SE7C5wo0k3uqaL4GEISplUM5QZbE4CeymTyRSkJRnV63TjQ0rhVMebLabJ614oietCCB5YKSg/0j74iGBkIn9EZnQSteWpuDeGjIhXTSnW6DaNCxUghI2PNCyC1FWCXTAXyArKgE+cVpZcHPT26NbWGJ7t5EN34n1LpBs5nIPUeibhM+48cLkZcQ3yNWVCPb0hrTvyOVnQu0LHCGG5DxCZnoGyRNlzRkbwfoiRaOEoctq2vKXtF72KNWcZ618xvhifnaD4yUHgHsMwl6Fxc0oMO16q02badcHgKZAHI4+Zw64RMKpCNbql1iy6S6+AjDNMkiIcIvdAL/Ype3QvOc3c9TRjHDB646vxEjS3oQc1KoapahudVhw4jbdAaOrPHmY/5Iwv9BDnle1iVyEG/k5yzQRad8Jg3fiMsDtWMBCOB5HUelixcqbonGri8YSSa8JY0DpoSaW/E+38llyLm6ANbNX7FbZDpn9j0NEl53oKVsOMGyHqMlAeuAb5gS6/JLD+uiOpxByD82Mk2mNQUyQ8TVZOyckh+ykxXk0lipBAJwpWDdABk7LlYqAk2yQV5JV1XHKhxVKT1Wz0VwqyGLDyd+WWXWujskzwLDEQP+Guhix4yMJBtKJWJWXvJx53hfABqVFLcfTbGSeZzqsghZGQIiQIQG1aIVen7RwTmwHJsJZNzNB0Z5LCh7pp/YR3VY4vVRG3UCODpk+NapFLb6tlPDyRha1dM1KmntnLDQGY6MM1Ku+hVYE4a0vlZjWAADbVl3Hgf11WPWxoeZxSAS45mNSKii9KcgodcBSGW3aO+QSzCuCwboq+65GN1Xr+U+v3GiOfAvrjL4UNLCxYD0BIMVdyQ5fjsWNCgWYwruTNQOO2oFcBlfSDXIj9obvqprN9Iycmr7zxIbsqUiPyDmf8sneE5jP4CPoqqjin4TEvwhdc9xKYRjdeNlQqqV5dzUNSsf46BB5Xa13swHX5ywxvqw+iBO7pYBienEQ1FkpsaDhshLNQgR+gASW/VKKNqLuch4ynJKI71c2PCq3RjJzTxKvig0VKsmfEVz9j72bbJ6BD2oBNkFDM0PNbsVkxJ0NRbc7WySu0Dg8ueHOkVfyUbGMQGfiI+Rjh+sqiKijhOm24INVzyqVLRwPGp5k8IgOyBOFF4BklzfC22kwMPfPxPwgbh3v+wB51GCg6/ABjIZH4D6ugI+qCbArSWUnQncS0T1OmHhOpVM7N+1Au7zZwIPPFSfA7Ze9HAiXLQUVYNy367crx7gXyy3beu00F/9s/cdXeBmC4xvImhBU7m+NhFURnzfLZiOCEZ7tRYyzWesKAwHEl3OOUE+5S6ftkmziOHB+WwSlor6bXfFECGdZB5UCYZnv+8cOwVkDMUVw2IGQWYROLZS5w83FTY9NiOM9V8cUktQJ60kVNtl7xyB798Z8Hx6tl+x4azvVlzN2lWNCi7qc+MahpbcfQmNKAnqHKdrhyK/7r5pBD0U9dCxgKMZtFNsVm0rvzW42Q37RdNkvHyxt6CPcW3POlu6HaMnQYOZhr//m4Fz9C8agVo7alvkRPHopf/uyr7slO99qbrDhzuDn4Lb/YevFfxNLU71UZhGdD5+UtILi+de38KXR2n/vbjMo1++p+qZ17JboguqsMlv5yVz13KA/o1MehDz9XMVrPRdaYlbR0w9w/gzl6A1s4VAyr2Wm5eCV8hA26aP+HAvPoDTs8zNNkzJDcZwBybB+hxFW9FwzH4ZQt0bbA5okjip6GIirpw5NzDDUylVdHMtqo+0ECXVZAwep9Y0IQdGqnpd6xfrwNt+OsfY0EzM8g9sn3Vvjp2pgbWCf8BgpCHN3VgwGq6BYfF6+nLfpObQON9dXtXIChj5omXvp5lQmaufcifmtvJ12zQTWe/66J5nfnxqdupPip2/efTuYbPumbntruyDU9D/4r+NPdcnWcAdg7SnviDI1ptLUsYaEwlWnZ0XBOk+2Y0+JqmrvOJ328rM+q2nmWJDcKoQVan/TV1OKHLUOP88xG87ZPA8qLD4eQiMgHJ76PL4UmwVnJqpq+cKS7X3OeoxNc86U6BajJsyTMlpS4YnYkhIQRtZLFHHXwlJ7nXWjUP0LCbvcje6ya0Ke3yYPWLT9l5Q4nz22PzK6evbF1RzqXRj4lOgMuYWguxdt7YcXvLjGFCvA63nQUTzJg3jI48mbfAaI+D/ttzDsIBJxygyOMMGfZsM+5NsKh50cix8xvzRGMWiJyVZpJvJf4MWumGRm4rvlqzFdWGzPnYyhtPm2Pe1fkFjrzv26jzix1xtwylBagkKh07pb00roSct8+iNJJBSeCgqV4QY6du3pVzixd/r7Qb17mTSZW5pfIHMJzWwsk9dboWTcCeSypLi1mDfhh7fynO+UJQfJRm/wXgtLggpZSb0nlqfMJRYNL9faX0w/kNxc7vlT30PpiOX5OJzC5M2JuOP9fcgD3TkVHIbnY61J2vtAEHmtx9CbWAvoPdZtd7JxP/M4gG5ruvaQAmRGkxCHyYQpHBo1VL6o2rtveavl3rP/zHjeu9z52dGUktG5Lcb3qy3+xeP7U1mzPqzHTqpDtN2BeP/FFX/2H1ePnu7eaOxobho6D1sQBlbHcF3fK7P7d/H1Nny9Qi8yORlMBIFC/WnemQpykuT9ecYitsJjlBB/O3LB67FqInv16/BH+n54/0hAlw4MCLK+d7OrSuF43rDy0Hc7LiUREokRnjPL7QO5yL5vYk6WeWVlRUiCSVVRXCqpqqEkmFtykLcs9tD7W7vmUOucGNoFhK4Cy2XJ+8oKpurK/qSIpekUVpACYEasrAYjVYRr/7ZGjIlLtnQ0ioAuzxZwABdKrx949usQkE/gfNG35Mm5wA+K4MVXjiLIuJaRzEzW2f0BGIyxCcz5dfPvlgW7Qp2z+rsnUKYEJgrGmACZk2kMuSVtfO3rs9ea1BqCgdbV9bEUxd4/qL+eGkQjk3fKk+VoNVWgzoClWpEtc46UySc4puUMqZJDdPftLljfMPfhzarltXor//xYd1ffLJDW7QuN0ujZgHcvVpYnmRlqhQYx80nqjc+UEx3PtdQ/VOIGxFgbmozhUJO3MxFxVyzHl1dtn8yPdgD0iSffz+VUi/Bgm0QZUFsjP8mpjEaWyT0RbQOpVfE2EZgvTKzWm7FN8omnb8rh8FOxWU3labSPH2j61A5LrkuPaR6aWJzd91r2UuuOBhIQq0db8rVVRFQAWEIqVhWS5Zzj1UqtAKLHJnHpitv5ll5MdujWSo65uGaEMI5N/8z0gZsiE7RWCDVmCxh8z7dbvkk5QuRNliAmex6fbMJZVEWVvVkRizLENCUUu7j0k3zcjG2H/igMHfGONMqds3qs4Y/4RdGE76ZF0GycLocKwx9mRT8sRW1cqlyn+ts83TMDp+ppnWFf+PJs0av8ZCAU7Y5ReSeMcsaLIEeC9gwobxU9WKzcPfnfn8nnZqlk+8Xm8D41eHaB4cyZVG9FsV2xU5d3ECZH9JnE2IKZYmAqF/lIsryd8P4eriW+vrH+XskuzvR3Vx9gXZlttDImOpCRwGJbLY4g0hL75Eajxnk95ToLYr35PrsWpLoHgGhuT50XU4dcVBxZZUdx8MOAcM2Lny4es7Sx5vtA976U89uz1t6AS/e2trIk83U+03qIlj0X++W8EzNa9rVIM9g33qjt+BZSvL3l328XZ3vSr/slNtZ3/zll/wx/kL2kWEwkFeJtd22Q6nyT/lj/dObxKSc7uS0jMasVeVIdvBBA+TExVqr0RQzhXVcVoWcD+A6P7jMabKlQnPZz2MFJjUcF4i+BqgLrq6Z2vq0hC/35nq1ElzGrIXpI0EH8xzJXlhi/IPh+fzhzDc1sLCot5v6Jq9emDfhdKSAtqQL8YhQIpzuRbIr5/kuvADeUcFrJih/UeAo+KClAJuIq85ntJesGFdqZ7RqzUCZER0F9MC4na7nKj6/INymKJ0UrAPFuDT5JF41E0ZyNrrT7LKVcwoL8amySOw6K1AWC3d4tDKg1p8qk34/Mj3PRsUy4bOB3UeadAwOY8I0tuIIsuGsjK1ewe9Ve0U0pdAZvM95WekZ05rTg9KB78+ZD6o8zCZIoNHqpbar1yB3Vc9X+vv/fnm9Z5nHvkPsCGIFz5gb3udVwXaJtdcfiYvPKyAnbTUC6bEcDIcGPpvHCBQdKeK2uKkPxO0qdp8P/ceQEQQgxx/zr6Ad3A1ZUHOnKo5dc5tD9l+JVW6E+WLDM5Si2Zy0Eu2LLPSPB+sGTzjqE9seZI9sSM/rmdeK37fJpEuYZds6ftHyHvDr7m13ofq6YlEZ3bnJaBKjuaaz63A5tEV/Lu3VX3Wk4zCWHTxcaGDZk2ZhCm+2XTBSk+P4+LT6/3JB862v6foeYemu0dnJwZCruu4AVV7N2IDJgS1nAL675PtWYk1HwPoeWXi4gwT6k/7yw8N6m+cnXOKJhP4QpWkoa5SnYg4LkNosEqrYV2fHLLCjdCg7V4tlfzoNinBvqpwS8teWzv3xiNaIl7c6EP23XoR1hI2bu8TVZtaK92yKLJzwehWVpaWcbBvop287d/vEdpqy8vMyUYipMnZx8RGEShagXuamTJ9FCDZNQVwt0/dnLu5GSWK0ekxFXtmlFgYlWZW6C7/SDcGBZreiM62KnSrt6JBvJJZAnmnqczodi1xsAuT54bV1zT/itBz4NBSKm8+oj4MaW4mT/THOe625z+2CEvBCCTC9HRZqQAdlmphz9g+flSdOq3+0f3F8WOHLRCWuIkqV1NQWg9UMComPAwVFRyIjgoLi0HYKY3voVhRXNYmGBiFJMSRUa4uE4U0oPC8QHRMSEg0IiwQiWA8pvdLQfADwlNQWTXC9AxJaRbfGxhxNcgtJ9YQfz9o+BwdF4VNCeTLaXdlwVq4JZn5WWbl9FIBi1XETxCasdPyOcVD5pArT4e5hWl5cZZChjDLnF2axSi3zMrM4xa2Qj160pVspYH/vl/3U1MONqLTunrVQE0h25INiQ5hm1XxjfUFba7YYWD/+ll6I2xVpRmp9Zgmu1aYlhqEQoSExMYE+O9w9olCgJ795wOGi1obMNFSJZ5PtMHE4ItB+zy/SrRPDkESHXzgCU4EeJyTvS/+2wyDsoqmVC9athesk6Nf+Dc2/nH2EP0oKpFDplqnWTxG58UUkxYRhBqxZDv3LLtDd1nlC/Vdw8e6LXRWIWc3TjWXX/paMCw+4hrr4DQNMIMmqu88z1Q1sdujGV31QqzrsE/uima8u4DTMo4uKWpNHD/cL6sbrXeX+8vfwVn7sxE2RIOcgmGrfrOthzaYScWg0Fd/pFrvfg08u9sIJDpNEaFeY2fhY6lQcxB4qXrJw7S3BIRbiXuBqEaAYZ7OWyWLXmhYuGynyyVBJJO2LQ9VDx0fqhlJcpREE6cs+gC7PQySUnwb+Zs1m8c3qzebWxkbq3leVkHaA5++up0arJHW3o0fQERNAbT2g5rJCL5yrm2ya6G1E9B+XPfjGi2EjrIj67MmVzGNowh5kWGVybdHSWOosCve4kJiTpqOOHdvQZ8BOTWT0Ryb0F//33fp1p9Ko1Jt7/zNCm+soQjKVUPtisxnxyZKfC0KaJX6Tl5pMWkIUnA2d7kWJd92cGVBjJTeReGlfyeaL0AIJgwQNRjk+hhm/sKx0LosccpkCl6EEBJBehxnS/NKl5QK+FWijFS5KCO7vlQejMeEhGGi/QNR0WEhd8CJE1/PMiAz197nT83/RgG0dnie+Wl6p5QhqA0jm4rxyw8h1aKr1XA4G76NHas9nWP4rGtu/kmXwPC01e8xO/PP1bkHoK7JrfN7Zc3nE0NSDxaewCHQExFUEzF26aFhcoKaLyBY2yOcxgNhqS2x650ZojJ1Zux6c1PsOXW6eGF4G0qb0m4i9GIHWkkSFh/qY/3ryFkSDNewbH3Zi1fZuqmDBSpq9eTm1qZyOo10VKi14UBePtKL95eTcg9i2LqscRI2l9TgQlAcR27OrFdd233rcsx01SckyVxCdbd49IyUzMCCdYoKDRaIBqxgPz+iY4Q134QfVO5aWc8z1du4+L1Jm/4cmt4v7Npu6WrZlOR+2539ds+Fk9fnskedWM5ddMcj9lsjaMDomO6D9BTl8FFL79UbygtUidou0zm8bve5TNGavD5345uSpfxTDiS3IbLHRd/EpZHRdtVq80q5NIpeRsVXuCVIJ9LIC6LVGW1/xX8vMhcDzEUMwzsi3Yb03EzytdZW1GO/6kj351Cdjfb11DzDGbjQUtFYtU/ZU4jtnuQGp26THb4DOzgx2AT4R+31H2wNgrTzlp/XtGy0QspkG+rk27QmYFty2uSn/0wc8flrTm+HF+TEuLS6ZlW89n+5t9vKYlc7hyaejKiF6euL5DuxGoOR/TEOpG89+mgOP5OHiz9UIGIl2mwwBF78MB+Yl8O71/Oapr2sk421+ndezAOk9RNalJKhrNP7wE2Ec3x8YF72wL2l9QPmb/WmwV3ulJ7i0RMS2u3h2R0a0qNzEKC1NzvOlSTdaJT2VefGtslwye4oHkzYGbJ71104m9OC77M0593ad9OHXzo9fts5XVhtt6orRqjjh1k8CkttqgnWlBQBiAUaw4JU+JKYTjtfMwAvm4LuadJgsH94ViLtXBvKQDXt+4+ePejS6h/TSeqjSOrtks1DIZtjmTREvjPYZgVIRNeuq+P3PougKmjX6AslRXw2ySYfZJNTjeZoycHlyOwinbSa+EqTM9hOJmFjwdGwfJedcRcG64i5ZJzAfOuI4YvM2D4C0sPg/bWLIWDhSGTHQKFORX8LyEVY7B/pYef8ihAFWBw39jg/z5roE1Y2dU9b04fziNXDK3WOvmnubFYSkMGAkIoHOO+7DGYghdpCOfiNQiavHeytY18quBp20Q/gnD85eYQEKNeSVCrf3WK2UR0jV2NmT8yzCa9iF+Hyhez/cuTRNfj/VbScYyRad/yHlgEYW8/nWjE96+kxhNIXE7QCvMJ0p6rnf6XV4sNm64FX1gobrEf8nG8cjWs5BWeoNdWiwXrSDZlG7KKnP3GHnqbBbY+q4T7a9IcZLLsVnzydN/X2+I42/aMGgwERBHmKLSANdlQND6ptfEmySl+SZto2Y6lnfZTZ7MLOHQmpehXbDvDeXZRZL3yzdii2XvFnyJZoli3Rp3E0anNy3pCtCjgAe6cf9vB2+tCmDjWbUp/oRdb59RuKvQ6LyfoeS4CXzbFZNkdAj0Gd9ze5IwSyzn920RDSseYzGGEoGDoI29UmisRZu71EXw3KTkPuOsUR2kvFb3npPwZJvxjd6ue8M41OHuZF2JHwbd/QaaBILpia6GYrZn+kmjcj3OPoptPiBoPtuR6y4rpyu23wyL3cFVkeca6q1iOqIqseuQG9Bjr6ALSddmSqlGou02pCEKoe2I45vHqtB4tRL6Wp17oQkTbDLRJ5rFXLojaCSQSxmjSWS1b72ZWbdmzhfSeLY3OrYzXgarrLYysljabsw6qfXX3t2t+/96f97S+fzf3f+7/b9QO+Q2B+9PdN+JOxYq8Y2W/m+VKWbRYK87zcfmeZaZrmF7M9h9K2XuX5Q0fdO1y23Ag1zXWL10xMrbbCqoczwGRiUlUusdi1qudqc0TwbV05mg6lROZQmM/NTNJm7US3B1KAM7pU0el9rlucQSlFpp6bmaTN2nG76zzXRpzm9xrQ3Y+3vV5MrjhSej7nK+tef84PWFfalA8oZT/Pyw9FX1fdK2kfvBNjW9ULgctPrjbNQGYfmc7sqXNnq6d2i2eZ6uFpwSg6arpjdCgW38vF5TNRh1XPJf4h2FTw+9CpAcrzeJfslAKZ2R1a/QxaKay2llLqQ0zSoYOFeLn12oZLD3bP4TWzppBHAfQx5k3UFAEZ7ZQcZDRHSgdJqgkvjdgtkHbnJaK1ptSpUSAruwWRoggFkfoFRs1q4KVZQ3hriy3mvLXFT53Da3Ptd1xmVz0eR8a+6mMsoEbjJ/YvMT23lORIsQ3r0XWPMutKpCRTET1H6ntmzTN0l09ZbrbtxByQ/biARW/cuAuKdVw8APREuI9qPy+ppLs07ul96GQ8KKhYbkhlZqotVWNrrG5X7HQpllp5aZdSdMxbo3mwaMd5YcQ5GkzdI3ErU93765qmSKcxcJs1PfsosMWRdbPH6vj79RK3uTTPQwXtn2l2V30/3U/CfBwtLVMpV2HuUe+LeWWJ2W9xNIZ4rnYnVlNdpOajOTqHp93rCpa4LcHMImM2vbWGL21vKRF9uSSz2yzOnctVdyO3emIUSswypERlvuR+HV/HKArnQnEywhLYrma3rWS3u/03GHVyjdsiuvRNqebUmnaOCto5pjhkPMNu2Nq0A1BdvGWWposmK4RCLX5/ptQnzCXs+XW0Pry8ATh2X00lwW2SKn68wpNbq30FAqzlLTOGnkmbfG1G8b67fyGFPLiKnJjbWd4as8YpM5j4mrewpYxCavMTfVImef96DQXd+TpD8nKlyATpSE86I4S02KPjQp7vHzhOqXB2qefbNc3wbBPrHA1aAPnGGZJ/Yk8wUqoqt/YYe85l4xVyOH7+Nq6E81maaTi+TMM/fhvFOhzcdQ0AIklPM2C+JK55lIHUlBBrWkXEd9QxhxpA6DcbZKiGaQpwUCjv4Ot5wkJrcA3SXEzv6PV7HKajr7+GoU8+2WzAlCR/qkUnkI2F8pvz/wWm7CppAsqjJ6lqtc0XsF/cvG/DC03cG5cnRTNdN7mazOc4b0uVK3dIUqHVPsbWk9fflGDk13T8UwNiO9PpO50V4/nCqLWywdDOoglRUqOfBxZOlSVSTU/WpNKHKMx2oERKnzCYHok4xvbexzJsNuekch0bcjs2XogSAbY59j0lRZtoH/VhrEuWzpdmUZOQpWCk2akX8efu90ik2xXRdOf7Ii65zfVq6UmYM0IBtLdYUQz9dr7lg/S97g6O6F8C2rDe8jNoHPFcwDE/6qH2PrBdI3wUj9OU5pQYU6rns27ctlLEyP6rKoe2dbvObhKn3taWQKb9GMutEGkaRU2TxFynzWbjorX7veNMQp2M8K13d3JdYrKbJn3WhweLdh0yF4BPUpeOT0/AdEryRlBekP3/x3i5jOOyjEJq0XVRON6YuzvbSqwF87H3SPE3NOyvwRSTaLrZvxz17Nymz8l2uTjpMiVQp6l/p1/aOxkA/gB7UH3EeUqynnwFuna0WWxLgPBVx2QvZd3z1L7t9znPTqFIo+l5mnctvyPVzThjk8lyXxSx7q+QnmJjlkfE2QKUHfF0OXgRBc2vo/9SIfvTPi2ISf+0yhrLeDNgbogU09a/HtxNkL34N1ZXGpPYrIQhcIpTA5SpetKZBuBtw0oIKGXcA9Xx7g5PBx2iAIKWZPrrY+8R17VYmgWvYt4GadZ48TZY88Z/AyJwYN8Y9XVVVjKyVpliNQnjNRAM62JDLoeS7iwMAOxXpuFXVa3GhJfGWQuKE7bT0eOgSd7ljA8nrMK67Gzui2OBFMNoV3x+lXAIoq4ijSp2oi5E2PNF09RPS0M9os6xr7THNWL/LInsLBUX0a5F/WP1PuJ30wy/l5m+TNbFbJaO91+v9P3daKUf09fpXbrehyW/sGocrRPnKASY0QNUxYOn2yg0y2IeBICd+wGRRFy9cOhoBbKh259GXYyj6TyddhXzvjXWVche9qh/WLyGzWfGi/rH2U1WcKdv8vDNpEfdblqbFMbmc937hfNlSymsGtqdabTiNaOeEBndTun6hygxQHuZ4riaukijaWo68F1ZJ6CPlPMBM89fVpW7TgkRpoBIzkJYgBO+lSCDcSPb1io229Pp+nphDS72IWn7XlRObsH4u0SHQyAEQCTlv/uehIuPd79sH6Yjx/876kQU9H0VdH2QPdP7/9bW/puiD1w2qv0doJNJlDPKgQU4vryXD+5vSwdJyqDPGRg4NwFK7Nb16JkzLl/8E6g9hyyZLFQ66kRgOISr7OH6OQi7xB7dPxfm4Gyn4hCjas/Z6OSWtZmnyjangzZlp8RSCuMZa93nyirqY7J+uNRbwub2drsFHaEiqoogjYB5WAS3wGV7aHh21+zdL9HiqJnrH/17CPc+NX/j7RpETRqfUJ0RlfNhrHpRyZjxXlgBx9Zmficqs6YxogsBrJIEJ/CV0HtP1M91Dwd/X4Qg+/lZHsfZyIDyrV5yjXPxbmkQC5cemibZ5vlFQpzDFCAuPJIbaAdXzMZ13wH1tm1YI3s9miQEgI2DPDBlIroeaMJZYbyCp0N4Nhp8hbJ3YXbi9rU761yfOj8iY2//fwONbB3Bc0Hw18YwFedFZz3LzZskaGe6XwbBKf4v0hV/Lq/R0MZA79zJqM0GhrbXaGJ5KJRlu/iOegjLQqBUNTnv53MfyZgWOutk0o+znBahPsshtUz0Wd9kZ5DNjdWCezVwabD+S6kQxxGsMFI7Wf9+6govlVpJmHLQeY52QDhY+ltBGwEA7V7XZXip5HSKtunQalZ8MlvX95fpm4DjFXDx9w9TXgx3B2bAHjiw2509AKyHPzU9TV/5NcVHvkzPTvyAYwJ4uzuh/QRqxMasPruvLg+HzXodVy4teBNblK1T0GsPX/PVSIPowlCNPw1XCKypMXfgqxry8RYVj78CDZ3ZvqXUTyOTZG0pkwkIC5BRCt1kH6ZU1vpI4AFm2mlgM7ctBOhx/v3/huds4n8XioS4yt/66th33Ma996WZnzb8f/3khhM5ABbUe3UC/AO3UoedHRKOjUVXN00IfdHRsgEYDtq65EyqnamrkTyzRnx+SHs4bWWAOkJ992L9mJ6VH36JqVKUheyrlf5QccmJQK+QNqf3DhUtK9VGzlbqfAralO0Hc80X6gaD2sGYdRlONlhHIbimvEI9ext/8mTBuI0vt9+2wnRJCpTgiIzcFpGSm8YpTutTb+aSWB1j65mRfbCAcR0zbEHD8hIsB08hYlGq7UPrQyJ4BDvLS/AsedENQLAB8YjvA4Mxz2fts2bSnpPrlsHdCEmaM0de5VDrOfOH6uERu00C7JKIGtbOmDONOqOzkMjlp3jgZUc6VkWoF3gGvzoSIoX/PJlauTJmRLKshBlAXB0T5gIRnpWEGULcmCNE7s4Tou+YNx0r1eVyLWXX7YR5wBx4Nriusdlb1q01flvT3opSa+RY8b57LiDjjhWNurFu7qhjQzKMJO3MyOVG4sZ9ltSmdFeZIPN3cnpUWB6YZXfuvuex19iVRJuPqVcgfaXaBn9LrnPG7HHfOsey3RTFVctQ7v2sJI5Hjij5GCxVOdhDzAN0wA6NsnvUIMwrTbUQjP9V37r6OZgg1QhACJbqZBQGFGwFWQdUy1kzCUAAWOPgU4nu4Pbvh3sI7O0XVN9suUeASBfuoeEe1D0MJOF5Dws+Eu+2RniMnEUAS7IM9xBwZNMKWrpEJMbcLZyM+T/hLL39I3qqUGkitSIFClXjhQq+TXiyQstL0lWyKIckmxLEGJdkUOtEcStQdSTdjWVRWAbqmvQWok5UJkmsoEe1QFGVSiZzBFI5WcZQFhXTZKk8+ZfCctXGCOLjojEHa/koEFlpvsBYpdPVwgQKvs7H6Std9A28wztYJQBL2upUFYoJdoIiZSv4EQ9NlpvnB7UxVB4HleaCQLGkVCBq6vYg6fpIMQjcGMSgEOT6FaQ1JGWUYtG/QLaxppLlIAaXBbj6cOYNQv0AyT0pfiJz4pBx0el2Y0PNrgvdhyj4IurgaBVcUPKb2xeKl4KiKYXCSRXMpZU/W3ljQW6fTU6/TnYvJKvHIBii4g+6psyBQkYntdI7ldYaldrKrZS2KbkN5miMSqzbFq9u4tbZcCpsYlddsKpUMUtjMQqVUEgtelFAy+ug5oLCFjlTpNRbxEQRkrQAnyDAxRY2UvEhWnGhwoS6gtigC3RQgOIWSBSCthXjN0X7L6KuoCIvUBDhvQn35oR5d0L236pQgVNo8usripwv6aa79pFBG9Jkx1no9iuPrQYiG0L7xJ4XMHbsPMs4rhYeF/PE2jiBjjZPK9TYnk7SzVe5bnkzzkf1U2o5u3g1n13zuT99fDLbfbwzO0l2knP2ZqeUzrECVDt+fDTbf7w3y4ZU51lylOwl/6/SIvDvqzfqL5TkcZV5jw9m24+3ZgfJVnJOb7ZKwzmutu3DXTzC33mHHVSyoBPgtVwCv+R6MuO/5ykIvGnoLC9dQvyZfPfjB1wpBvjd7n5xYPK9qVA8WrGY0158rO4oa+3HDMIhDtkjx8rsWiqwW5cv2i1E8SsUfH/pY36w+JxfyOcAAAA=) format('woff2'); + unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; +} + +/* open-sans-latin-400-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 400; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEE0ABIAAAAAe5AAAEDMAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmIbIByEUAZgP1NUQVReAIIMCIF8CZ8UERAKgbIYgZh6C4QeAAE2AiQDiDgEIAWEeAcgDIUfG55rB9g2jRve7cCzvPs2zKgINg5gizw0+v//miBljGwCfymKOCcoikmKEJPOQpes6HW3tFJXJAaltmZGmPz82HHvas/Q+kuFLvzGNg48uA/3PnpT1NO1awsV9ItGsTtm1Uetoz0SWdpLUKgoF7/TEuEzS5h3lCPRMydbbsUHKAS9NLHwzdoj7d9jduWx/wMZ5phzMI4dhJq68Dz55/+vrTm5eRZKmN37diWpg5nMAGxTjJxzRqOCE7AKxUCkpYRWVAQrUBSMwgSzt6kLFSNnba6slYuO5/ZIC+ZGSDP97X6iiGjHE+t0QojUbIdjrDvEhovcNkT9WiN1QpuAv5zpypnZtfkVh3hfzm4AaCU/8d1J8bPPAYINkINlih6d7pXq05Wprijtl/4q9Zfw30VbJUOrOtTMxcADaBi29NcgDV1dZOIQ21nyZNSGpth+vE7xTmB497+hgMveYedJFCMkJZB0i9RscrMVkey0TM7MRZXGzLoJpwDt9BQApMnBoDf4b3C+Mf6TU032lqcke2cPpVZ+qFM/CSvhPxakuSoxYI/sEFRQ9EB/5JktXjgANN/hWn1fSSpcgU7TAC7R7AGBPiXq4K8cLZ8wvz60/s9Us53FYsmlZN4jpOxIXoRDLpqY+N5119m5drXzZxazM4MlBktIQiAYwJOZFBYgKRMQfUcQDiB1KdAhZ4KknilRF0id7KPkmKoYK1VOVSoad25dui7P7vyuc0hF19t3vpV50o6zeyc1qWpcVQjVBDMY9/w97sfKLIwwrZmJi2JBU649XreIV0N3ADoUSorhsQynZ4Ord1rqFKsgCVxGIih1ueVzy1plOhOKGpOJO0JbEIeOUB46RWvoAgZCV3A89DDnUt/wNcZ/3DW1vQbUz+vV4NrKtMYetclTJwl08f82CMzs05ZxHK1+8OqS61NsWS/dO9myIWX7er8tCbfnAMHQOVwmTaBcgG0DmVKb/hYTKEbh2rrqQteabdu34r5OunI1vlsy1q8EuUWyegvYbXu37oK043Ua+p4byQ1Cb1EYGQhk7UNHN718qFrUoTVCKthgmJkldU0M9t2dBSncvmTJPaQ0BNZTth+MEwaUg6jVUq0s0/R5NNEGsqEARZ/xwFrZNp4mjRlmnsWTKpN4/uleG2Y28VPHMP1sRzRMd+KVy5I/9rZu9AzVoJmf+KNm7b38hc5BTGqv4ctzoBG2a7NN6B9Rr3c5VAaC2jQOzL8XZ76gwQxofEULg4+o808pNJvPMLgmYcYR/XzpQAtikF8FwBXkaH5hX+3itvkEgG6YtWjozqdt2ryZEdwAkCul1soEgFJVmwHItQDAp8cqANqjiXQWMoDjUL1R37/m9hDVYP/6w9uLlF+5iqMt7Uo0ZO+Ut0pLkmGIzSou57Xro7Wm2TYAwEGM5lJEao5Yjjz9y9cSAHU4xv/SFY6e0vP6SJ+0V3ANuBa4MTvsc8gp93nGB3A+eCYIQyXUfzlXPt8gGmrPofvEPq0RW0xn1+PpH3Akf8+f5a18OkurLlUqP/47pq/+9ODyvmVLFsw6YkiPdN9R4KP8bOfZH/iG96ixlaTG7Ir7sch35yTMAORvxffSU12W/9O5eVn8HQBuZIq+PaSihk8jP4+DtDOpLPci2TSxnyzaOEApo7RKMIqFH9Hzf0BJsZAOXkpDw0yxFM5X0sE+DrpTkyzEMipmGmVLqWkGwrsMfmhdbikjTDNPLS0MSDB5VFFP+7r/GHLqaKa3XHqOHyimgga6hUQJVfSd1sN+xtOWlYY+jXOgDlsjx9GUfQP9ffV1SkVtTXVVZYW8vKy0pLiosCBfJs3LleRki7MyM9LTUlOSkxIT4kXCOEFsTDQ/KpLH5bCYDHoEjUohk8KJziC1vzw53lakwE+4uTnZXlPJD+7V6fa3ngY7gXM8GLYEPXZmOHHtljbGazbQ4LKdnxzXkr/D8W6uQh7s9zHfcMrDceWoLbPAStWsYnbsrmUXSVBSptBl14mr3s1utJ4yoF6KmkyAESlOJ2BS79U64RuHtpKfUwxbz2haNuw23qLkwln7LDSLurBWQV1QQjmCZd69eoszoqhyELNb33P3Akm8GjHNsJ+/KI8pQOREsCUvR07aS5xlXYcmjlWmVUsKyftc/SP3J4lNvZYIGinGH0eTLt7VKpcjgHhXd78QUhIaPm2wLEZC1wECSwi8BESL6i/6J9Jtn9RZl+pG8g+E9OYZYa+76MZECFI0khRQOKNRkLfp1hoPukFjbNLcQDTsBggBS3rwEgTmcE9PLH2kj/UZtdHqhJ/4LzjrXwQFEX4NsQ1lZPRJyRyaP57WWRCUpKVmYI1MZLeGYCInx5/U8qqGA/s3KvdrCOe4+ooVonF4J/VaO9GQ5bi2bBIkRYS54DW/IsbJ5KCnrm1P0MbfyrdaIblWSI43mn1askSut1MUNYeSjKtUI/uRKTtQwUrMQaQlubxvisBkf8WdUNLD4PLmfSm5WhA6TTV+HaSyI11JIWKhYNnxYTOZkMvisXqckOyw9ONNA0HcqNnwRD0J2MjpAC5D/Yvc5jZdvZCcl0TQI/dcb32EyKE5gscNnTg0jPFXRb1G7QRDtlWvDcdJv2lH1y6CsJmk6KDBPRVXcTaqZTQbob1w3NHyDE7bqFLreFCYbU/4cRYP2cmR1tBjcEmAGr96VcXin1VOwtN8qanzl3gqGa2ippXXkq4Q727Va8WNVNX+5GQTQUM+JVfb95FZwDLw8gMMzkn30z4v+FZVVng8kEfuOg5IH7fXCjg7kcaxZOIMrX3MeDAybTyNje4VewlMcu+U6OibgRjx9GykPEfqz4vOuSWAyzuEeIo4n8/gosZlb5vMFWGaJCLi+3whnbUu6nLrJW3yODoJO/WwoA3Gkltq48FVdZsknIU4ZIpm4qrlScbUQqw7A5L2+GBGKPibhygaVUY7zUrTNkYXjLvRkTvpUeWcTkWptQroQQMaTt0VJjdsAvgmPa4QGJB9qAGg5gCrpYiLEtMI7xQXESwFW/U/YFly3XLcQMyqcwQAKy6LCjogrF+32fgE7gFLAC6XCZaX5a8kzghTwcKSt2RRIQ7LqRuYKlWRWi3k4WyopA75WkUdAAiinyv/AGhD05OEnZzGKVyxaepQfmF54pptvMZV+xJgzGGkiXQKZDk3IilafjcJ1idxrBol95QHRlf90Ia0ZzRzL4Hqhcu3ot/V1V8QD9pk3BXmEDFXD2yp0j7pIfKQq65asOpsunDsiYiEZ9CasiAWvWEBlCDLpZqA5YaXNJebLf05BAsg8Gkd+ezTuZo/OeYFzi0D8qUrCRgIbykzsBjWB3ahgBp2CgSyb0PZZ+kX0jEZ6qhNUyzgGXrZXM0jBzO6hJoskz8MSnvYoTPofHTN5B5M4Cmi1ZSh1fjfRtG1M4bNoRY1GhkJNSu5a9EfUI0OJgfMzkNFh1UHFknCMmXTca+oupUAUhzks6cS/oWgcOO7C+QVJkKnxGWjka88PytyvhNh/UOdP3KAQ/phCsAQXgmhFXfHpmF1t796z8eMFYne86lUV2jAiLg3JNscJIVbF5MKgCSdpS0ErlAc+IjpKihcaciVwUl4OZmMroQ62kR3PZQZgN+iO4L5wEIBQ9qTYmxLp6mLAZoK1a14/m348h4cC0YSbJzHOQ9GZEv3C1l4M2eJG/gtLk8TvNTKv2Ib+5qDbKlbwTKTq8ps0pqCAAXs4WTTbWZITii4J9E583CITm4PJPd0kE4NJ33GH3lwmoQaY27wQ++yQPqmEpqlZm5v9b6Hr6gEk/fxdNTMnVDJkYJGRwUsRJ1SBOr+H+jQDYBQ4PLZQioH3ht4Yus1Kdy2M9MeHZXnzLaye/5FD9rLYdBPECT4BWKT8CbAqDuw5Lf/+ZxLcyk7PXQZYDedV3D9nvC9cqSuodBZ4/zk29DMfQuaSv0HdRqmQ5k3rv91tDeY49uuWaArvrUuf/F58HG3gl5E8KSIvdlQTImM1HgiTi4lRSaK+J2mMc4VecMJOl5oWjkuqXioHup0xs4zfI7ApRNL73ngbK7+k78iwU903/JmIkR5K2U5Z1GfyfBavfY5yccsk4WtuDDDe6Io+ED4kjMq+qfgKiNzToifEEuwrvC3racF1S8FxhnO8xdGF3kZpvlLI+cxhHjblSnAnjf4kpdCXCLOphIL9wEnEaJdAEouYZr8aO1UPoDCn0BKzHL1nWLTb/1zdI8U2uTO6u/7OZhyHk58kGv8twBv7yFAPBAs2X3ny6SMs+GkkMruyRYH9lGGyjCgQDf5BZCXBlJRHYqcKWwhURfisnWBGqlGSeZW28Tucfl+jW7bLOUlZUSeXlCtAiTNbVcsSlD5ie73q8S0kSFsffpYYzrphfCLyxlk0AzB3Ye8Om/lVWWG/sosC+VPF07FDVXO9vjKV1DBhqLciGm13diiyl12FsQqcMVZHjhj2U6IG7x2ngiJbiJh1wpFlJtbNe9OkS4uiz2UfFmIIllEe6Dvsxt7Hw4xULggbMUshlZSmEv1r24oD+SDQ2cx7eKcd4u0cMvXSmukjnq8m1pZ1jlPj8tFfqRduMGbFdLV1VWdET8pRMN62EZrTfbDgJWQ1g9p1885kbWYo8eyxofoD1SxZFrHWMJX75O7rki0DHGbl/W6uJ6IVoiRYoxUEdFa/GR0GP3erjLhjoj2eZex5bx7UfZFeCzVustbI5e0lNgZGERU5AFGbXtPmlgyCfpr2a6VJE6pP8tNfKDivUnXFDss5TULAQ9k5ICwJJELVgoLycj9/1RgjMtygMGT1SdP7Jq8VpxCh3XRnbC85X/S8r/LIfob7ajc6LeFfFIAXdp13rlBnhN7esZl/twXD2Diu8QhfTwU4Y1wHlVYekkl+2XVnMzDyVHQS6L+LJ721JJx4Bq2rswv/x9GbZ1K98NLUowVGJ3RImiDPkSuyb0/FtEIEL1iF1HhLQbNUj7n5X1nEK3lwg6vzw2DOkvw/hML8LO83ILaepe0B5GAL8XAUsfBzGZbbyaj2gwHbotVamJcM9rn4HVUbgBjAlhZozEat6mVfKSNjhSZJvpQyzTJe++MzToTe7uShu08Nko73KWUt6QATwxC8CAfA0BCzq9CyYGAilS4gswzzfwBRF0ar/Mgyrfb/bATEVMc2NWhzxNDMmUUjsKcldJMDcWW90OUybWGE0EHQgmkzKUgEYCjBDeJm21W31jyeJWo9C8hPZrE32gT1FC+g+/8J61AntH9F7E75oReK4FKdtx7lC79cZjURO1ZgTDTyjESBbsDnvdkkaeVaRBLk6sgQ6yXi/CnY6a8U3ysoCFn/3Ed7VLLaVPLa1s8a16XWo89QiDktvAbPuIahd/xoOJ1fRGVLKlYzC+4i32nqO9NwN1BCyuS02u5c1+rTd0cT5gFGwiFh3qkdyNVJOqf2edJOqxLPyEVAYrl3mkqJaOCNaPhQafwUgDY3sq0xKrqdmZx2bfFsdkTQpVWtQ+DrFOHaKVYsBTncnJiWgsNX0hGa4tR9/1hXWqeH1PXFLlk7xSprKeM16CvzpNb90t6f3OQmXXoCVJlfY6+oOcWK9ALcbzBybFsT2Rzjx1MPfj5SOBpK1LT3dvMeOPPrGbIwyfPsM3M+N+Jm2bPOtzVN8x2ET7l6ZXz9LmHI8LXw2bGZyeO6+1HwRRYiOoUyBQXeWQ0pnMBdOsqm1irzvpe51jwKxBA7Z6gn0G5FHia++Wh6uRRoisZIrwNo1qJSmhMkJ8BrX2aNtDBCJ6i9gH8poY6OI7R6UYPegHscnC160+vET1GLl6LLAVv9MZk5We4zGAveuc23w6eG2Gkw8i0oNbK7xQAPlF/5MLsKFQbaPZ3FzDniOqK5W0pttHCwlBTGg7H2kS9xzUxs72mirUstjgOHMOtxyaqdNoo/RZpPtuUsFvLWVjOx05GXMoEL7fjsZiMUDbGJip21XjCgKCN6D1TVpcgKl3w5JbKwTVPjPbaE0t2nJ2iDZIoCpxP+SAIldPLgFJKGWXUuch3lNDzhjxZHxzHQpaMVxg3Jl7WF29dKN/2zhDnyJPnpMeS6ugiXeJhog3M4TPrsuQxZ+wFnuBPAS7Fu7lc+7ZYLaC79o7dCGiMGarXN8TdxYLaXvu2YQtXcYI9OtGDoLEmqIicgsYBq6ftqERCcxUIhvbG6oJVu3mQPTPL/2mCaCe9QF/3vntDMigegZPPkWm/SvqIwAhIqDb1X3Nkybik2q1duoB/kkcGy68LsXdwIIrDv26cKecFX8x2pxe86PO+nG54MfG31DNEGK8B7TFYwtnefi4qNTiuLqFyawYu0LaY/ACSHedPzK9PoZf18urfxqvvweVJ7A4roXqn2PdUvV18e3fsO5hg/ixXjgNoRCHWBx04YXCCwj7LUAmpquwJO9Qa/aYlrxW4jBuvw8UyWM0/91cPbofvqNvo/FSjR+jBcSVUVhTqgKrrF76AL1SIkQDjwSL0lQV3KYd7M7TFWGHzZPRfR2BVjCrSp00pOmN1fH+J6WXgG28FvyVfs27O7cYjtsDZ6unOoLCXqD+Pg7z2snW5nP2E/HJULMEPZrkGv+w8d+XL+9Igmk9Nz562Zvc/jhfRehUvJ5+vbFXSUbVjldpdbPhEPCHQynKpgodRKVw7nnqKXbCtGiS1+TSPf4pQ1IGe+pP3NDUBsctQOwynXYr76+6VWq5JAGySufWH3l15BwRU4oPFn8KzIAZY5pInDx1/BHbsVUEUHwCQEw9iD5syKv0DRajnIpbRP4kkKAZBzihx5Kzc3ngR2IC4bb1lZa+oSR0qU5oFWRfNScfZTkdR0lHH5MuBYlPAy/wQIpBTnMRS7VzuHYbcz/Zy3KyqLuXnU5Mo/pTjQ/dEV8LQBndpEfpomKteL0aiAihnJ/H03yORCJWuO/l065xtmfrNJ2K08R2bxI4TiaYmDom4KD4dMkTCWJPBuqjzPvyslrD2JbU0PyR8mKpSAkgd5OkDY+JCHdjZwKj0T87/jUnwV0ttYqRH7CKyL1/wCX4u9YEGO24F0hvOpc+5/ZxhgJX0CgX+XxNTVBMNqNJeoN/JuSoQm4McnVj6MsZlPuVj2UBP3rlB28uldUmTFJJIFjeggQ9uqfVwlYra5ZbMPs6QKWMdTfJoXTRiiXOOSz74MhyLB7dUBgYYoYeSlg9uEzzD71QQlp9rlt5TJkomeGmV8cxo5z98R0HhDX09MYGW+jpJNGIO2fGZXvoYxHZNsq/T6BhW787SPHNdM/3XGvBaw2txaYqkWmV+qrJ9KIAJUpbkrRJMhEv7pfltA384z1IWyCrLf0Ww583MKDTTEJauq3sjbsuBdEoUfZgz4QQVSAUSJeLGXOcITo/8adFGdQiK6W5KzZnosX0QZIk6udY3IlDwGZOs18lPSd8W8b3Z6m/AO7vv0om4YD9ffDCRgEf5+uFQFqYrq9A9GZA9eyEfsxqF4mrRHGAlnDtfPy7uw5pX0ue1K0FYjoXcg73S+Ib8kOLbUU/us8n1wXB8grQKb0nVbjhibI/gQfe90tWO10JmhLzGxNT4jnlWgdZs6XSm+rwzBeTXhLMZgjK0V5Sw5ajY6rSuu4sbJo9ySncVC+mBnuEZ8BjLkuv1FM0UD1+yX4g7PTnA2er75b79Pzx61PvLgY6BX9wqOn/oK2RRJyYnqdMsLmt6coI5Ce9I9F1Z7bLdmfDeA1rt4d129v/y8FHHD/1F2rg2ZU5M//BM7IV9vyoepHCbk2omlqrJvY0SwoRl4gSoNvkplQOxf7m88FcXf9Fb1nI1NvdodWZEf3tBEuI1J9OvlJIc06qiqnXvinDPiQrOphcMtSgazkRjwyw03WJzhTwaq5IaUY7PrYpipCe4KfQ7Rp/lPYkOUzqklBzsON15/fshdEAVSFg5lFKktEGH6Ov5jqORCmBq4ZCoosoBHXBoBBNS5RhfcTC1VAFGo/SdV82gLU1S67kS2K/4w/zlpLGkcf7P+CIYcE4hhbUAnbctBhsGJxonnv9tmGo0FH89b0wKGEOrwKRyM4bTAnhGL9yA9bjnpx7d3jQiLtjHjxBMJBBQfj44lL5H7+perdXRvearu7CLTxf9LWWbx5KrR+4cTWf+8EnIvL08N3Z3MY3pc+PLldA9TXV5eU1K1J6rO6GGjQ0yWWMD0tDo+hGDEABXiZAfBbkqZWRus3eTueOZ5roWcXbPdIQqubyrpjjjcDgXw5d0NFAH3aLrt+MyZ4vzY8+PbeWIQ5E6ny1RdxISqe31MbHGurPmc0tdlYXb33LW889Col0HY9zv+iZfPDrcJErMPx5Q09XWXTRGiKyIknQXV9IrQRJEPiePEfo2uuvF88sg4ibnMecIZ7vFrfb57N3H8mcINb4GTZ2gpuvkza/ZqgA5+lX0Pk4uXm/sq37wa/6UdNsJ6zRMcrvulyhREQUdOV2Lw5uobtO/OQGI2fsDZMjxqCIjR1muAvJ31IP+kVeCgx5putbtNOEu7xN3DseZac/seiliNnjFVp1JSz/X2i95fK2wPWuJpThM/ukzv2FkdqGjc7w7uZvNkmOwsHqGrIQA2gtV2tsNXK+CEgJMIcrLlduMnP150TRFdSIdFufalxXVmVxWuHhX1HHggSB3riyF19OaxYGQnIpTiA2xktz9Z5kGkOjcoY5DA2MdhWRqTnOU0BEZC60S4ApMt2sLe3MzaaR0OSUCRAUV0HAZlMweiQ2WE66E/M1/2D/yRnDQLVvfpYOWZOh98u6hODOtGYPn8cxGb0HlqbT0cy390ifXi1rFSyzFEdKPX6OUo7Pzna3jPak9LKYcO4YXLy0hgqZR4hRpfysJTwhdcahR7Nd7xuEIFVoFIlWY0Z0W9s7qhVv9xNXgjwvhQv3HmGA7fkU6TIls/5Me75d5WCvCRMcvpn6qPvjwvslnkKr0/pkKcVlPARcVfkVNQL1wpp2UkoRFRKBjYpxiMenKnNKkfT7EvUFKluu6f+Hm7TPjcSE12WIKEoMgcK35KIcFDyImGO7j5v5K94FjUJZZ0kci1+WojhpedFx2lj5ZD0rvSs0anLg2U5d5batQGT1uZ2zapWmxS0yjIHAx6V4L4vV9uw1bF+YNs09cFJmOX+mws+q5VPrSn+9QEwV56Fn7M295hfPDZiHuxVd0zc59ysIpIsYhVZlRJswXz+q07dK8yDbwSKtICDrgErd0nbJ4fcbx3Kl9jspTfalTV1g2LGBU04AF0xxfNHsFaKBcHTYxHTnHQ9eVRcUY6YsMuxmcdkl9+dpr4eDv+iM4q/UueYl8Lnv9nzxH7+3DAzUcUsERVAPIr9e/ZINdNxj+tPm41PBN90ziDJhl1cOwm7ctee56vIf1TiUwWbygKZ6UXHVjO+PaCSCVpxHP5OPvSxSu6tdWQKyuPcccmUMt/nSu5v937Hv3dU9PF6PfPDMLevYpHop6RHYKa+nU7pfeKq43ztKv67//Fwz7Bdr3JnDlMPPD60UW+8QPpY/c45zR3cy9Wz7pS/911+1eO1Zg+GfvuaRWi4MbPGvWBmDqKOCudvKnJADJzdYXGex9mgz0q3ypu6c7/yTruwXGuSEy4gBac9OAONwYs6TiG7zbMTx/oDmk3sEfBqKLqoIxU3cuEEps6h/avnHAkGq/YqgbqFWg0UQaHJaL/7H9tqFjl7zxFz+uiQmMRo1WvqsuyNzAlvMTYD7gzhVdsE65ZguZxPtVuu0zelHHRKtKswfNOGQZu/V0kmc2cf7PrLGpf7JUF9jmky+6We4nXz90XhtgkjbensjY86h7cupBd9qeE8AvqL+nHndmGhhBUlaBmk+uxSFV9RVPSIcWw4Z7mOyOs9yDLSdC4upyu9bamv5ZtZzguLHT7hGV/qsNeffh3T2s2Brqv7r8iS9bac3n7K8X0aw7Os6nJHgn9vPnparrvs+HpYnOtt7FMju0sbKmavW9aIjTvafM7u0Ixf4+vDCnP5ieQ6dikgfYtZ4CcCtdlORdyysoVN3iNxacd2ND4J108IKbUFgVgEsiRKBT2ugFrlWeS+lxfbaN04AAX+nD9F0yZY2tLh4o//lvObPHBvrb3PTSibM7Z+um4tlzsmUjGm8VfHd12l6/RfOkbTI4wzphaMg60SGTYo7bMM3PmlYF34Ymjg92LLimtEue9pNGVAveZeOR+9NWhNWjhku9p834RpzdDB5xD9ckyiL6ipGsed7YseuZZaxJpCGdHW+aZVPwn+FSD3Bgs6m2o3bl3Z9nT54WE3OIy9vHbZAPFE+O2csqEVNe9rX1JywJv1f5wIf/GLhwnCh+2MU6E3cOoP3XuQZHgNYHR8Ndvat7oatje81XDXzXDsUbzqf/BnvekAEBygbj7W4P9hZ85Hw0DGT5NZY16hrXOciJufRMLas8JJfB4eOY7mYmkJ6Ys6fnNz+WgA7rPk5i1jiLkvcT+K3ZoxrzejqndHBtJXmSyAM+BAdfORm67h8eqtK+ojNeIBbmRQu71g4fcTSPNFPitOUmeu7kyRTFtW+21muSfy9XN9eo4t0Jux26igHaZm9xRc0C5Il2veuNj1b3DTy/cafvLjTFtOdlifzPMxcU/3ws6WUPgHV9mkxrQEHSvgTK6WYl6WRHYnZUM6ShJ6vOzghueuMXoBXwd/C1qGqPONpPBiidrL3HVIBkVmd1QOeFkFHjiWpc6Lxwzv5m0/Nj+/o/Xb7U9xgK5QpaLpRlPOtN+66+sbYzmX4QyoN0sSFHHCTDn6qq/1w5Wqj+oLmjXjk0a3gAD0gY2VPEtnaRnTc+rzq/xdwMIDexZg6wcsPSzeWuNTZcE3dRTGkt0xj44vODj4c602o6ZZYjSAYciY3Bu/D2ZqokhQmqtSiF3Sjfvzhrx+qeUzZu9OnGlufv+r4YN3AK2Qi+uXSmt2PVadOkumExgJ8ajg3Byiy4ZyjZHsHRuOhewa4kcVFRkayspLRIWlpRmltW5GEeaXbTWYOJ2WWdTlc6UxULHP58y6XR9cby+urSDgFqqSZUD597oDmXRFKRuPtcRgMRYy5uSkSgwsj1sx/VcK3+41/OeA41+U/V9+Swtloq4PeEQIUb3yfB1Jxo5uysJQXqkJkpZ7Jqt4/ffiC7WKOtKGkdAyQzcOT48w0wbsDjClaOnbp5bfS8UqrIO9h+bCll7Hy0b0FycER2bXTwQjVeRaqz2q+nmxRR5kSUTwigQj1/4UmBs1uyYPvCmdsCD652Xz2L4vwfoyE9lyy60hlIVIfVE27Xdp6gFeas0hSdpNv1yyX/vFIM9b1Qlv8DBy8pCJudGTJpVwZhU1FLONOZlj89/NLIDSK4+qs18KTk30vVTVG1HnERXw1gutkuW+OA5Ntoflj351i2wju0WdoUFTanVgtuRq63JBWl1mdjz1Zt9b2BBr78dM9JIwW/y4M6mVK38yvQZk3y75WaxtqxVE+yrtWgApB834nymyPR82o1jnfaHy3t7/20s9P7DOpqJnAI114x26fC6Nhh8+FRiT5NPNo4qcl4R8dWlFwRYo3AuGekt22F18vGHV/sw4LX/BPaKmMZHr74InQGLN1pgM7Oi21+0XMsaQZGASMUONt9TkxZKRXrF4iRB6XCUqG9TKbUxkjmwts9WX0l1dgnqhXJ7axuGmQNojFfk//D1GCUacIUO5yCRGqw3KdnlRVRB6PVzHP4803XJrYay+oqSztiwxZrMMBDNpqkxZ/6rHB+I506RxGjFtif+hZtzEjm2AX1LflFC7oJ6QeiTsAzE7I588Hl0pMmb0gzQ4K/bfPNUgm6fEOCCd2cfmSndGmr5EfbNMt4gq6PeZJt0b8HBZMm30jAJe9SizPgMdDYqVKLdu8zvmfgZ07ZAiA9iz+XhTumAuPKdG76HbHjvildsrvzEZqc3NvOTPUK1+9Tct/vRcV4YqLlIftsJKAcaDffr+ZLGdSUJrQ+jSsDLBKFrVm+4YjIbCdWExOQ3RXBC4dnJbUsEooayGrpLgE8vEd6hjzb1EBikibP8MP7c9OdKAC7defNmwElrWZdLK6JrJbmHMDFe2VkysUmBjmm6fJ0b4I/L82ZAmgoAxwlCFvE3iREZI4Tq4mV44TgEQMyk1qPEu1cOomgBCuvoAqcY69ZqT8ZlW8TBSXZi6w9QuQ40+5fSwIpyAJru9sTEvU3oMu73zKI+GDfRBThsbsJRpl6aF0eo6m3gGBeTckK+0BZv4hypr2NfLwrJodf7/CwM7MQxFC7UHWl3HilPOHj8rGkH1aqSo1nzVzf7kjmPQkOIcorPZ6cEnllG+hQ5aFnXKccNJZnNQA4+2ocDl4U++JC5QWf8uTZYwLo6q0w50KjhpbY6EalehEMi5bBTJqUsdF1zXtcCzFoWDFa0RjNb1L+XABDY0tgrxvrYvj1TUbOhZVhEaTychKNLieTy/uxZLmcEhFRTiHR7OFvim/M2+A0dMtC5kLG8D1H9iDLkHMFmjYaGkfd9XsTodf8S7N+s4HutktKihxrT4Xxcnil11o38oZgFDvfSjywBRYvz8KhXEKLg5IhaZDeSKaMmy5U3iJBmGJm87v9N/MmHP/rOCuDVVqiDxTGolxP5yPFTumwfg6rsC3LP4hRhc9wYiO5QmJAMKeVXA59LhLZmKZIfUNhThG+PmgnmHelt9cEhcVdHyYM6m3ojzYbMZFc2skxOTIiMXEWX+DIkFHu1Usy4yNH9r/I1dBLl/+4oYy/cjxfga0GtSBk1gk2XpXNC/sPVUw3+kqt4aVaacDUdeUH0fxc0pfWOuHH6aVPyS0tn0Qzc8K3LXGfZhb/PwRoobxQU5tdtBVrEZmZFxiBFrr5RuPwhNh2H7GGRMOLwEWgEKm2912FQdXg2+kJGmUa0WHB/jf80wWJHBDdjTNQiLOPt48vxHP6Wm34A/k4u3i7+Hw8vw+CxVnsqatHNBiigHKtkQM1ioTE3D++NI1eS2pKfiThCFnEiCicIFsX7zfWK3M4ZRS/z47oVDODSgNdYFJsfHsEs0UQR29ppyeKOuisljgBq6UjQpCXmCDmC5LFopQEsYAfLzZKq9+ut34NzNNvrgOd/LiY9C/vWYyoFDDLCxtBxIamepKw/KPNIZE13VW5+IC8TBmNNDmy38Q84HZ7pzyRy8+4pc3cI0znFE11L1JrrK+W4ECNjihxaiSVVogXF2UWpcezcBhuGBqd45qI4z9p9gfaFzqYIfFMDp/LQEqsvlMzw3PlJng4iVRv3a9nHkcrd2ZFFvvLdZ00iGp8f4YKkOCqs8rKhuryVgFysRrjQLipKQFozz4AaM/mEj5E6ELlx+KTHyyfzn58Lk7pajJll9Ar7gQVamQ4rthTGW5wRKYPW5c/L/GXWDNdvAhG9hab2fUBEHt3W2zQlpiGidM/buJ2RzI6c6y7eW5xUjW52JPQwozYB9h6MLY8NVVQXlIcW5KaEldkFNxlwu+X4e0S7EQyHL+/w4bXn7+n8nHsYDY6AW9XOwK+rxLIjYe2xdRVHmsUfyNf7UrswTXDq6RVVwdQu667q2WDJ5BxCQE39LzdOtCW0UCAxzYttgvb2SS+SjaG5tDMIGJQKXeE4R9uCeFtQORlZIpgyY38SrxdvRBEqbW5WoIDN+1FiVN5NFqRCX692a5SXNTTFn9hW2dFIicq45YOY48ojVM03eO3FSxgUz9KH6mbF0NGhjGn4Qw7WY4bio2BNdXllKzzJTpsPONfdJc5YjISi8BvQgf7D/ijURb65/EZpBsB/rnx59PrC67fV+/0sR+69bjZsak+N48dk7mdh7dPn7P56jPskTnU59+XKDzVt4rGA70HBjo7Purk9+b/vu3l4eJ0rvb/B9Jv0R98ti8uPiFhLhLGJ4kEosR4zzpeOFGUBEmXjli47kv2TWmXUbMPxCRF2y8mNYtkrflSPBKapPSMbkFCYnT+lTrEgwCqq+lyUad7bI6zVGjHiRq/W340l9dzvEYnXrYjg8ScnygzFIao6iqekUYWMPnf9yTgrY5qT75pD3ecQMbWSbpXWy5vgzCj38KDUrgRXEwQ2hl0nY4ke4d7ZSQEFnJy4zoniHkJ7XtF/XgBNMMyID81kesPieBSiB5s/4QoF34gBsHn4NhhCHogv4Mli6h0pabGjqvGG2WjO+Tq6nVspsJcAz+kuyPgAuWZspSngM6Mcxo7Y1uDyfugTEgXCzLokBI/HFCc6RThTsrJ6g/OSh4kRLdmZ+f0PWOrNNd0wpvluWLWoDdhr5+cDDsPT64ejYYlw2NmUyLDBrU3dA4WiIXi6NiY5nBGu/iCbUnnhP4hY0DikB4Jy89aX7fAQjucfTV5/6eG8JTLhUJ+2wc6cOxMkcbL2oNdL4rkzwb2FTy+V9hJLbER+v9RAypuuMpn6u8jpr1TzIoCdb9lyro5xMMF6cSDXXzp9OHr51GwHEZkuY+DdZeV2tqw3fCyw/NBKOa2p/ttTOgDt9NeAI3QXytmRHXYcul/r+qGGHUQRVSxmBJfi6Rgr9QYGjp9pjc6FXALJaT42hASbgcOrmRbNSzdrqSI7IKnh1/2XmBYK7tuV7nGA4NwqPSX6C9OuK/TScm/O9WN/FqPONp/BsZaeI1wq51xQPHf+FWQRoKtzk8CZq13zNVf7abM7vTcGpzpOqu2CbnR+mwprS4Zu+lg4MO7DI/Xu2TWJ3jo3+NvJ+jbdSxBD/7a9WQX+9WrLgZs7Utv9SlW6QHk05YTmYZPu6YCU4wqCtsTdntEQWKat0vTn/amvdLYmdsYzRqEsjObP5pDDuKuuyWhhSEFt0pbOp8qy/9bWSr6+7lif8PVsiAZlJqb2Rm43qjqe3CzBbvRkpgraU7Anmpqw220JIypVfWrDA55JiG685keoEhwS3RuUlaqRSE7LyUyMieZI7WIis/iSwYtd6W8SjIWMTD59iihLC81uTQvUVRtF0mrlMaL/LFoBAIf5udrLbf6ULShFuRJrEMcAkPb6+XJgVA9iRAHb8rzRIN8SZPInSXUJkEcfYKf2bEe9wh6dJ9kwQagOwF12eaKMQmhwqjA4aWmNOejDnP6RENT6Orbo4uPgUmlH+yrgUoLeYGhm/mqmSJv0WFWj3h03DdwDKtyIP12yFxYCQWMYVKWrub1GhmNLiE3o7ocdZjXI27cNSIHkutT/MG+2kZpIU+xnPochUiP9woNtUWIjEguIjPehyOfZemaj61O4Q0k+kDTSX2DKYLBDT2DcBrDAL+vkYHjOV4/0OkXGTmbrwZ8X20bvhd3eb+9lDrnzvIk1Lf1+zDp1T5JKYQBk5Q/yrU0dC3Md2tdK1+3KE6fHI+WMYagf/c+GoAkjHyQt322HRsvH9DVAFraGw6Uj1lNtP/xqd6t883NpXN+l/3mbpYOW2okGOjc8ku96Kdros41mzDLuJlul347w21x7KvrxnWoutrmu6Wh24bA8m+kBUAbBdvMLDf50HMB0rjUWtU2PTiKawY+rMpthCJEEl4MS8xPCaDueb8CHgfp+3Hj/7wk4wstHPcYWUTeyDskzqHxktAgtkO8hJs33lCf0BBMzKYGufDIYfcwTvhoung0n/PmG9oXjHZB8miR0VxqKDKGybYBKPG00MBAbvgfaMsIYnAgPdQy7J1Z8PZU8PZk8MgkauFvL98hrN9cBAeWgGs81T8SVGwjcXvEOopzqPBAhD30CoYTcXAqEpvLDLExITFRyEA2ikRjIwORTKSlhSN+6MCH5497P40MDb9/9qj361iRgDc6PcUbFcRwR2cmOaOGdu9uggg6BdI0oj5MUsUL6tKK1b2cG8Ir6W2rFVIaGslxcV1c3mxtGuxEfMckx2IxhO/mjXfyd03ghaKYifHxzKhYa/PIu4JuduRUXRrslLB7nFvjGK6Tks/H7PLJlccE9mpG6R/LQHNq+jqVStV4UzYtKU7A4sTzg/muPninUBcRFwHkqUgqA5z0P4wjli0nF24EWS59FjJuLc+r7ly9C78Or8nJTk/4vaNCXS0kzh17l03ezYBYNWdcnVqUeSScE1ZPHXKLqdMz1o9uSZwBeusoErpVCw02KZynVIVHKARAa/fWubdwBs9G8Cfkkt03ztkWt+7nM3cf9z3mHPrwjAyQWSxENyosqWZebLf3dkXfrV6EfrlvMnMjrOEzd4EHAxTHY8RiIwfpEuhb45mK4ras3T0kfPBZAy031Ja1rJH0+gFVJ2A1HKjQ6A8CvDdkFGd64P63KTTuGVwI2alo+BazvGqbkf2tDa1yvcC1Vys4QrcitRVDLmCQqTlNUaLvXpw4toBOIeS3YHLvke0LqfhMama3pLygNzeTRk4vp1hi/bjlQf/om9j1eq7tT+TOIaGp1ixKCw1IHwezrvVLVN3ozEJH21gXYN3FTGb5pRZQXRtwAKA6gHuMSVSHASAAkOqsiIuapDWy0Vretx4nNxU4ouULF1Cjw1qeWgAArvMJurnhrM8azu5t0Ja6g3RH6+R2a0hsbW59qzd0n/UTpO7bOrLVGuVvViohZrBpL/qVYGBC2sluosOMQDcCNKYfcJFXqxdH8dzHEwDcGsnfLPtfSBuwremUfg1jlvquKBFrRRgkJfhU2XCrQRGdAG0Y+FP+UD5Irm9kDBnw9sEAeRQ6a/2YcdmoNkBrZHSzXIKYkaEMky4CzV1+C93K4OvzBj96l2ko0MkV+FAIEDUCdyAvRNgLyq3kEGWgR/iVPml5Daf/hgXexKZmnOuGsQIVpoPimlwcYEmyNnOGHq3uffa9zpPdnKCe3exIRPPI5x76Mv7/rWIcNvYYe433jQ+Mr4wPjY+Mr9GXDdU/jcPGHmOv8b7xgfGV8aHxkf71i9GmIVuhMH5c5fOn8upylYnm0VzV7gMslCeK1Vz6lCgKo4IXF3WK89g415htTFiszNGqmV+Oy1wEYH/6J4PR3oTJ3+JyWkfLSmegIV/j222kbeoo8NWIcQUNef4Sp5ZJyGiPUAjDGrKZDEY76S/uBwkJX5xdTg4UBDfGU/cWxjYgrZpZlwtg4cW5aXJAEGz58/IfIGdTczsA7RyWVwDo0rD8HoC2Npnv9QnxFE48JpMgOALMfAQocDIOgjFa1KuNXJ0A1zDW9H+xes6cuiuZgan+Iel85Qa9X7svv4kRPmJjm4LxIftcPJFAaPQWwaIxvaw9uDqX/JMOWwU0APKJZeMLQHdbJdD8s7YKN6+L7zMZqPyDNtvgbz5scoIb9AIO9w30WDmO+uoHrRoXDdbhuAhNKfIyjuGrFJXFDlAN0Vbh5nXxSpwGpYHabIO/+XBcILhBuzjcN9AT53HUM4Nx+fzjfSdW7xz9FkJYmyJLyfC4qTD7dXq9uWhxRqV0V2Ur3WixFptNAPtBkSSEhOhcjDmHuVdNcPAN21sIpwx7VwcmQChw5aLDer9fbuHm2TdiaHhG+Zcg4NQ+jZ8OkvF2h+/uuvuxzytqBtYdD7RqX0VR48mJRoeVL+3uEw3aIXQ3OkZ4Tl2ugd8D1RIM93OacZLxpf1FrHnL1iQM0DDJGk6blYqqvcUQVRKSonFngJatjiUyeK8NnLTDNVv0WYBTJS0uTzMcSysf1WHtGCVZOPhmAyX1NmkedaLAvJYIMQRDyEAG7AAHrVhR07yWm40yANCStU0WjdL4Tse7ejK4JxHgSo4Rzulzm8l7LYRsFlkywooYSGA72VVRpOkAgL1b61wceyQA/aV1q5VmnHm58zkZvUDEFrDXaymVroRhbH5c2B8jXCJsPEE7zozZ1jVRmsGk2flQPRbLAMFnHJpDzgl9DgDLtoVSC4XKgJm4ClUSUAeI4ayFFqalggDQ8qAi7veTycpl6pW0OKPysvrf/vxz6mePGvufftpqTeeXj6pyZYOmHiQMtWX+lFSTUmnJVjlCjCXbsd71fbcLtiSRXYPEhQKPzV1DC4199aqakq5OuxD7yXgvtBQbgwDBoHOEQggjPzEdAYwhKd5o3/72ySmlo5mqOQ2dhWTgYXFTJmFBw+ATWUmXYUrqQtKeX2apCtLubkukUaDLITNXu6IVaDkgyfcRXc+BWm1uc+OkoZmveB8zddNEV9RFrytAu14bIRcNZKT9rNm15lHuiuTAJ6YykMPVCobtsjDxaqsxISMz55W8VQohg2hSvQ+rsylW3ySzCkr8hSAvfL7Syv0ONcpiJ2pJljo6FAGke0XwnE+BQmmJfGckZxE1f8+JHJKILMTZl81GwInhoE1piXkcit8Z2hJ/tWgE0aVbfLpAEpyYPyKcQyMMnJ5X/x/QN6DZ62t310cgRsbAM9gRDGIvMmoeywR4DNz6wSCMrHGebTtl0AuMOrzEOmaIOXS6m87hChzDk2pa7oc8B3GMoLUx4Cu5C7mBCvDyGS3EbNpaSLAKtLdpfPHpwvv224P57LPVCqyy7Gu/dbxCYcYdDa/6zxHcf6wVcFkGRt33UGvQeBgGZViKFtd8pB9WrmHLi36K9635CBl1dCak1AUOJiLSJOOI90pgwQH3i8yb3nSm9/0IguXjPXJlOOtliHMSRe04c8wpCaUzplsHW5YZpHY5vOSkIWxuJnf5p0kXF1bkcSgKgDt4BwVbDfdtq2XUFXBWqSiIykbL2pSTzLndpjoelhZHjGkJ64OkcURhMww2U+3baKIfZE6GFbZmRwTYD0hesAZIVLmhZ5BqzHhhqny/DePZhxxynTQXb0AlnYsgNBsJtG3CvGa78REWOGQCWjn18tDNvYXrFmmzdYL3MEQqXwNQJwqrQANBSyWD30ypHmhw7wKannPoIy3MZ2tMnYOvNXWUqI2ac9WAZZNlCafr+O+TpFaLsvaxjSKA15phUS09R1Had+M2Z5g8tqAvgAKhV5++y2O/v0zyfLnspFk2HHRColdlzOsrzCmh9n5N8A2j12nNXmJon7VUY4Qhxo61qdYXdZ0nRmQaI4GV1qAoIoRGUQxwpHI6sv79JzW7pysEhe8gyOPMMo6an1+kizV3FN8N/07gAeNlM1mWmOigV1ekB7T27yagzp1LMefmWLpFIu2dM0kFsEaK6GopdmRcICWFSBiNpSffyGUFk/LRUeMA583cIXWmmZMUzmzUpcK71O6ThIfSjCl5G4IwqjUjZgMTVUscD95C9z/4hr0KVpOM3W7LMvbfLkFGFYu1z044cpLjus6LqBaL6e4OcxGmAD4BoI4w3qtOK5aGy/n66qh3DZzKRhOz+BjIonxL/zPp1/Hh30qpydvWOJL0IVkwqGLQJJyioO4JbcZ+P8+jcaeTEk014kTZIxYhChpNoYbIZ1+UM7ftGzab7iRSb8mpBFTvtSYaXIvt37u9PR7p47t31V5TL6Bu7yp9GLt4XB1rj9qpiGqnQiezeYDJZGUx9VAQWRPpl6UORFOvhfp93VWHvNswTDXE2ENfVUjqOo82krMQOvQNYc4pRfJkDieabKByoUMeRwZHG4OouOmTaSm6P8lCXecOA6xZ8ujBAl0224dQPXubVaH+rv4ZvW83ftuPHwK1kt56oVyU2gUD4ASDiCodusJ7lBg58DCQJLtdRofh/f3Kjc5dXDhe+3ZiVjwr0qGdsvKxdaHu2CHvtwyONlabL0oxi2gu7rIEjE3QMTwd5OUzhT8MvGruTMfN609gywr1H9V93iG/fp9h+pzVSt6DEOe/6PF4FCtfa/7BXD9ZfHzffN/AZ7nLp68fgXXhgoiAHZPNvWm1rICe7M1tP7oHdn2QpozU1YxcJkaNsbxrXV+po9kdBnCawHMQGYB+O2Rs0Klxi9l9yfXPde/3yYePgzHvwgAT8kBxdL3BM/0Or7bzeZoOh0mMLL7ddJ1g7cMDdBgtSy837pKJ7QvsWEY+HxnZbrwGU9Km4bC0uOKWUexvb/WoWhvG9skPboEiPuTF9XiMIdsQVMyOjZJ8syyAsgZcUQKw65iOs9k700wfAuhb3D9tYa1p63BjQy9a+iiix6za2RQSBKfnD1ZtVHHBq8JAcs28Ix1R163ShHPo7rxcOqUTXRnrgKhr5Vmyy77QWZ7dRrps29usz/FgInQVmXgOo4wL+BeCw82CqNN1U4BlTkiRJPsiRYY+dLYgDQ/JAO8GjQKpheZNj0M87jQaFBkmZWOQSfdRiPGDwyG8XeTrxCsFNhM/6jMvwkIwlD2WdZZphdTC5gyQ5IaUC+CeQE05+jsEG/MSIpkYvUch1FuxUWxiSr1E3m66RaEZ09Ob3J2twgovWgjzpsIOLT+Gblex+aKPvXsX+WjOM/Z4rc7l8VGFtYlyKshiGHEmeGumTZIAj6NYyu30zVYl/ZBGDzKM02meI/i2u6BpOKDkevPs6k3+aaI5eK/jvSfTd4+6Eus1SCdUEXu0e/VotJh+5qEPoCCuSKvdiEDgPKGVgC1sp5SfJTBG6rLb7dQoRnaWaC/ckJZSIUbx1Imad/f24j3j02ocIC2WTsAaIOPe04rYupoaYEzse/LNn4lB/lHaVWJreefVrd+h5gf7FevvwcptvcFSIqcTmiBE/7J9vOZ6E8FBKdsKpK6/xia2aeO82jb0mTf14Qbcu6lMQ6TGHSSySb0KYOcBlKcTbeWnqQkc7dbu0IY+/RFzTNqalqIJNHdNoeVrcYE08GO4GAiZrMLyARXuFMYeiF5cDH2OxjUuupS4Q63dRO/iikQPLAu8NN1DFb5oSNq7g5D7DUE/fUo8iQxPxyTusubnABSrsfeDaPtBAH4RdB1G1TMG98PymFad/9FA2C5F6G+Zt7tIYWVUEdej0dn4gPwD86rFdcjlDoeXFswiHfR2v+Hn85TMMwIV2Q3S9BFga3Uj9j+ANAgr98bJ1VF7EqYBGOEp8kXkpJHYo7fHp+G1EgHyrMhtKfURCUgTJOtt8PY78yLAoN2TA/K/lk1B6iK+WUKvpfAX7ohQSsfdI+ex1Y+epv8yyX5nTnwBm6C4p2AcLB//sVfKufRrrs6CzIERIJ6/MV8W7doe7XidYJo057wbJcEsyggAM8v539wx9opspneEp6lAj2rlP6Cdy1ew571fIW8OkwLGAgKzKGMAzAwEPpaUWpaLFKnIiz5yjQBbxNnURNOaTAdopa0SC/DubeQ7E/QSQG7jrYUxdW5JQfTJfXaCaKumwchFiHb14383PNkCmo9mzlGkBSfhDrjdLIvJlWBxe2y5LnynjpGIva/eokiFjz3bjtFmzlqDTttDfFk+hcwK8fNMGN5AlO/HW5IV3sFFboKxL1NaXiSp7eDzxkPtq8eKOR8LRGih1MeL/QD08Xq1aJgIcXsR95py460AzhAaMsPVYzx+hjGUK2c4HUX9jKClQM5ItBfU6XUZLMJRArXlApwhlOWaKm8fl5Zk3Mhbk3Evb+M/+ifBISGXEqRkkEY6+YDxxTunwIjkKlpKikGu8BykOCSAy4oUE2mUZ+oyKZTCUCA8XZNSWzg3wyvPrVLBeO3pNDIc2DeQiCdJq8hWsXBJGhCTQmoRnkM+MrzsM11ZOpBLF5xdt6RRgHi4FD888d5bQgiHwcMLO8TSNB6oeG2TOXhkgmviGQw+ds7T1ZoNgKaMjKQxy9wrlJ4NU2I8WZMWe8GACI0oRGbBowqZPDJJd6WySQhwsoIFcyYJ9hDh9HYNtseUq+BGfEc6550l96el+1YGCib/y59Mk42uko5KM28Uljv+n2QYltMXIruvxAPNzBqYmb2wjE4a0juzpHWkSO0QkNJdVHI36kvqMpDY9psJbRXfYiVqRUxhyxfXCkDVJBXbsMyYhi+6kQZ+nX1R9W6R9VrxSjK5heIUfpNdhLHyKsycM8SkZyoizSYtUdSkDqMkaJBjkxSp8JBNYqgIYTQMH3TDBWFYXIWBQsMyw9iH4idCfSikh7AQeiGYxgTREYjNexRS8H7h8+nUUeSyqLPu2lUGbCJNNoAK5cunPLbpIrKB0P5zwBNgbAAiy6h8K4Jn/tkaf8CejYcVaIwfDgXMpG69Mr57J/god9lnU5bz277053vO5vt79uZn6V56yZ/ttZwtqC7k6Z6T+eGeg3kxoxoX6Ul6kP5vWonAv6+eqd/QwiNVeHuO5rt7duZH6U56Sc92Wsoitauf7uMcfi3rdpidakKFN3INfFfK2tGvxxVsXjY0qmuXED+n3336BGsbQ3ytuV8YJJ9PRMn4nSZnvsbHaquyG/9YMMMKbKv0qCp2IFHcMqvKPiFFN6jopfIdS+VP9rO4AgAA) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} + +/*!******************************************************************************************************!*\ + !*** css ../../node_modules/css-loader/dist/cjs.js!../../node_modules/@fontsource/open-sans/700.css ***! + \******************************************************************************************************/ +/* open-sans-cyrillic-ext-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEIMABIAAAAAgOwAAEGnAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlobinAcPAZgP1NUQVRaAFwIgXwJnxQREAqBuliBnXkLgzIAATYCJAOGWAQgBYRgByAMhR8bpW8V7JghbgckSO9yWEVRr0crdRTBxgFiPF0U/P/1uDEGNmjWfZBJSMEkSioSZ05kYBY1LSNRQmN2F0RCKwe3HUyFaoep8NXAQTYXhI8ECxsnOVmhHSRaKLFHmhZvfJEU/HAsYU8VkiZ74lIGM7HDS2sV/Sxu0dXQEplvscnPeGSFP05wYPMhP7iDM3Ccj5oLn7H3f2eTTXIfvTlcHV8VSBzCtKJxKIFQ1ckqFMg//jUfnk59H3dBoauhrHM5O+2IDLAHwG0ighqeNPEiHq5KHjwo+jlfBEUERfxc3wPfKV++m5mapZk9Izvf/myzs85q9mxrtdo6f86X2YIvhBAg2MiKzu4X8/qK+pruFdXMq9NPtkxCC2yO7QC7qQKf0g/JEcEwUsa9ORjv7Wn3w2W7+R/KZdJOj42lEBT0jWvNUQgqqDGX8H5//i2QBaakHUJN/l/qyt21bL55h1g/jhQA0pzuHtnPPgcIHCAFyzRdnO4nbfNFaf/TNMVeinuqOAOFj/klSNUh87iMks1sYM8BYNKocspl/O6aB8e90qk2PB9zCw3TD28ilriFhmmnE0IklzUgAEH1Q53VSDJKM/Yd148VUNXaDtACkDxN8tclf93DIWHSMjMrzv3HabPpf+mtsHKD4VASJA5nOxjpaxg9VpkaOaZDnpBYHEau6XAIBw7J/2/T3vaNRrZn4Wws7wbY3k8KUNF94C6p0uak5HLefW/ePBjJo5G8qxF4ZfmDrU+S7QVJCxp5/zlaO+QAYIVg2g/WJ4AqxBvsuErTUl9gDVSUXX6VNjpAXQNb8cyDETHG+nNPmoe9DhvGLLHMMWKM3fV/P/btaxnBeGGMooDuXf/WMK7+e5nMdaNUuikq4s/ucQQKXWzc3ekuGZwIRQ9JUMmmU2x7o7UDaLZjuHHwCtdhIGnBJZ7gHqhQmKHXDyGMGMBJj7KK4PxM062xRl8VtG8YfZ3Zptvo+9QendYA/QthDVxD8QsZh1nTuyYPtYsRO94S+Y6qi4IchB9AOzZPEaRI/AMAeziAiaj/VckORYgmjmIkklQZkSWV8qJKJapQnbZqm3o1nDlZpHFNa06HtKjTWtIpXdA13dEjvdC7vJUPwkkfyC8KrgoDqk0NwzaLwjYcAxXu4W3XON7fJkRIkOJmpEVKcEMQCXy7LLKiIMqiKhriJyWK1ujofKg/RmMi9sR8LJhsnY1jyt+4EffiSbyKD/Qb/cMokzNdJqV9OicmN6dPBmZYUpKVvBSmJNNSkTVBllPL32nKtuzOwRzLqZzNA6nLk3k+T+S5vBLmh/JZvslP7Af7xzlXcn1b28EIu9rTfg5yhGnmOMYiS51hlfPQYxdr22NojKUF3SSN0mWFbQjuXT6hrN5EC5yxyQ62FE3QlC39D4bCK6PBho6xit7EFdas0Nr707dsapcrkIY13AYxH2Np01U+7Figt+3ZUA6HjCpoLSu4bcGwowxPFBNWZRtgSCA+8CREN+dOOaFAa4k8sYDlgVGThCz8Suuwg55gKPjcF1IkaYwdH002OIxhSs4jVMhLw/TZuaB+xeVE4gJTOMuWBj1co/UJUOVA4Hkt1qCWqsbIgYopdUqVuEOVA4GasgqPVQmhqMgabD2sNZJIEgv40rdC9Y+pMcLEiCugtROotAQimSlTg8CFL4EFjB1Y2ptsARnWAdHyo6DvJEOnYw3yZFxB/gy7wbZ02SZgBftr8/PTnXQXjtyX4C3nGyzQ0BWQywdDNRyekBI8PWoAffSgfC9z2u0mgQlB75qBg1P+wvHgNfT+nraqcDJ4vA+CEvq+c5jL810W+my9zu49b+l9d3IQ3OEO96r7pexz80lxEjBQgV4GfObz8XE9ILqhKYEvP36Sm0rGnVKWS/t2BQDLPzoGgObfPH7tEvA+T/LO7Rh4hr15A2Dv5z1qiR7w8VVtD4Lk64pd4vCOnhl2In7KeRI+4zNgHxLpnrNM0L1lDWD2mc02IOEWhLTyCOTKfZwPc5M7vL8sg3+ZC+ka13uru31o//cBrPf/3vt7dw9ZttRvrnOFqy1hLGzDevs0jgEKYP+XfM2Hdsn+3y6spupXgC/M0t8i09SJvajMZwcdzCzn9gpNtDCMmm2MoGWKdgXRcIiJvfINasrEIKGN0hizHDbBj9FOhthh+TMc8LPTzBnmtdSZAhfdghivc6tlkr3sp542BhVEPjVsoaPqd1FJE630Se3neUMfqthKjxhoqKEvtF6G2d3ns19BIO3DYix3PyybqZkxvaVZPWL4MMi1NdVVlRXlWk1ZaUlxUWFBfl5uTnaWWqVUyGWZGelpqSnJ0iRJYoJYFC+ME8TyedHcKA6bxWTQaa5OJH5+dLg3S2Gg+XJ9tK+uUhC+uMf7ftwLjoZ7WTBoCWrkzGDsipY2xms2UGCiuDwmriS/gntLKNuDc6uFBhMejEpHhSwCL61Tkeni9zRMSIN0+eiw1bjWO+2F3tUA1E0xJxNgSMzFBJbYh5VO+MDp2/rnFIPWM1qWDbu1U5U8OGmfhsvXzmiujDogTVUMi37C8i2uEFWlA1/c+K41DCSQT5hUcIy/kC5UAM+J4AheDJ20l7jIWo6MHbuZXk0eS95X1TmpupbYNOqJoJkS/HE4qezLaOmqGMC/jLlfCEmHpk/bFTMR11WIoC4IX0O8T/VmveOQV/C6Uha9CDHlH8N5hdCke+jaQAiTE3cYklihUZjFFZHGwl646NipeaF43DUQAk70yUswQEs9O7LVgTpUJ1SjTQnrxC84638E5SP8GmEN56jQx4UlLP7tJHXFMDa+agU06QW5LydopMh9RQ3QMq5J/Xjpfo3gFDd9YKVsPn2CRr1INGDZvc2SBokpwmLwmr8jS5AzZd7EkQwFbXzt+tZngJcVyPFav6RPq1fL3SLF8eVA9Kj0OeJoE1O2J4MV1wOHS3P+wFXBEr0lt4N0iMFELXqz9HJOyFtbeFSivC0d3iFj4cLacrEtkZCJ7Il6kpCcqAySdRNh0sRY81Q9DTnIzQHXWv9WLrig2mvJeUEENXSv9MZH8ByKI1jS1IlB0xhfyxp1KhIM2FajPhgl9aYdXrkFwl4S06DSjozLuN+oZTQbQXnrpNHyhLxwbqn0IiiNwhO6gqcjTY60UlSPwAQBRnnklSVp+bR0El3kxp24sftM1Oll1O1xXku6tHyh1ahnD6RadqOUBSVNfV8sN7eJFYdF4EUNTNKmjylfFWKjDhQe97slnzqOSg8XKyW88khbWXrsDK2863gwFD92Enn/OEywRCeDEp+p7ECMOL0eKa/Arquy/doXwMRdAj1JHexgcF3jpreo80UULRIe8wN+I1S0DuoIe5Ap8hikpOODeKL1tyS30MaDySNx8TwTMW9zfB3ctrQhtI7FMWdAQq0yFEMUfC3CEg27RveanaFNdDIIv85Qr8ywdNr7UUY/w4N0Kg3BHXOG9JoNC03K2xcGCEQ4vT5g1AE2iUlMielCtE1VBFvCkb07nGruWo5r8EW+nAOwwHJHrARMR3TBxguwB5uCAYsVweLt3C8lyQhzwcIWF7LS8FMydQ1zuRIvtJwHy4ZyalOfu1GzYAzZA65/CLSF4QvChjxvJXHLprl90WCD1B3barknNyXAiMMQqnILZPN7C5/W3ROBEdI4UkbFesyDheb2wj5SntFMhgk0VsTYTfZoxHQDYmGHhF9pnpjcemh1rpxnPUI+8tzbFky7hSZdtRhrqALhKSmynHuKwA66jBFGyFbhK1CQaxyaFkERNDFvXmRYpqvq7MExXmDgeS+G8joEQtKFkj0oDpfpPZMAhv0cClVPlUC9Cgrlyg44VLVd7R5gVsxW1VkL0j09AUbeEj9MTmv6oUvoqrMiju1Fcp9omcybGmUdVVfOGDb7eqrRxEgYtZLr6PxgXacfJTCzHWVtVm3YsAbWKkDSzd4KigPJBbmurIZ/Ici85N4R+WMToVvi2qBUlp+emJzrVFgl7MqhA5zUjyRgFOnvYIjl4xA1bsztbtrxrmMunCd9q+QHIDKIFfhI3LWo9ECXwJkA5TCDDyimPyB+NRivU+Sp8Fn6gESlV0EeXJ3tnnL6/Zbqb3EQ/RZOMLU9MSEuk+bOJqofyYt15Q0E4j7cFqQlNuIvNR4MiaC8BnL0pk6hWNh/CXEsEPmO+svF8VhzkaM0NpyyVfW//ISIGgMKeMAzRWNMwEuhEJ5k+1WEItuATih8oQieg9Hf7gb5UDRB6meqkPBjzJhWugldu6nb2bTrEUjKYYkHduXyIVzeldNCs7dAyEY0KCacBwAedw2g1CLz9UIqNZ8JvLKNuhivhjHlQaM6La3Bjp1+0lprXJQCjVDnMTBHSd8RNroLW3z7X+yZyYQNSJ2ZDsQarMGLfzKIzoxFh0SXO64230Wm7luwmP8fotcwU9K8Sm1C4Ep8feCOXfDKbwdZvDsLH0/N6XUE01niLYYqn2e0hRMJdr6YbCrjN7qe4TXyBuMsebFJ6Tin7JF6pNc11najzBGYcNPa+x64WFUvJW6RJCg7rxVT4Ty/kJg9X+mzGT6a2cJR3GS6PByJjRmcU8bggxY1J2R6J2ByY8aPSByRvdJ6pf/sQZPEphaYVHCVvzA2qahgnr808woG5287uQvIFf03vRjeyGRTlZq7D0BCiA7C4uRlihYZ2rIr16DoG5ASs6raK4nh3/UWPSEVcbmY/qCvgOt5OPNBjkltSIZPAhKB8MySoVJmZZoNi6QhxweVi1QjM6ACgoWQ3+7zyqGEDmT/Y+DJ+8sZbTD4557+X4xrn4xYYOiJcfbpMAECr+IUQcGZB1w3S9NDQJ1uBQmO4uEnbLRACXfaRkGZQgQtaNAApm6qCLhgWsqagjZmekqTo3nGKhmI+mQjWBPwbCIQZnKyKTCIe0tQ3lSWMG9ky9gluKtwo3VyfqRJWtsWXWWSOqImH6uljliWtzibRfiAvprSVuuBHegLbvDjVvb/91eiNO4XZusoUddlmaf6UZ0+6NURXxXMcsZ5NruIRET4iOZwi3n/rJ8k4ZCSllxZmwTvXw4fyDu81onOS5Z1qmiOPg++QV8GX/f7ZZ7/ee0XVp1XaGuwvetaKWov9hn79cZsYmZlPRykxXI5i6Is6K2tOk41faAcFZHJrpT3ifLaA+FS5DaEQChNHeXyC4zt+A23HK1NHdKkK5Z1vB4iSYAyNidGuWmKH7FUJf+HXPS6QOVhGrfs8wQBk7TmoJsTd4imM/2AuiEqrbxwE6J1SbblDSbdA/TwNBbOGFEpIAYEM/OQ7bzN8bPLSLNLsCKrM31mLXghdKGVgCuH6q0VaBNSUbQNQt3xIJtwMY+1O06ioUtBCMZlVlBBmSyNihGhzsBAtZ1V6WkOq3eD1loVg8TRI2ox/k9ukXpIY2t31bywTmEReSNEMn59Bzm5WtpjRbEvZgqW0A9m1z9gLZPiizpVQCQYduwXUrQ472dE669JlnplJapTRpG8ZnzyThHFcOwD8hXF+zvuISWubOipbYdNbHuDexqMvloIfohE1Y0NvS45TY7y6gSNcxWTNLaMEy49hqz2CXz9TRBXyTL1UmVQztOisNWkPZIBcoSWVv/y0W0tT3DoNWRbi6IzAEaicxrfaUq7mt1cyb3B6GJRaYg2BZcMg8lMjCQSmrOOMUnrtbZRQZWE+XMgxdQgm1CMRNy168DYuBqxScXIcBGVoKTF+jLhHFSrRpgEqc4oU4AKubvPhSyFlKqJCt6rTEjSok3lBWgu3aBfFmN8hjkKGohYifwY8wK+OI1DPmQquV1VYfpqvUpqdr1KFwePtVfXeX+N+ct8Idht5NXPsKo2sCK276Zmfyq6ACkscAqxfDiCgADBqg43O9u18CKfJGe1xKtZbMdvTDs4HDN66k+m24zEMvrKcS0X1cloiTahBJHS5BXGPAFCBPODxbp20NVV5NTPuYvOy3b1mymQZTdP6CIITcIK6L/GlskGivRKUYNCsoKCpKhCqecn80sChl4uLamxqarIQfcJBEFQrIKPCIslZfjlYpd2p1KiuvI4j/nj5fhGTWNKK3dZw0WbKmZ3wEP53f1wAVWZ6ZjO0Qb/nZyN+SVAAKNYBl8AO652hVN2NJm+N/Fcfk9WHibMXdbeDw1ddOWQkoKDQzyf5nkk8NdOP6ffnGSmkDP+Dc7gQdsvzB1ANRGju63AMDWMt4e602g/RMwa5mQPUvrup5z2bjjNSCAcO8EdJY4ZGc1k2QXZrV3Eojms8cMBHKC0hWga1V95ASW3wwG/LhOHO/Tar9ErUryApvMNycgeU4+doRGLSqOQTjxy4OD4HTy+/8A9ISE7YrrszAeSvyiSND3/VpSekT0F22IC708YOAGSlm18SuL5X3HUbPcQzyv8260Ls3O2MrmlEEuWJ6YrkndVJWU+JXsf+qhVINk4QLGV8JiySQCl5epfmBNtnrCH0sgv588+Lwu7ANgIWQiwZ3PlJCVKvf8f0YZaMYV1qiEt9icDr2uzykChX7H6PVQfmumzVnnA4QPmB6xMa3EmJ2/H6RdUZFtvq15IN91AROZDuAWFTSLMbg4u0ZMCn/3hbHJjE3Tz8j6Tm/yIw5++E6WAnsiR3S2HQzbeVmY46Q9J2hM++DYBVfOwjgvWa4p7YyQkyT3wILxdIUq/F4ZamGisFFZDqpkiukCSLqRJdkVAInZ6ezQRJ7QdWSE9HTcgQo9E6b1EaS2b1JxPWU6tM0cOS2OY9BwtQvsdyBAh+vrCuKwGEYnKVavGbICDi8j4c68Mw0rwluyPjuC6UqzQTeJnix8CJIY8NkwOKj1Xd64GGzsnw0tqJeomVy2eCnOVbYeNM6tDYxGnipbY0/4g/RdAcd+GRQxYEjR0Jm/U4hleWgaFEFUcrOXDYj6K2Jm0Ct0o0o+6FJDDx1RITyvyQBkMHr9lgK9MczEG9K5vLDs9O4FnygTeH5kAmeXxscUMw5j20XtBPFIZUW04GY4c0OHDDoxvw8Tk2iRNlx33IotHELL4EyQn6zs38vYUQSY1OdaS+YC6dLfESZN/m0zxnAxHukpVXQnuQHWotz1Z36zNvK241TudTOPNs1GiRw4DOkMFFtxkHlVOpTDu0dqw0V6FC5gzo8vFaqNUCZViG9il4tDcpXW+FusZSx8kOeDQPFNMstccVmsUyYxiS5ItkDpO0ZYlqox8fuKB5zc07wVaHBkQb60MXNd0xdR79ppCEJzQiV5RS8T0dbn8Y0iWR7JtuEK0+QeY3JqWSU5jfmQemGxlgIneC+FmR2VTX7L1TPOuFHLzF0MeL8Io9V1NQhCaceaXXeqU0tPOuaYqcPqjH2v+6JyuypzSTrcqYBRkR2louZ+uYmXs4Re5Aom38Nf88Gbuna/HRD5NWyoJy3kfleXDJFmH1XhLcTAZnDKEfj7tCNXGcRkzk5HUY7Xg9PpdozYTSQ4QphTOUlyf670mAbaODeIOBndXu1OMv3LuuTaQvQzdWHo5TyZFvbe3imZk6hcFLDZ2K7WQGWnNdTC0bUISXGtkRyOFtXPlUYJl5OD9PLrWhcNmPGq+hTEiO+vjswdmfokv4hl3HZx07GozCUxBck0BkZQIcBzPRWyYEbyKIQN6GG3ZUR2vLLf9NxmX7IBR6T4JwYlYF3Ran/cgtxTa4njo9Gju6E0k2Brdy7rz2Z//DtD2OdXVKr022bjN5EWnnlIPq7RKvyJ7T0FigEHu06glb5A0hYouJ7cTm6A526YWKins44EJ8wqFT/kKuCntK3L19GHWDCnYt7AJBONiOoeiJzDtythndQEzR/Nl25BmuKrV0aU6XhH4QTCyRE8SquEHVAwoVfFQ2I1ypDBloIJGPNop/ZcFLYMOvfNRZprAxXci5ijP213aeiozhDbNmevGyaMUZQXZmGOqmBVxd2CRiA1uZjcCSHSmX9MiPzsdiQR9S/JruQn9lYcprJ9HVZPtfeRbCNOZS82MHfCyS3s+sb7wN9H+tq7zRTo3xjxWD2eHdjO75YwjOo91AcpEq/rez3Wmnix3zjypl6yM7XJWOecMDiLKnNQyRSzMR3BVvJUiqfU6WjjCebCzoEZ8CKtAgVKwJxDFTxHHW3lPpsWW+67+f6uV/YCQ7pX+nY/ZRTQHsgBgHWsdGvl2/a0GarfICsLztEykBY9mYqGzl8Gqw4fBqv4cx1rNPuvl+R97+8bnWC+fdOD5EOfhZEldA8zCejj0Yq/hxfqpksU/lsyx7yXeYq5jbCXRz8sxdgvPBjNV/OTthSsv7wQNGH1PZ9cik9JH2eJRzaGve74anQPjyxL5MfwRjyhExrLI86G/TU6xfo9+QSqPxg8ipTUVqpGZltMvyzT/XVpuAX7STBbt2fxG/IruUI4K4ylZvn35uQFdShonuceH6gGm4gYx5nqWu/9COTj9jTnL0+BEzL8hyeYVJJkPQIS+Cuo0XRaySnF27yplvcA+l8n0ua2Z+fumpgp2oTG3C0dWSzRPJntXQDWd3bXqg7gk3OsY1wV07R5gefd/55YaQH/X7bgnLso30swByJ5KSagd3BoaGgvp8zQnptFLXaiaw4L0hc77+PayeI1EohTgpkrN8BChlsw6fBvr7rbeK+yqkiV2Zy/3btvxer33jTPb3zW26HnnHc/x6stkx/Az2J59Obme3ZnMGE3WLnMp92bR9kcbIpEGcdCk/24U0eG9f7sXNg8filL7sSG73lE+IyMS/UMTrKztLYor6bzwIGJsOJ0cG0kM4kV2kzASQhQgAQo5TbMCHkApedWXGOz6Ude/7vtxPtfNNL5cfIqWW42LgRa2/1pS9mSy95YZHpZ5DCfRYn9DNSTu3NyQ4EUNppUmjroXpexkp45qStWDv0btAJ8GC6iiyChenxsLkXY13vO+f1H+bAQxMjJiLvxAVp5+i35WKo/GCQoPT/clptMRb2XafCPNPIC8WRkX6uvVOHdr+pZJyDcXq2/c6AxxOj9xAnaJoaRmZ6cUGu0PcKWTMlO3upX0U9/Wr5SjC9YLJ77ReprDrtU/Q6yWRVWPeWuNrOW5457CyrJnTn51B27tUdY4znmg6cVOqZX3/KlOHziI39yaXfQO9Zf3arXWEJWtsiFDXV/9iNhU9NIjDp30kAkf9Zbn5eAJpEbCNqdwg00QiI2QVjq5r2bLZgPEOBi2A22wdWXHulnptNED2IMZsEFB76dlX2RwEaG1mqw2BFSwveHnv06F37uw5LJ0S0e8OpXLOH8+X3NZgz/3HARrKqVn5fC4tcFly7tHumtalyxyrk0DXOfQoP/G3Cetaefnc+XK/5LvNr8rnz+7mSMIYTeKGgouRsT5N91gec/Sr2Oqdr1MqphwMm7U2Zz3A1aCyvTFjgbuQcJCAFgHPR2oX29QDk4wM3Jvl1JsL1jTOQggIWOar9xSzREqzaSQTT3M/SixHviojU5L7BnmZfUOJAeKxrjMngZnnfov04Z/AEA4VoO745F9Y+3SosQfpEpVFQv3opSoDgI8PpwzfMZ1UH7lldr7jm+J4v/4zdsT8rj0dwU8nUwgbREK/3xPgiF6r6adDUjEpH5Vef1LaNn5I2P+XILN4Sf9POLxD1VXEAosqAh1CZsm7fTMkAS26Eu062XAON+GpKQaL7tsgXTE5jyVNkMIcAggThuZ47LgdkcnB6frP5nOyKJCzUpYbZ08U1OSYQehmRcQyZmxScWj75JPJ4xtrHcE/6A4XfMvjG2y4QZ6e1CC2hyySm7lDe7CkwlKf230KVSMi/h2Cuqpp5NDkfQ4AiQzVBrGOjqTzXOl2NMBhg0biuHOSLMcqY39knSISWNEiPqxHKdneCn+JAOtCy/e//OhI+PwcSn+QM/e3+nq7tys9B134/dvv9kuzo/gRMqJ8mafg79J8VLYTkvVLic66g3TZcpDRJP5huSBE6avTxuUq7SZjHp0WdwvEQ7HfNQ9LzO3fvrtaiX4n2o7MiEcokzd+bP4wJGrwrhxo2wLo7xkhkqUGw1RblqN37I9vqyW0nmOYnjQm03D8D+5So0hXO/jdlHaMhOG5RbjVj0uGTyEC6J6JVj6FZpG9AnjcWPrJOeY9ZlL9ctubpFRPfShkAEb6kyUY5ZAanQhKnNIUX7NHBnJaaG025JubjcjK+oMVNgwnx5fwyMRlHiIWyujOgzbg4spfmkrhD3Qy/A12uPnwjZzH2MU0C3awDsIonMC6MMznA0+q3mhaS2/YZRfdaX2vvPb4KL/lO07E/K4XH43XMZDIf2xV+Vr8ut3gZ8ndmel77gXf8BKA1wDXnVGclaM7phxCZd4b+jvbuNjqI1LN0oJnvc3ROhdaGP+/SOjHwVDxS8IGV7p30WYI0RhTBMuIy6sYgMvAygDxwZ0pCrbghJSz2LzUSAZ9iICy+FBR57Km25bTD5axkvx8482zbYvPYhpUp/w+RH3i6IBzSQn+uLTwYzpZ9MGiSG5MjxVPOXBdHnDQE05YYIaTyI+nvT4pSSj1KJUdqPEC3Hn5Oljfo6x2AxUwixKTESIRxFiVBo8FumXIYX3StEDu7jTRtO8/l1oeJH06H6jHag0hECCijVF5WZj413TkUlHaEfMS+X5tyX+mr7uwANSJ2tcxHOrveOeP2B94hrputF10q5rqHM/+S4bSY3mu3T7ju03GsNkuMSxuK9zqtFx2BRPSZyutep2vHVDavo4pmRgKVBbY830TSEHGuf75uNoAT4pNixtTcDAkoOI2hiXogqLtCi53RrIB377HohhLklVqJyFxCh6MYxfKAYmYYBhB9fOGV3wB/iyJIx+kdg+hlGSHLXgnKW6dkN28DGm6mK3G/cvATyzNyKd82TxwcfqcNWUJumx5xf1vOOuRNCAWAQc3r/q4/Hwf/5fFyS/BwaFEP7x+m1poJdgj0+NcyVPuywerek5e7jX2mDR8uqR7hT+jh2Fr8JHMtIsvyEwT2I4JaBMkE8mz+rmmm8KFOfRoD+mH1s7I4jtFKcJeu4IzoCaNzCfkh98taXfN225EeOv45Rs3CBIio67DltZyVH7JSfIi+mhAUcyvI5/GFwytPfgB2/KduhrzM7ML5HaQUjmamJEZmySavRj8s34eOt7MD+Wm5iVAGKD8Blcq/NrSCnUzSNbv1E/pnqETWtOUsQN/BR7IKEI3uwWtn5aNFQg6RsORTBDyc2wpZ+VshFporyYHrxMuz2O/lI4khA/Y1z6p2mpaGY0wdD3dvZgTMKwRfZj28kDR+2Ydfjj9fofmvZsf9fUon/cGon7LyN54K6DgpzoS5AZcc5v4ATIknwjRjKy88xyzxuxCOkSvJ0AdQ4bjImVWDeAYpzAOuImy/YfVskW4kKqKcOcbsW6MmPoNlh4uCIpnSS1bX8XGGVDvi2zizPhvm4ptYBXjm6xJJsFWCxJw3/KD3eujgTxYWW52niUnFGXF2pjYiJOezTDgI5e/qI6ePCLauQyw2r2WR3P5djrV47H6vlhgCczQx92l1TXdZUEPxwaDnrYVVJb01MS+pAy/seCKZLgH/bPGIz/eGUQM/DlwKbfNV3naIChUxXR4MJ1O4tIOi7An46ziLxqB16qDvppkPZfx9lH2j6oEYt4vkJEdfTyoDqKUuy01UEXqk/Vf9yGRTNR3ngGiiq109YEnauqDr5QUY3lI/A7c1+utHfb1NODCERaUGOzzS+txS93vv8CX3WapyDwHlTE6XbonfayvwgTfKc6cgLF9EpY+BXTKBf6TFkFez/fCdNCDKzAxDhyD2A9bXj4JF91rG+qmUd4HqrYsxHFNTtvkTvgrHSLcXbznJiFlQnPtNtC8W+IDv5cIj0qVszQIwnV7REWd97eg/7UkPF0mmnQcWwltZm3P3Re/SsmkxASmh5EK0bPF0/wXoxry7xjMFFthDaSyIWg2aHlvpgoRs/TitOCwkIyCRj1r6f3h0Y3r6R2HGMaTM8yHYduvyqeKDxE57DYrHk6ObAfHyUQMQEkvqotQqgvPF1pZ4n/PcjBj0vc4ByRiyrxbJA8Yp47WMd3dvecnNX5aPY/ZSlmRkdllefIja2Uu33LWuBvmk5JLd6l5HYTG4YWxe+ZEThrw3liLBHHcXXTM/bhQ2FdThwZza8rdyZ+jwjDcdhS9mtkPV7S9UCjBS5f0vz3Z9nuvF2CUGlY+kR0KATir75e/JKg9sr4LsYcJ4ozBinyWr+jhSPCB7qCTsYMlGG27n9v6C1lvrbgaMCLLdPJlieubsq2dF0olOjc+Oj4P9gOzahwgZKF78vPCunKZbKFRVbcD/iHRUYnWQ0ttOW21Zb/f6usiFaQKsaRYMdJptZ+8rIYtoumdZg8HFjDPBxkP0nVOk5eFMMmaRUOkyZxFw6BRBlKeVpWFjiOJ2I7+oZGwhI5t35rdP+1wqh0hTxdrX5YtJztVBHhoPI9DLFoipC6h+Po84oyX7B5heRY5qmC98AEbgArFOy3VvvdAvHESwwmXEBbud8EhczwmFSfSE11epDtX+BDKvz/WzofL5B8iTI9JtQHfQSWZzAMSOsDjuUCOQoR8VS0z5JDXkBEpVoKsGc2MIwf6O3zz8bn+5GoHsysiRMhHyY8GarJ66mpetik6HlHLrfbYXMhtsgjIFVgeRrL3NAKv8WwFGBOQ5it+25iCj2L0m1jLGZPzEBPk8H9hh0BWe5CALDO5nwYcBu4lZUHf/A57sHDvqV3FlDL4vMc6NKqDZa5s2trJ/a0L7jGqJSc69Vgj3uDayDloixwfDWuK9fTWkXnqQ2zzTfIpXyVqHuD0iqU9okc13QDuHXcqHahc6qzLs3rzQO2sV7RzYqMp40z3Bq6qrmkOXd3bpWenSfy+/DCoLmjl0ZXnVHE8+bMmnxTLLyRQY6vGMgtmDyeviFQbTRX/hV4C6b/7sRJrXHeODtrMDtjGxFK88wqVVS1B3inQPmFrvyI2+b8Dcl+B/EAkfXFvdP8YRy7dHP0qT/RDmOcF2RmknZ7sbqlf9CwsIeXFOler5fhkuXalxIVZ2Q+pGr7bq2ybpexJGAqcxeRCtatp8m61rsEBEHzenMGPPi59AvgftYrzgR+ovlV8wq8z9ZbsmEKQoCgG1xP65PXGdJynpHPjZSAzk3EfxicOB+jzmm3otma36myZbJyA9gyTEvsVvX8BYFTKFT6BfBvwQEjp36u6V8/danp+2ppU0SVdQTMcLHUwTeztWtPc+fuWXNgWiFeiiz5qHt1iv936AJuds+2KbChUq7bgw8XKoPkberq3CK0dRVQddBTWX/TF3CzixbP15Ydv45LxhdcSPiuruYrhAC8FO+015F33MZV9i3P6e2pJnUTFuxW02ZOFvQUEqf/abRjNFEe80+oCe2/SUjgbfw6Y30zCt+uFg63hu4Mvhyc3QG7bTk3enl0p1uSlU7n4z+nQp//Ag1YXg0TNkiP2TymUtVlcE3GWq2T3Vxtkjo7619KXiYtHOo/h1twYj3p6vJdns1gt5mdx1db5Tkt4hXLgbQFsiR8HGe0by1Dg9/YIzifquvhQjpBxLr75MWRvJ7Sc9FaNIOUExAtwy3dKBhr4g7ZUhDRxoMg/y3/LsiwWyS9V/oEnw9tf1PTMWjhLejKch/Z/3nUsLvexEZbg9eUavBStOTmdAvjQlqNLPM+zJ1sbPcx4DsJBCvZ4U33Dm+wiNz5WbHnnNBk17utIofFR6ROGDfqrbvAwkdUQeHWo0+UTqXcnpVnG/2T5hq+xXVvchFhd2ZWh69YfliUewU6z7CWG7la7f9to8CPb1fvnl5jFtoWW78Zk1HoU2pTQ3p2lGOOLU1emCkktqWFhxn75P2BrZTnMgd7orNFffTEoYqtqfsjce/P28GP2t5ajDb1Tm/32P171qaosZft1Xr7K0NvVY0txS98hLcTcWRXJfZ1gCoa45aHezUzS1hoB/KA7bO4BRvybelazvCmvE1deE3ums3zV76vYSgpb/9nCWpywmQCNSk5+JkL85PaMp/Mzs7Gusa6cp7/e/GCMMjUT4d77Xbwr+gF53C9rq4jf1W9qkrQBskRCffSH6QnqBEvEoF5zqkrs7ONC7nAYDpwyH6BMIdbgMfwu7q+aNbXhGvY3n4NvnpTngv/iG4Ot4Cb3aCXXFggabWsgbVqK34VW4Txj+ic6M7wj7QqRqgpjfis44i22OieAok/SCFV5eoxGsPoJc4k6w5fFkgqxZ/0EWJN31XeR0RAWZ5tdBSJA6j8d0+cw8QzL+NGnUgPunjsv96QSnQHAU4+svwNf64l+W86zlAr3X8gqT7/md8Jtpd1gr+Z8OHDgPGDqE1L4ZNTLZpgmLz5rwQo2xnZEOBm0aJ6uG/4Na9Pj1uLSxEGVoJ5a+OTB9EEUOHYWkn5k8neP0A1fd1NOUdxKbjXAtdFdIPmeshQueQUpFrWvZmbxttsJfJa/n2XDXrRz8K6f9uV3zO23ZOW5xtpLgDIeGVqKFrCnzwcj1ucHcajbhMzsH9mm4037hXz28ntoV6+3bxWcRHSLMx07Wp8IySXLkQiuNbSKA4n6UVxhUCEYF3EQQNTw/QHgadbSz+eHMv7yzlf2V68ZNw2aWPCWAd3wpbpmmIKAYSQP5dnLRnygqZ/3LjeMRebgKuVTXEZ1hbAc2LrIEp2WESjSs3obmerQkQbM/PxUvyr3X/lPP/aeD+/9i9k7AqEe/Cw6MSM/4LMOAn2CP7E+fpGjl216NBgUrkby/jr+mCQkyvFrQaaXwvXoT+5IjdtH7FjdK7iOnORWzvxGjvoR6JYfK8xPY0g2Oj1RWRvDw/1yHO97II3u8eFCTN1ALDkQN3Gd0N7MgYV+gSNtpL6rZemv0W/qwBjLUnpB2perhZ0cEps3xgklsL90soa9YfHgmEeLkwVNxg1B1zGQyUVCkLit4EL/wAAOItb+IwbOQkCgp4bUlCXZd6LR1cMgbQGlW9wE2vALUANco8VQNBNW01JDay/SKfnhPnSdlnAAmtAraAi2AabqRp00dnVrlzE1k44mg8eAUcaWBYK1iwnhUaGJPCQBO4gPWD10f7jeDUSAjExgUB8g67XPA+YZ/9tcng79Z5H92Fz9bFLUqu982LogfP6splv3udakl8zcIba5P0HksAXHil3RCX3G6pfqGj9E9F2Jk/3d1Kf7tL+kc8bvqyerWm4all4p/opJgVrmOn1p3dqdWdAcFpEaHT8gtdw+X15oh3Aud4rvXRs+2HLO+2SOzVt9aumtb9UrGKlWINUz2fe0oo2ZlAphU3V7KOPltzvreK+FJkCVnEclaoDyGIS9MMEqyCKdO1WlLwgUisTk6FfvfmmDlfp7vaIi+ke9ZmEg88rfpUvrKeVRPbV0BFUl9femWZ2H14yEIgKZyaZMxA9v/HIx0YaGW3PcDoqxOIu7elmw6nzrIOJSEPLWjdtFKu6oijsusd2Zdpt6zalg0vm7rtOR0jrUEfur614nE+k+WfS/fzP6MVg57f3a6uvGOUvl+P9AYJu9D9FMy+zG87lc/PGE2zIfTo6MDI6Ik7MleW142/d0j91X3GBXTW/j1m5fUUtv96ZStrdUnWb1l2I92Ik1qNpkhiaZ3wMlsDLDAtFUjHQAXY0VSRky/K+eoQrIwY0qXMe6rhSmDgk17AgtBpB+GCKsnJ6hlmMKsLFMZchKrMGL9mlQXnqvqmptF2KUun/V1xlyRzOGXx9YJVfMZw7eGSh0cmgyHSHkN+WgjahoEiO/lLeMXqn7hYdIpblhU5neWC5YmKns3L2/mxjX2CIlMhVxecrBiIjh5e3dkYcQiOdlwqLr4VV1Ml/YXxdbGNFUEBiJJrAhAeJfdOXpc56qJT7UBUMSg6TThVXucUN3+ppG8STCRn+BZxDKK6L+HYS6oEn2oV6fftLfq2c4/Zb6fZ2jnvNjTLr4c5NJo44F+ju67p2BkZKidyC+PKcXZH5w8uL/RGLaGfEh3/wBv+dIuVO9s13o/mRSS1O6qlbYwMTv3MXcOZTdeF6dC4p3hLIBwF/KrT9ytXs2xYaWmXebtlr2WfVBq2aiGufMpy2U8PkkeP1/4ziKpIo/VmAb6FuUS947B0dkc2gxsUxemO330/dal7hlswB2mx7sJR9KBoOlc73zfv8wYgm8QmA39OGD5Smzngo5bN/Ech9amHfMl6K9o31P1E+SAYNXfgv6/gfrL0Hoj++mI9mHP1j6t/gVE/VV5LLmYj+lkP1wsftHfEPT1YM1HWkB/TrMYvt+gYkScX+t2t2PZHuXdxQ27F+/GwP2EZ9seSRNx+V+FK56CWqaI4PGJF1aHXDsrIwvzR/lB29TwdsD2CzqXEith4Lr5+63XqbWzbXHt4OhC+Gpvzhy/f1GQ+Vcg5XmUTpUwNz1+DujdcrzzrtCGfhm57H+V+MKGho5LFDOIJzm+e175p/XU9WyqdTZoQHrSbc31gmov93Wlctc9qXarqvHTlqaZC2cVgc35Wm2jLxMcmJ5/LaSxYqkCiU9ZLyTU9mT2NIrwPN5a7XgzdfjX8xvGarVPWPeHKVHX566heVRY08zCIoyoSZTTWFeJbpl0P+r5yRl02uvPIWMFSRgwIiuV4WM4RUuAdY0fXj/IUG0Ou6seEnxZqnE70r+jVd/53Y4y7ZfIkwdefnACQPVVIIQ1yUbxe29kTE3xvoLRvCywI6Y9j73EfvFcHhOpekoOwIpQ42AUviJ4lZ0d+sUhYPDVdeugYgVs4eVjqmQBRFjyL6w4J+x1vaVZ4Wxui3RQhUJnZHdeSnOVosRl94ut3OEv8mCPZ7CPcnRCaeU++r0rwCfOkBgSHE6+x8r0AOAaMBYNrsm6EeqWaxvr7qJPzR4cOe7nxnpfugc675BTNuA7LEK9fbIlUYwAiADAXGQy4EXpAMl8tcolETx30aoEwUoqOCKM3WJU2v8GiiNdGGWuc1zzsS/DXQRLg3Ahd4ocigRa6jtf2Wo2qbebjY66/UeobKwFCJPdcV03VRVOj+MaCeDfRDfSA1JLuow0XfY4b7eqXnnccRXVIWi9SuDm3grh3lLGxbBjrnncBQhLb4pp2kuwcrUuQmUNpbIkIiIdQT1PaoCsKAmEIHOGqETPd2TmjeIDcVrzCFpq2LlLR6ws3phgr1hp0L7VGgncUxhMFbuxj8UtGKrQu8iUUFU1Ka/dkjQXcwAJkYDoQfFM9ZAHKADwB6euno2ElN600AoJaNBgD4Ytsj2UkrkQvBAZieQwQLoI/WQ1Q7yXfrNDnskJorhVuZVdUwGfmI2MAPGInx7F3RUBYTepcIUJwxM4C36T9ibHlZqfuE+zcuo6RLeiIb5I6zDojqf7wnrQmXeJpEayNEMapyIVNaznAkaaBBbcMSDK5Kw9eXwdUc0Y503R3WFuQda470KiDeW0/U84B2cQ1W1lmIT3RdJTKtDU7EWpZ7kJSoHPRhJ7mdIiyxdbrmacfbhWwAZemXAwDxmeoWX8vaW/jqWV7pkO3a0DiXwNmFa9f7WvOLzT4wfJ8Avlq3cms2fYHl6jdwhUATepSv57I91ZxdmwaTVmIn16V5lX6xGKBBtGaj4kdI3DJP0OFI0gEm+Crdzs+H8j8ZkU1rUAgcQwoiodcqIXCD336Y4rq/gFkjiSEAjL0a732UjrLsZJqczZtsu9327ikhQZAxDq3x+2z4DSC+Yjhh1SiSg+iRmseu0obrs8OEMhmCkldPH/XH8BjDTGYj6Bz7WKM8QWu+2ToogzsXEocxrdxujVFIrdvwwl9IkT3ifXLmo7f2fvRomxGYBw+ARPjbhZZEIWqG+iMc7JjMB0os4Xqv10OgegxXa23E4lxxhcsZhJc49nJOzzRkBOYm+jsbtC3P2dmZzfO4gdfCM+lDU0r6ZO4gXTzIELXW1iRTRAmkM0kY4dIaZDiqquu9zAGCMOwY4EQH9QcZir+XRUE+aiE0yZy25DEt2iEaHcljsrEIhe3JWbhPaYN6jtWyeuadQyCNItWrX8IF2RF6Si1GQsns1hm8oLRVlX923ZkRgougLJtYFNU5LArPZ9PEgqca04f9Xg9cBMHMg2xQIEOnwL28csJMvyqROoblVfIimLhInxEj/HW2WklmPnwaFHD9sXmnQ5z0tFecbmckmigqyJfCIdfGCFgrp9Itrx+MnNb1IC7Q3S2TB7cY2hnjaCbuSQq5vz98hGQ3MtqYD7UTsRvciRuEI6u03F5cnbGFvjAxeXScVwPOAiJg+AlDccyq0dkuQJSEEQW2pxtiUvj2gY5qx5VQBsHPyomxlkWhwrBV87jBWqWED5x1PQhrlxZSUknpENba15BmhVlPtMvAkZE4kqwjUUdI6W/I3QCSjfACqJ7Njw6bRNytbQRjHDuglrGxUXf5vVzdVF4H3r+av7E+7I8Gg3ps87u7qyrLqrZRBWnwlHQkp8ZqlS+Uzv46onnepaM6tYd9ByawObx81bDbNVLs9ydyc/8+/sr4BF5Nivicgc7Ae6WUnsbXzgzEaibh1rrIDpWHC/nooyt3u7rX0kKU2xUofNHWcDf0labunXuoiW37ftQ9ipwLOWIoW+4ppRBM40t4HmYCOn/suLKuYAY/RWDwj8OVYQh8dX3u0X3Ddc/2yW46gx9ebMJvPPQ91LMR0EjtNuP9gujesB4OIZUIq/O2DesC/Z6LxNtkEh4AettRv2kimfo4X7WrFY6iW3hWO+xuiMHzX/p4Y9YCbW319iQZZOnFBuKb7o4O3dmp9W7kw8oMj8mU/efEFC1mrZRzlbvPfxritWkXeVF09WEwAMn/c+Pji3pHR72+m7CZ9Ji9vO2aBDNrbgivfo+mBCH2ST9leHWTcVwfhQYlLMa71QgYE87a0P/JtxbwL+/1/ReyAf2r0uav+zt8feSmox8++bzo/52xHlSHbubPaCWMGLA9nlPiOp3J/7yEGH3p4lAn/hTMWKFtpgALS/Sg6KGrNuHRXSw3RPpqIxnNzLXlNd4SfBXCEhmHxA3nEPKNbzEB6BdQwksmkzSV3jGWEgcRs/piDJpAdpEvtP1VqtlWKx9EgTvO2nYxnzufTbKyzIsiv6DP+gaiHqFwKrx4b6qJ25zrSBhEQnpgNlvoCWDWthTpibBrevvUq+qyhN2dP0DdTMyHNEFG8yRkDg7caTxGv42RRI6xxdKcOJXWAP8JrD6TQ7BW4eQctoduzGkBGTTnrRcGzS6Lbb+nAqbig6mCMpPbkzSbm9cr3Wd27FLLuhFK1qLGkag/eNTVV8+eS6iKoNifDJm9biLrGL9WqaAAzLKNj2bNYM2Sd4leHxPEsRMtdXMpBa0p0wBUahbkXKGk1PSAVgizCPC4O8yY6dR6nQQZWlgPFI/lvlYK3IXRACbe5tV0r+mB4Vlkv2kskc/HsxPGcJqJOWWBgV4f0p08ly72YXfgoe5jaOoYwdsFjh+9uIhHNcTq/DxGeI7J4sdBxnnZEtP5cUYv3cky8J8lt/naEDT9/iw0KNMGky3mAiSJBAYi2zSwJ/X1bFYUrk96xU7g62eDUxbXvcIai/2ChFqfHhczc6L+EC5sPKMqCmE9MKvgSaSGI/EsEBMYXNRUYE/k3Y3BVQAybZt5U8R2ida+mZ45AzpNkgczNbVihVQ3G8yXF2kaxXEUIZ+t1Kac3T1kWNToTI8MfYmZbkfSLE4SK6yWeH1F1eoewtPtwGTjUrcb60DnVhUS9rQeDo1JPSWsEOYgq6WsALlQVYOBPRavfPRp0+Jpol5vOl2vcy/WLDsXM686nA9N66oXC+dZpbMu+Ix8mZZ8l3e5ug1eJlbyWZWQ46P5ZOI4dqR/NWKQQXvxNGuidVnXWZV7yMoKIkETlFh821jKD9rk9h3dnIlonqhpgb0Dj4kXKHvATlLqLLKhA9AgAIZwiDwN027t21KCxpiHMUBweUdgRnGa5j8UAXsnz1L4teYdGGImVmpzbJzYtg7vVqJdcZULBr0RMUyf17/bhnlRNL1bPo/CUPFBxDHIwUKtISA/lYpp8ksabZw5UtyuZGoIyusv02XBmgWIueO0UwtVqQfrG2CuEzZJ5/Ab3tNLv4+eGgHkVVT2eNfUEGrGzRmreqZJafEqohseD2vJVj0RDquxM3t0qsLma5ahpw2BNjVBV6mQ1rOqS/EOOd48SDwgg4OXGVAiHytP4dVtA6jyq5S34dacy/SQ+S3+1sc7Z1y3LvLa24Xf3J8ZblVXrusC3qs3E0mr+gHwRutmVjSAyKxCDMQ1iOwxn+juMCXvpndd92f5oxlYnlbZjGqE5P2U58wuRZ8KtkWYeeJsbpRqXRlRs09iGWtjzrdX5a7ivYxwOz1gZ511tUfCIcDQLO3aE1zmjJ5FsPG+cybcCs26NL9V2wMnR7oToVa6LYWz31RBs5iubUw1gdMKUG3OQINt2Rjgm8lEXZ3OlQ+9WKRBH2y1CDvRwp5LP306HsWjGMwFwjnw+Qf7AUJQRdSUwFQSjB9KkfKlyGcUpngr0hQMOgcfAB8c5TW08B4e0zV/Tia24DeIIym19fwaO6oRnJaBNcUIlW9O7MeJh15BAHtBqowKG5kOGjdOmPVxQIcZRrbIvnWjzdydykMHI1gJoEJjCWP81D4C5CehR+3nP4Kgf/isEZVfFuZ8jBNs42TDG6TMxgSp+5Ll3XPuHdlMftDh55NwLApcuggBwV9CZinYaDJNjU+HOUu0W4+yUG+MD4wywtfTDZjVXUpsQmYTmMxS+oM6GQi6fDPaNQfPoECCqGQbV2vIue0wxkLmxxlGejoL6cxSk0sGmj54+nMtawoBrYgzwv0e0kqeqjLi4AqyrDj1spw9DV31gyg1v0ohMB18ExWK0/MEHAAAgkfvdRb+aIy///dMoqzvzzfnP3M+/l2Vr+gSv8/5e3k1Z0lDDyLoddimf1aQWC2TUBAUgtm5/emzHCw1gDKn1OUsxjSLLZ1Ofx3wVUoMR1LmSHycR0mM+wNEu3L73JbpjAGYEoTJIsYuxAwQTc6H24fomFYA5Yu0+1ksLtC6RdOEo8ToH4D+WqwLLKhwynuZBbaD5TEUMw5uoGArDUBlAZhZLLbsEHdnZGssSmMC5uhc3PwD0tJ/IMiyMsvk4+QFfEAU8LysToKFxd1D43ZjJXL7AIzKNZaFxMx21l6ofISfw6vUzkvcZzpOW8BiqxgvGF5+CRfE2Shzw5pl+QbdN7wyYQkGMKPik34IEx3FJCpFUx+47+FPnrirjk4A0LsSvTN6zmhzdwUIY+A1HUBphSMZDYyhzhO4WYYXfA0AF3qShsi67kYLMErZ9TP9e40KuNwxsqjpB1A7GGDEMB4YQ6IlcCIqegHzWpk1W40jHjH6wCyNhWWMAixS1TgbLLE5KLqc1jkZ6mamolPEWrK+4K1E9DTE2YAZYJyNrClgZmA+YI5g9ppy5tVwpZG3YM5gpuzxiNtqtTsQoQSAF7BjOdOJUXQt7fbgYtefEF6j2BUL7kLBfMoBLGUszhjjLaO0uEjaHLdaxbe8EI2Xt+pGXa/RMiC0BPPIbT3GPIB1/dZ3G7nJ3rBX3Pn/yySsSQYMCn28GAYQ+47Xo6/ix0wQElxRD/4BYB8CQ+b2oZBj3z4Mflzah8OKT/sIsNAmTezYvLcugkR7EgIcIf32IVCS5haxTYJYqB0ThVV0zBHW3vlfAZlc8tBQgBI5CopwxgfvS98ZwaJl+tHksciBH0sqRGH5PAquEKpdpVf7kRSzUGyqQCddTXGJvNEPwqtl5SiVpj6ahifpJbOLmEXuOZpFJrI3kaOKwj2W2zpWuJrOzY0gyfVZZOCLJ94XfcHQiRb0gdWxVdwDk8diGiE8IYhSempxbrGTtiwwXWFBpfdV5QVSnpYii6FDQq5VRkODQ3yy3ov4VBlrxVX72aSanLkAx5lNJ6Zr0D6pj+zZ7Ufx4RJ8JjX/W3PViEsCoylu/qeo2UthtUxBNRn5VVRe/T+5ZVROLiU7d7OKzVAXhiqLUiZyFMks8qQAWUIlM53cjPSKsvQ0mrTYM1JjNyUKNzlyDWlUlhQR+IThJgaKkRCUiQM5Ij/L4v0ehP7sxnlhCFw31vWMGDeK79TAc0Q0G1zbjbK6wTFdtjlHscwImIbB0F26lgZNc6naFVEUtQeyGkVimUhM2VSMcKUsTPkSug03ZIOoYPkRJLMSZU9A+6+k+OVDGT7xcZ3zPuA6XS8/NizEMlvQvWL5MexT9CVoyw4XvjjT4iSL2WdrK2zmHQ6zDli25L0InNXvFULz9NRuJ3zxvlb86DrEVy+f3fC5Pz18Mts9vDM7SXfSc/ZmZ9nZVunS48NHs/3De7NsQY2fpUfpXvp/H3SAf1+9UX9hmcUq8w8fzLYPb80O0q30nN5sLUfGals928Ul/F2O2UHlVgXl8IeugF9KMcpG1KiEcz/XMF5euYT4M/3uxw/Y0hzg96j7xYLvynwi0qNfGcwqND9We5p5Ex8zfoYEySpS1pIlIJltbE2/PQJIRkV7GdwGV4EjO8ka) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} + +/* open-sans-cyrillic-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACZoABIAAAAASFAAACYDAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjgbIByBDAZgP1NUQVRaAIECCIF8CZ8UERAK1xjJEwuCEAABNgIkA4QcBCAFhGAHIAyFHxsHPzXK7RPF7QCURV2hEfz/3w44GSJQU6vbfsNxEsJp1AEjIQJE2CycTDpiMXFTuIYTHnW6GutwKhi2tx5e6ybiUIPVV42use4r/ZbNfWubZYc1bVed3hNBHVrdPtq/gDFl4nmujn38t1qteSfMEdWpdxwhySw8oX98fyaZSe5CUCW4gliq2sq/+i1UPWSA5taBm8yBMGEwV2QfwoARvZFjDYNxxDLIUWkUKQgi/YpRiB28HfyD/40VgI+ZiYCIWK/995S6Zp4ZpgzNpYec8COkmHSkPspUyYH0JWNIuOWHlt5lLt2VZaAQuaCMKhWANHEIe5eZJnznAoELpOKzn6euBO+3/dLW24wJ5zvaKhla1aF2HRPOomGpvlvzDdJiOSYI4a4vS54O9cMjv9TZiwyS3tpJriqvapkMn8jexmmd+dMTch2Ah/5UqtZ+xnoZY1EvYKVSvsdD1POcV7gsgU/+JsQfJLAwCoL27laTtn4c128XZWTm4QNMhxdKHb4QVT9v07L9oy/tzi7rIID2oRIuSuA2RZuiSqf//nx9mpH+jMa3AwuyFLKORpID0pLlkOzwIRVVSiBZ9pJ87LsQVgDYUZWmTJ+iqJIq5W1LtRrglUWEFqpfvS5jWgfSdVOPIqQQESEgjvbXWIzgKMpZ1tbW8lTDCSPqUimKG2mU4h6B4t3zjWBaQSpji1HvvqlsAIG6CtLPhsMuHo8e+NntZxn0SsBznl6kAJLniwr08JTF+UXqYfvTuyGD4u0B1ChmrD2wcoNisivAnsXLBErAvFFofzyoqx2BoCxmiG4PeixDgelhdxI4WCu9AcAZWbjx3gGujbNyvJopz9FvWDrVaECBGmURG/J2BPbnG68L5OJlHe1vkwBUB+ZNZ1Tp0lJfY4xXzi6SGkHJynnSIiOA/jNO3YgQ6sGS2IbdkooIj2DYH9xLADzOP78KABsZ96BFLsJYGpcFRY8uKFpYi+gwpStfc7VVD9SwoZSAJVbR52Zojm7W/f+q+Y3ztrmF88RcMJcAkPPPj3uvJIARrb0FmbwFA+UBjak9xuYSKJN4P/0N6l95Pt8mLfrSWuv/B4CrjNM1FMeol7ugU8d2NrHTeaRXUbGWrSjYSC/ljLBByDT+yCG/83+aKJNEIcux3c84h1CIvrCZHraX4p3sr6dj7EY8WE49KpVlW0IMbMT9yofZxT4aWE+3kNFRSwub6GWUKppZR6dq8738TxnVrKZdEjFQy3/bOtjKL+G8LzckpVMI9vtfAFVyT/eWrpbmpsaG+rramuqqyopyQ1lpSXFRoV6n1ahVSoVcJpWIRUJBQX5eLpTDz87iZWZwOWwWg55OS0tNSU5KpFLc2QzVCX9TWQuDlO+vT2xuF7UgPM3JzebFxknhfjmYcAQ1ETuaSv3AWOsNWyhQUXffHFeaGQhfkkU5gONqvdGMR5NGqNZlRpyRuZLDalcgTBGBpFuMfrctPeEBLlYbNNs2tCYTYFL1iQSW8FvKJLxybjv9ZQYTzjOqji3LutKXPIi65+H+tS1aq2Q9kJRyA1THq7OnnJH1NQK2vPH9UguIQHvRLMNu/kH1uAJYRgRH8GIs2m1wmY26OBWeXDHazS15n4tzhKb8+pZ02olAT+L4eiqp8nWpkdwAhr0uy68ESRru+bQmU3YRwypHQECTY7PFSDkyzXkNb7JawbmmPVS0soygwx7atxHyxG0YMCdJwiJ5WlVWFs17+bywzvJyDT37QBDMxWkFCQo07c4JWx1Tx9UpEpMkYZ/8lcf+QQAf4WuEMdoox9PGL8xrlbrJiN701cpBh3P6vpPAUodi5sNJwMh0JEdPN/JbBDEmEkmqe62P02nXiYw7nt/lMQIRJsJm8IavI0sSNaFmYjMfjPWfxj+4A6qsQcLr/FSfWlr0Sp0aGu6PNJ00NUdn2uJUOSKD07kHMy7i6hr1wRKDJXdDdJ5BxaccWNFyl1hUS2TWpqqr/dWhIjfQ9v6CLZGQivJIcaSGxIlMwNf3EPJ7gAuOFkdzDnIPAtvI/y7XXFPrlWa8IIIay9ZsfATLoDiC8nsmUeix1rfKzW2qE4y7B532aJLUEzfeEwfhDKnupfYhGZfx+DYPrGGrJvfkvQ+8pajJGJWXIWnXnrqVbJ6zjyOtoCagggAlngVNY5udN6LRCR7MTOab3NEKLaOhpTc6syS+8aDTLj9RMXJ4l2JCkbUfi+Xma3FmUA286IFVuqxu1S2Xm/QQD3g4LJUxLugw16skdEVsx1jpVCyt/NwJYHL/eDeNXxJbBEsMclgbDioLSJgct6HmtNh+RnW7swFUXKYikDTASRbnDC54ZzopIq+Ssga+xp+oE6uHetKeJHkWNynl1CAxrOFpSRbGelDZDVp5ZSY693hLXHKu6dbajWWxIGJaGeSTFPynDC6aMtZIy05oE2cZbL/uOK5k3Ej0cdTSHQHMrKV5uGVZiNZsVdBpTy8UCMZwriGgJIBEa64Nzjiyu9RHsCUcOfiGy8AVx3ENtuxXMAAMEneVJEB9q6nZ+gDpQCkksJkJVD898kx5hbAQHGyxo02a7dfj+7BQFWGz3LV72VJFXcq5iUaFZKgBM/46ODfYvqA4tH2SxEWXFo4KjcPCy+6mnZ58ewIcE0yaapcjW1x1YtJ+JQRJiPBYs2uasQCWmRmEOlKBNSgtAilzj76pgQvPaBDNO8q3crYSNg7Z4Npp4wj5yDOXHMy1XzFT7rQq2KCC0Tu2yHKvTgQaGNIjQM72wtWEivWbc1+EiUAFJCpyN2NycZa+oASBWZlgHNobECzpEFqPMHF4ef9eSgDA27lQD6Yy1K8Drt3QAeJMbYWdAU5imouzBNIjuwDgkCV+rE62/tBJdMZdWXtHdvKYaHmktJx81dG3J9ayPZqYFlkcCSWnWYzuD3Ld4S5BlBOo7OeiH7YYgDYwwAfLT42CGWwGhLaXA/wrAfT4lTPyuxNB12DbppSpTkc6488wrO7YnWMB7EtuRCApym+gxOrWFtVTlsPJoZm5c1Didm61lMCQC3V7bVZdQpUHqekBEkqdaAcNJODv/5j1TaC9QZGnw7byGd2VboQ89uoezFQ6BP3sHvAghyNwWNuB6i0uSQtnVmocyR2/8xwCcRXuCMFSitoPHGByDNrT0HMwlwl5Yf58cTIgq4r+e46TueUiRydguKS5+Bk+tXKSARw+oM3MGApUKXDpm+p2ZYiqLmMryju5WldGuz8fBvnQXsaoxk7hjl9jZFCahLTZXA4lh2cQSKpgiWu0CnlKVzd6ILjHlTkbkcOqw8cAiCv3AVTxReZtwoz2fDrw0HXaqr0YsOoxrT59YMWuxTL0smXRDlKE6dcx8IhS/kzougxbfP3/omwyhilw+q4D1uVwC97+p4LduYJRkOhU4czyTXEuX4Gw+H/jpIWJSdtVJoXgldb63GX3Ba/6WmT59HdBenFGryJoWvJgOahiVqESOehmF6uumCpec76dEa0WjKZfJW8wa4QrKg8Vh74p8vj7jYwQqBBz8KoHLufiL8K+BU0get2OuTJW7UTKsqcJWMGLNDOIZt3VTHAkmCjkFWoNhygGThE9MgOV35mJE02eaPwbrRv8eaOZIpxBIM9whj9YSjoyLPJHa3cwGHsmcQN4dYyd96rZoPh3VeGuSGCEEG2DL04+Iq/aoZUruQdFf4UarORi15Rb/9ufoNtUUdWXcn/5p2HuBTgn0TP5S2DT2meAj4hYLIROnddZthxSqz5YWKBGdSmofMm1Ty8QLPAggBjcosBDa8cr2I910P8CwPsPEOeIHtl4wXZWvvgAlUdhByHOMaowrmNM4Z9BOV2HAxiUTI/QkcAKOOXDrUrDfVSxb4qK8HI4XMG9fWDElw8RGm41SiAM5XdAlE3am6m81sk3+xO1veiXWnBdzOqvoTMvprZPpleZ37cHtavddJtivS31y9zsZjqrxtW+6uDtMySZZaT1LtPnwqiepEL7fW6ZW36rlI6/1VIekqKddPoiY0k+3Obbl5IFMFWnli5LRS+G8C8wnW2UY5uIEVJsbEzYD4z7MjqjWLlF3MaHQXmSGD5X76idtx6V1n0/dObb4OpwV3RFAiplBIkBk0kD8kzVYqusvoXgazwXzS3djtpdQiJjVZ0jBP3MxJg7w02KH2M7yof457RfV0OTX3hK/zW2LoQcC6N7B5tunHAIoAmsJbXQL3Tshv0fhZrwQENjOxFDR/Ql2WChpxQYRYayoLykjB8hK8Lel6Oi5N6FqJtzX/GpO8PnX/BuyNyrfj3jEijSB0GqBsPzYbIEuG+UCBK1FuRRqxnaBqFOBTHs8uDfB2+ExbZIu/LVAA1LcUNi43kmGEyWHvjAS5NEA+iBwWNo0nRs1V0CEbCf9U/2gLR5rtzE0xYwKQijzRFcEMb7V3Fb0OIyZTmWFmBp9dwi4m84tk5nRtXMylsH+i1b0zzmFafj98Xd1ug7+SXdUWNBAj31+x8ZgloIg/7HOALrpJeskhgnep6qYJOYxagdwkQOQY5ze7XmUg3zmpZmMjmj1ntxqN+Js0HJ5mCKfZSiAQiaqOWApGVZvp4L/1U6NXHHem9Yv/OuGW93/plhMWzJ+MFWCmkZz2QoQA6+RQAD0hwEjZYHJpi3AA2mOLXkuasS5QeNMTJnn429ge4oPtpP/P7Oj2IYw5ZOF5QHZErKTqIwCDJws4IJwwKKmP6nVVaxlpxXL6U9ATJJrblXn9G+1gLj1MJ902k6wdNdQcrMk+Jx/p820f8YU6spP4cM+Ava4tA6G+jeBFsxI7C4EgdkGtLnA+I6hAi6YMOvU16+rjs1hADN70qLqg+gAmieNBXiFYP8qfechupJEpnOJdhuaAXUGaZ/nTTZdJwV3V5mKP9XXvBbSPOCVb6mya/3659PNF/8+VJtDsvNmQvOWj3w9lwCX/jfWpaLweLEpivqqlSWUgdXLDEAAiEshzWAE8LBphNvIs7ywntlLWgelu/fzka4XTozYamog6qAMhdjaBHqwmoO+tGWzBQiDBNNd0vvXmcVV4vgPXW1W7XCUrtkRRrNh9rLUkfB+wivN8opVgu3+4co6PEc7/OfayPuZw3dsRRSRKFnNVMotjN7hH7r2gy6TmKWqmuK8CuTCLJKJsLClFwCqM6tBlG5YVweaA6uoPxcO94Kr9QckkrvzWqI8JyATdUwt8MQzlK6rte7akkt2BcDNqUxtFuaKVIHqmtCr8t4q1uddkPpnNd93z62JMmzPQuJpfHfDiKXNZ6QoRtotq4hRToHhTYQKuNEwGbTNamWUMoyKL++gutave0KtbuW+6u6MhV7ITL3HptfkFsP7k4ho3C7SUOTrO+t65wRpKD4DImdz0hyH3rxGQl/w61lgiWeHf7cm2nQjIiQU7oup7+XXZ0/bJE3gmXZ1p//TWn2CScr7EUnjXJlrFZ7ub26u9uxzE4hlrLwpk2TV5y9hm+yApsEHKoZMtG8OJGytrCp7tRb4ZiTlaBwokXCZrHLE5uGw6qur1cpskl+DK2PwC6AfY23Op5f53eksDf16aC+lnfQTeoMy3M74Vj8m+PxdfTpMZ7Vnms/78dUT0kCP8EPhutoKMo4GXhMJi+iY+YW5wxoLDcPmJZxpSQgTpIi4iKCsEcVZPwJNbPdE55l9nVMG39ONPNoy3EHdQoAPrEtAB//sujNbamZU1lYRYGV2Ug8NmiHNQB/fNl6BFpq8x80BsAf15hIgB2KQ+WXYY4ZCJD+xU4WevwKXP7gEFwuHzbLevz3DnrQsbn/A451MGL3z/SkPh8uqW+EMcnPe97sMrm0daTEeRQo98OT+CXvH+SF7q1veUIbaEKE9kTK+4UNB8UZNT4J+WnKUikmRtdVX3XmrWR36marRteT9hKfV0nqVL6bR4JPcFJabRzd1a00XiGI3yhsKD32sqBbfzNQCwreCt23e7PIDGePWO/AcEp5TLaXJrBfz9lK+Jc0scGY7jaU4uQBBaPcWe6pM+8uXeCSlwcWoX24j8M1O7xgazKkn/Af5BK6MjOHMWVt6TpSPD134epfD8hbED8EKXVOOYK+FF6f4eC3Hd8Q5wwcn81gMnp90hyFNzJ9nwdh1MVL2r1+Bp3CIMcWNBcqnERWY3+VGRYu31hr/NkwXK8U7fD+n/cPlVDhHEmXJa/q1GmCW2WU1Nz2gAQfeIJXtyvK9X5h76sSw/Rwxx1Y7ea2OsUBrxyvf5nuEy51O4wr2hbOXWyE/Ve//TGvSIcw7AbifGX8CCwRDUEg1H04Pj+Sy8mPjk/Ii+Zw8yJRCf8EasyT3iZFIzwiOfGicfCROG3HHgHMTZEaTbD6P9QqqR5cn/xoY8fVlOqSiymbO2iP1h9vMPrQtHPb+6a1Rv7042q/TlEKkyFM8e1Ua3zbRElMg3IU5T9TeOpPF8JplfG5hmpGoTsj+j6q1ITlfgEEJPmr52bz55yUMu8VH+g5MZ4NRkIHpXtnXhqHwkvz7lKNiEZdyOdS9fK+e/T+4jEi23E+y/12YDovNdCL8K8oROkj9WrmRZfn9r7tuy496SHwyX7GdGrzSY2Lc3LBewgD8t0g13XslEpcI1nimPVY8FSQpXCsJGf/Xf1PdRYBot0t2vZiWYzTUg46Z+FmEZXY8Z9n4ZqtB9MUgSnI0ffxX5yis4MisqxtcCuKq6j0KHIoK4oax4oJJdNj2mKNYngoG7FR+M+PuQfJwXoqh6HIlNDlU3g4V8rR3LAk2qAHw66EWbKQXb6WofnUUgeK4SC7YGJTH0gvyzDw+TKO13DpHXB335W+QaeEhElAvAiV+Wq0mn4ygiZwE6ioS1MT/8PxPVXvN+ZEnekY/CY6tmQaM31yyXdx21DEmWxF/Jnuri+8g7CJsUZ4X3pcPZufvKY/vQJuI5VVwrelTw2fbZYD/6MdzCi3LQOllneBuwsYF8dW5xhKDY9JyaUPBU1ojLOMJ1H8Nx9vnai7feOJAzJw5Bprna+UH9EE5xoWK+CZIWuEuZv8oYLLbkXOMKnbNcfqD6HHu+jTY7lWJ65Zqg42PCMp/NQ/slxHQrFmw1YeyabfFrvJdu7xHrVoXR1x0uWzu5Pltkyw8MI3XenVuic2c35bJpwQKda7MRMr92J7b2BrMg9250QcsISqW7O0NAqjgZidaHd0h0Ivhh1kSl+UgvaLC1Ybpm7JKTFo0ngSVXfrza0T2CBjXgKFroxvEhGJZN0Gdo97je912Z7ATQRZO+/vA8Rg+U2Errr/BNjPhRUuSDcMZmlpNEYbUZyOZVlPTlzY7TXeMe61Wxeiky1kOyVxVl5L1tbIo6is1RzlK/ed/+IwnMmXv09FPb5w0eHiVxT9z6l5JvXPmVmHWfi9TXVMHslrv3NowGbplVKPDrfVrru4Qn19DHCf4gJb6PcctqGc36uRyBZyH615X7H3rHcqOzylKbNRfymaE9R8M9l/nDrlWj36V07lkJ1p02PM+UDjKi3zvKpLPVtzCwH449KnQ5Y0hArLKopoODuvGIfkAkwvMTO7nz/Wi6YXBqJPYVm3gaCHYtOcSi+I0/ZTFqk0fyAVGfpR9lqzZycJbGT43jVX78l3k6rMoYKWDYwiVGA8ywdMs7AbwSWiyhoIsYR4g2kZjkJMPrUgwuRrPw94jQem9ztzFsPYD5A6tV4PfFQ3Zy8f5QfB5PnyYu4uZ5nzJhKxWgucb4Gb4ssTIWMzCLMe5eijVa+1j/ssXjOhMR4BK26a6Gqu1j1xmCMXLUg3DmQpFNEfVR2gcAqmq8odZTsXyltgrNk2J7rXEAVxpNiWJURGjbd4N/P9y4dx7LhWcDY42zX/m9zvHWnt4Lxw77kszKHpLnro8Y/VVx2lbrAi58tuBdBmXyE/ZO0SfvlimTFnVWNOTq0ftq7txU4aevuVT/JffkUPdDpbXFx5R/3ibK0P95iat158aXdsHSOCPtOT8Ly1RFfcVhL3vGcrZTaXFBa2l3hbcRj25/hnbq/fUZKbNlA65fBw6fOwn7Bv6aFrXcj0uPwaTWMrMXvbFwNv2c1HzgrLlytLLRyRQYblFeaF5m9EFi1x1HaTtRbFGbS6QE7zBZX88dDptYufaoYqr/A27ksBWldMXgipXtOc2aeI0Uam0f9JX9kRXJqX4E39EJqlrVatQBQu39AoyhN0PeHuR0Pohluk0pqVibFisuga4hZXE4VfHsgA6Y9eTOQLgu3I8dDsPQMImSfeh2pGtJatb1sttVCSVugQGb98bGZm1qLC/w31/qr8IbyKDfVizidQdpKCCcE7SZTzCb2YsA22dgS7Dbb2TkWFhjuRdfUSkaFEiEVSUPrQOBErp7jvfe7prH6LBlv4fLzd9aBCVjOGFuLvE09eT1CW3NN2j4JxJFlQefopZ6YD736e82++doQi6LgjTGwiM2HZ2sehNJDb6WCTxmXFRHsnczWEQQbfh+jHMdMJWVdJwSAE2mHXgAYs+lMoj/e4SVBAYlv4fczE4YgRPlr3Kw6g+WOadQEagoguDHgvPGapFYs9azXMRZjEwnv4RAK03/oT7hOeiIb2ju8FIfDG+A0QwiY1QlCAodMAQqi4ewa1ATRoZs2tImzQ+89ZLOtY835bX+MHROcV1Ax+5uwK067173sH6j4i234129+ZaVqbnbCRlx27sZaXbYrr7csyrebFbsxu7p5w4ca0WrYehEDDaUNAzTAWdxHqSaIkRmd2uaXa/Q5C4MlEl8mo4n23Dh4eIOrRECRFAUtBqaERGAMydQ+r1nz73u8s0UMI7X+0+xVV2aZRCrY/zthvbRDOkgoabiPu83TRqTHiUOwABO5v3/WSqjDteZSxb9vdDZCsJFSyJuDAs6MJ4W/vcYZV6IlAe8H2BVh8B/Fg5ScNM2glH7WjOv+f5DDik0kRrwrXwrPGpsaWVsjLRYkNLmWc29GEYwGK9r9Eqz8/u1YFf1uDldeDx6uX/N08tPaJZM19q+FrN0AI3HsD3br6qnH29Vv+bGoyenpM7dnJT0lJzk6RHWqNZxs/SRNJ8G/qkJzsfaxFwI6oy/5l/uBVBAQO7LiaT1HTMsdxd5hpNKLZqjv/+onNsW//ynQMSIwXHVTnqLh34A8AfFT/J9ZaTN3RL/BArrfa/aNk9fy1V2t//pDv4E+6MhwzHqcQ1jhFJeSTQpXLmKNTowguSQsFxxf0ezMd/6Y6b3XCmiXMQPs3jj2kyto0yrzt9zJ2XzL8PwP/CeTYhjpEE0sRnRqTH2rnpH6Dn5x78PceqIdf5YREurXMlXWg1a2W1tSH/5I2fSUx5RgJFf5pk82iAYQIIGpfXDvZbgRlGYNcb9IZWYXUf5sS7WYw5lRkt8mW0OIrJ2tORq8o6OZwhwv3HDnZn9fNzhwo2nPsTM8wNUooFEYVUJOiC4TCaKFrHCkKKcsfvMXbf/galzOAUK1AaHMT5ZmadKTMEolEImfNo4yj7GxZLXRfnj+PZsuq8mjnMHdJaoTwgZDTrJPJKhMxFu8M0fd94TsPD5kN8W8N/8AXhzsgBJpRxHb2+fn5oowTcbOrqz3Fb024IEhLHt7AO9UwsP7RZ+X2vneKtfd6mwoOblNzbZGyvkmy9Iz8qofc3BDz9gIxi9KpBoa+pEGuLm8sTo9QiNKwxq7AQCIV0nfJVDGhWFFa9y+lEEEroLoOvJ4/C9BR5wVb6WkMHH3+BjRYtJNwZa22bhB4l9jhDBsuoKtwXBB7XBhXxUVwMV0CN8+p08dxaVwGF9flmS5nY61oBir8pfLoMWg3jsvqkmCvKWI91eBSuJKXYau7lXol6s4NDsPSohwkxA3iu2RvfkXI9rAZJMhoTZGpbYZq8mCOZQfghnevNb1PAdTFyfKk0dEAlP5VjE2px8gfNpnmwV3PNZM0n8lA79v0PEJ3GC1uAcB0u53Ekf/lQC6MzjtjP/PAwvCl2WFzn7c0/Wt/2A2vi517XV+id2wKjx26WvD1HaEJATtsLOI2NUyL2XNogRYykNYKUSzX3chH6wQA2+FfWED/BoVAgp6Q1H5ngLX88+AAt3afvR1Afgvo9BuAOxRg6TeA2gcG4qoEO1v/c3DDEBXnnrjaM+B7V2vvYX1H30fbaEVIEZ2TOuj6Lv66HeKvu/vRZ92y6RQ8k/AJQCO/T608kuuYN6Bjl1P2k7UNjeQcIqKroGcrgkGJEsUirw2jeYGggBCdZj/bWQ7gtt9s9KUekLUbehWELQSgKu/2rL9GSW099pdelRZcjAsB7FfHhvHXrLbHMHWVGWUi4qsA4TjgMBblYKPFXPE7WTP88xIEbh/bj/i3Mib+vdMvWQaKdmJegWQXdIk+MpDl2GvyR0qKMncmIIPh1TdZPdzwnMRIHNnO7rMh91ZjysG/w9vHepv35CXFNHkKTonOdf1Y8+JF3jTYEI87fFJdXGfu66Ek/NZw11yeaHY3FsAkqBZzGuTJjZC/0clzahnq6N0Asz722R8FznA7TPM2oVZq1lzN55C5fQDPZj+eRaEvlPe8oohOUg/R+SyoB0CwaWENw7WqsW+UvdtaNv+jf4AEbhaeVwdC8j8/+4vH0DTgkueFSBxyKDKQ4FRB+mSjDRTgTFF1B0/sdpc1CLhPtle4bjhMhN+lBJ4BCX4DDXEhcqJnCkJP8hBO4NMBekMdla7JEc1st5xgVEYIKp+Isme9BKNaF3MCT+77gB0mnivA+3U5WEnB4pfXpFNJkihcPvoh41Y/PQMZjyoSei+LcBHf6bKpZPdv9Ez3Sdvqzw57pmPUqYAP4JKuGQGTC1eAQODg8FMLo/4kLSYjznGRNEZND1BZ0aC/sjLfeg70GblqVqszYKwtnmFKrg6+D3EiG7nFdYwRMokfQ+k9gy4J0QVzoB5sA9sxV/oDM/HNGa8H4VRuZA9MUEH00gCWNDlNgIlql/z2y2zGzxvdHMcTcpo1kjeLXzl2Wy2zN413ySaUODrfYeOgMDqqxIM4S3FzPpcxpbLkn3MdbKtyChc6zfKpf+8mcKIlNG/LhU/CvFrxyhiDpYWkYPc/munEwlFw/o8Gl7Za9CXwDLRpE18nLr6IM8p2ZOKMST/WqxW4BO2nrYqzhh4yN8Feu6famX49qVpZNhpSCqrfBknGSg7mXstLqC63MaO5n4USkbldlwmqxqFWLWq2YcrEnuiAf5wQo4hj28vPni/KEu7clzK/mOJqHAqAGMGOccZkFlc31OHfYaStx/7EXMewvOVWN/aGlMRljGind6MmcRtypn9xy98yE4bSOt1u1MaQvC4L6q9cACgtnpQ9/bWtVog1dw7a5fjkcubPjLsR1+02J6Rw2J8+mR4OKW6CsfD5W87pVvjQRT2dFrPZYeP6bwM8V3cj3dUlSwlssdukuZUleOChdpg9u2koG69gWO0r8yZpXxPCTwQF3P/60raxB+aVLsOYs4vuVdkLsjihuMo8tfJF7y0HEDxowvdBjRg2mrRJV4t9nReWQMpVT1oDXPrbDd2Slvzv39HG+/xfBweG28ehdWAkexCvmILiwj2kWrMYpietMVaigShTuJKb+IMQ2kDLBJgzL0GoHNVeHTMu/PXrZF7QrmHopP/l9qORBKeoHWYckC2a/mPVJp6eH8X13bkW4f8jTLOn5tdP57/IW/i50pXxo2/h3rK+rAAjAs6MlJ1/NvMLXE6hQNAMt76cnXqDc9YEYNM5alhKtYKjwY6jbuwyn6RxnS4g37alX4RKgXQID+MCuN9h6gO4SoSvx/EpTkd7I1XpR+wwFAP+O04aAKn7AfS7YOzGWCwwXc9R+0ytMA3fZ6rDQ5fIKfXD/Ov5EK5aBIpnMCgNM6GBxqBho0qgA94MRJCYflznzzQDCl3QBRip6eKxeHbxAI67NGaICbAhJIjND91w5h6qbMDP/tLEHS8XNT6EYmK2KWWmz/Gj7xlDcMnfG5tGh0jFxDAPoCug2QUGmK8f5awHQHinUtWkioKBJkpfosKPhWErZb5tzsxHURFrdpwusb0A4fMO/WsBS3KEyeQ0gE+gFEIwCmpAOSuD+q0UJREPECsBFEIB7tt0OTPGUcVukIXSov1ItYIuwKVhzywC6KnQrQiZVs3Wd9KKDbnAcRTHj60A7nWxBpaAkqLcVvhaYLvwJsClQkl2X+rIeH2ppzmXL1Uq8/lSo6JYWqHgfUlRWgvlBQQKy5pLhYKyYyT48aVitvBxfKWFhUvata3/iEODFgN6ZEiQUoQ9Afh3Y3vYjiWK09FKqYaYRT7Iwi2mo79Dyn0tsI5jKJZS6mk9TLmjkk1q1ZiM35BIkAFJfqEAXwSbUmmJlJq+oESEWJHqrCz0PY1vr/D4/jyCkbHpo5UIWYUv/p3ZMKikS6rC7Pix6sPeZVwcIrkdItGykEbsfbybuDxieiQJLaBVayPSvphSKYEgKcll06GQSgZx6mUGaeFJ08CxivyiSHJAJpQKYJIG/utLaL2+4iKAL0Klx4aPgVcSkk7x+lPRukvhfIN+1mzdXKJdftJMJeoBQjUY5ejZitGW9yWyVoK0HSNp9YjbBESdZoTdHRlBl05BU7PzG5NXo8mtqzZUZ3JqErJCk11m7KwywyslZBaUySjacQvdcHK02ZlhZTWbmZUw0lr0VKZLm5aYtHi0UyOTEuklyVE0SaGdGBiqTzbFNwn+HSXxXrs4rySWG2Iw0WTsKDcT6R5EOGDCbSgJs07I1thQ603w9p8hAgclA7YFWSp/BtyFqcsEXxFHGy5PQ5chriPQwddvDhzYs2FnaYp0VlrY6o2g3PC9zq6FKMtusJwaCewr8dubC8R10gjaaeIFng2oNIANj/A8bCOZY18sOR1gPEBgLuAU5Ske433Jn+KYWUYN+5hDAwTZUnEACh7ieeONaA59caDFqDuH8Rd+MmU3ym5xbAT+5B7wtRElAf95ZuBcjximmz1JiB9mvr1/Dyt7RvhUkl8tmAmPEUknIZtazXuvi41fA8rXEi5wghO9wtho2VEFo90KpOZ6UcFaoOSH5S/8OPzG3lULAA==) format('woff2'); + unicode-range: U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} + +/* open-sans-greek-ext-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAA5cABIAAAAAGsgAAA34AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGjIbgS4cPAZgP1NUQVRaADwIgXwJnxQREAqCLIInCwoAATYCJAMQBCAFhGAHIAyFHxuBGSMDtUSuZiT4ywLbeQ0WfHCD27obF1rP7nLrqdcpHMSlEvtmhDQRzF4R4UdQ+pEkNRJD52SEEZLMwvOEW/b+ZDIROKDmnCjV7PZEUxfuNhVXKkbFjT03A1G8VCZCA6B/4IWAzgkt8j56lSQDlA3OKdkhZEsHzOd2jGmHpH6hb+SVvtT19af2/ON0TuoqfVYJzLgxF6EnrcHQAcDi96aapFulvT1IGbxJh7RntyKqpqjFAbgpgCjJ2cMt9bx+k9vlI5XOreaHFuehzvfXk500LtGOOIy0dVm7LNHZSnxSnKfooVwmu2wXEKYuIzB8oImmP8H2bRNJ1CYhA37xrerVFdi2XA2sWSilkEM0XdPXrYugSABUdeVyhWDx3lBVpeRItAr+x/hcSXfslq079iQ9eOakMaSHTxo6mvSIoYMmkR4zcMo40miAYlGAoBKcQ2Ls6NlMZY1C4sB8DJdZvUxwEQLiCFdSEUUys6K/t2/HkBLlz2UczeeBdXNc1yCqRPezXKz6maZZT3q1e5l7mXtZ6bIdwIu1Xq/uxQa7RD8H7JBDpS8P1Ab4VELeu02XLm1kX71O9d53V/93DNz/1UqQvc6Xt7VvB5KU1I10q8rS+9RHTR8yZYQITB8+YoqA/IvHSG2iRMXrg5KaDCHw9YhR9wIWCiV1gN7ZCiIokXtrLmEmFlSOWHPAF35424cX2ucxlYnZt1NVbOjuZCk+kifP/X9C/59TFS/7gWNO2KJ6H7GQTlJ6InutdTz57Z9kLHk7jGaNnWZxyOpczWI7HJD3PUvMkLYsMYsd9jjhFi/pJdbZbm/LHlfox0ec8sjhaKFXlGkDQPvW287ioJPOWmSVbbmaieQss3Ztfthcllpps+r5Z3zPDOax3Ma0ZSY5/m/bZIej87A1y/apXLxS7bGOhu23b9u6ZdnSJYsXLVyQmz9v7pzZs2bOmD5NcDoe9rvtZr1aLuYUiWbTyXg0HPR73U671WzUa9VKuUjgX58f72+vL4W8Efoe2cZ6LY2xxjVfzzbqtST6zR+9WQ8HwxSofgu6GEI4sLo3tHlDae0Ua4RQ5uKiMJVHg9C1KGkbVFzdrzfi3qCwlMsd48lBY6XANR1ghKIDqlgWK2btuHBXq9NDrZl1Wr8rEyDkbxrxzHx+qqL0PD0ufj7HrnGMQYY121knE11szcb+2ukUv1tKLYSCqlQy0SvLz7kSlikszM9duzWfJwKuM6rg429VH+VhJREMedK3MoPcsVL3HlrW9yrNsybnqvIhYPULsa7XosJVTNK7bjFN73oUtuolSN/1tL8EWbj2Vy7OkTKDuaETcIq9jg1MOqS9oVOb41QVPnFzjiqnnl9WAp1bg3tPUAi1XkDHOcBUQeupFdOFWuGluGCu01vrHk+SYBUAE3GEnnWxsXyxdrF+sbWwvaCiDNEv1x3/EiSeJL/GZTuNIecO51TyUt5pVpXHaLhlL6hjL2LfRWFHh6E7ggYc8Fklm2cL+2sL26IkDsorcIV6LY9hx/DpXdYdCAxB5nmnuB8iIpmHdGRt5nql3ald4w08y74DWZ4pdnH0UCbksZdd96QYFBapWq0bB668642cenjCdXB2tDOw2Cm56atzGZondaJMeUMeD97czaWsKbXYymD1kxBFFb0TRd9Jz5KzKGFlC34yu0IzuUL0O0/OHQPVGZAJ+b9zzjk9fSmPPCFC2Le3au4CrETKAZpcqahxpbV7mtZrlEd8mUa91hvE9FPTf2ETkAEk+QYtW3o3lGG+XkMr1mJy+fmNhrMMc9GFC5w86OXOd0scPrUVB5oiHUBJoMx3pihsv8u4sNJ64imPbEwv5J7KoKh0SqKS+DmNei09ITlg+S4lpnLh2rcs51/rVulk4nkycGmYXx3yltEc3okb7ob1ZVeWSnvOpyCKYRi5qBhaTVOHns+AuH/s2XpimU+wGGSWpI6VReEX35eQwu209I1sigM9lM/9qXEKsJ3GKIUxzpjeK+BlQpLO+Ig7vhPWghbFN7mXMiAQ5hzkAetuSnaitIO61OXMK1/cr0a8GOOM63swQY6shmJZWeT65B15n8K+1soyO6Z5OMnw9iv7dfHv3oUlG+TwDUPzWpoL58g+0DNuS61rce4oYK5P1ewCZQvIJc9SSK8Gm49yBNthvNPlOzfBcJjBfNzQCH3wek1IQq9LVc7aVU0gpdjAeZXCpPNblZIEQl9vYHNPKkr6UMru0c0SaC9vvGFNGTVpzHVQLjZDdph2xxT8wfPo+/HhNo6xJvZdfUcjWMt486curm9IoGSxZ6ocDnZqooGaHpSwCWvJQWGhI2YQmemO70NotPIyn6COeKR3suMiUhrQBSMdcHQlbzcmgisD3Th44OpxhsrPhZl0yqr49lWtXY0tWNHEQpCHiiNCOHbke2PNGSZ4LGIhMJqHMLCYUFXxQcI6xjMzzqWh3IBo6YdQMsfCcXN4tyWIqEInpjql7DSsfK6c3DkiSjvYHoEKidOr4oME+nOxQsRMi6+uTnH9wVAYUZtaRyt3cktU7ulUDt46Mi+s1qxXVcjCuoHQw8jgGmuvyK117xLc2YbSJidNxNMcRAnQtNPOnCQNGRpBSmmOf1FIa3ywhPqaUckqZHJTSmTbWzKYzxY/fWCn+xYIqpMKNgU85t3bMc0wqNhlteQWC4xj+tgql9CwMuUA/5O6Q6h0WUlw7TMwYFBCdvg163OQXwsKropB5WEa2uko1kLWFkdqehfarS1EoK5Gjte2kb9bXBz77lypNu57eXofPg/haMzWp2jZHAOIFMhNxNKMbUFRbPwa3CxQ1lF/n+L8njlglELjylbF4v8XVqIZnPHAtzATXlArHU5uyKZI/lc2WXBFcYY4wp3v/tUw4CHfhVETO8UHfo09C6WOIs8b2yW17NBwymDxiNa5vgnH13J1sXv1XScGNUvym88BnC6/x0OYvGRekqYM3Ag8m3pN8mttxCHXtGp7Jo52tC0Hg+KyWNYo0CzeYyjg0jsR1nsOmz/9f+85hWaDHPsUsLSznsK9/4HfNt74KDoMK47YNe89tj8hYfZ/KMsktl2LUrUQo/rneut488JLP+EGC91yMyHRywAtUjZ3XmUtUItv/2ZnJR9CGfqCz5nw6TC94VvyA0aF5YzSk+Tkoyji742EJWja8A6HDnJXlV8Bx442bImpsRhle5Ws2D7kHp9mFLVi3UomGEdzh39aJI/HKnJbC9JhBPUvs3Bj0Maofmid8TZjJslPHpJUkPytpiRVocff6TjFSNMXtq5Blvp83ckfKXn+V1XLjZXQCAScsdLunaZqB4qDeQAY/0P+0/uqPAlYxy/9wMVX1GVTnlNGeOoZuZR82Ky0zfwg0CTEI5FDWq7kgjWXpPIg8kI1sKZDfeNsfHaSYhFr2MA2VstKAnTRiFwFXT/ZAJZicXYdqc6XqMHu5v4gs3Nvvvqhn//49bdlwTufxFZ+9NaMl9deI/3GG374dn6HV1+dLbe8cVObU86ca3u+/vonfAN5w5fI7bFbL8g91+pm0nvHe1Q+8YQ96pZbdNm+cY/xiU82dW161w/fB3dt6ta88On2ju8enLZwMd2h/bvbPz/pPLbo0LTkn55KXTDkrRqVm5xOdvCrdGg5tvPYq++plFMrlpRd36ZrWPpzI/Ejx8fuu+DvxXW4GJH7QRys/3/sFgKgeM5h+7k76iSsSVVtbxKZIBM0bnKbpYKE4s7+ixvJlJaG8dqxGDUqVDA6J9AoqPlsEDQqqVBC5UcE/0VYNF/48Z/aP3ntb27MBeCtZx/+A+C96d7tn/97xdvlDkIwKAAEfl01vCMQlCLfGTxf6+d4yPRjulsH9B5JId9fs15V+mOjSNGIHVD3JxdhTeIEZxQN7a3+pzBUqMipoQqX+4daNObxoZra/D7UpqZUZKZYf0iCUmk9lkBcZg0VfFl6gInTkJpocR3V5uIuqtN7/2O0AMjG1s0eBSEdYdycosVUEja1uK2lNdmyIdHBIaJrN+a5Gu9syskSmak9Thq98kVb14Y5VIxQSI4vHbEbL7nSckubuXRpauaMuHZ04BCxo8P8cKZsKA1vvjThYecUBkYU4FRwhF11Xrex3ddVwVBtYiWKyukALMae+hUVi/n0gzGtaluRsvu0S3Zh+6wDLu9DnSrUU91RE4rUF9quDJv0mnDLZfpYiTSM3/wMTKu43ReEvUdv3615DuKcXtrx/XO4/+1vz9vdI2wf2uYaYX30WB16eWbe4vTm+wjUiiDXO6B1z2zNMd08PdneSIw3nNHS84aLHsys+3PX682J7uyHnYl1e0S81phojojGIIn68Ks2+Lqa2KtEXY49rxRHKIZvRCDcel9efzrtfVj9bv0R3mySV+O9aF1Q4uWVzqk3RsjKXxk5Qpp/KXQSxEtgiTiGiClJRxU0QgTsCYM7hgBOIPn7e3g9TsLltECT0f4NjEK5tOPlNqjXJdGx6qpjZC6okUKoltJUEIHBJBBIRJ1eAqBCTAMimtwthe0yKAq0a+YUHZk0Dvx347uaqZit0CSVrRilonOCeNYOdDYe6Sip5+sftJUssr5Y4GedwGSlP9lE5EcmesH8YBTReOZz1g/oFOIFbtYKVNaNVJRU89UPykphhaEtd8q6Qs9MhzudYqlX8Lr2LsjywoU9pD8x7NarYJYXyPbqXVYusiZasno1dZp3KKzrUXazBXWaR+VKtehWVq6tNVHzyWTIZDKTJ5PpM2SA0AaTA0WQ9PtiBdOUGQQEQKWY7X4l5jvvxF5WBwAAAA==) format('woff2'); + unicode-range: U+1F00-1FFF; +} + +/* open-sans-greek-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAACJEABIAAAAAPjwAACHgAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlgbhSQcgRoGYD9TVEFUWgBcCIF8CZ8UERAKv1C2aAuBSAABNgIkA4MMBCAFhGAHIAyFHxvYNxXs2IuA8wCUujN/BcH/HxI4kSHgH7pOjQQRYW0RNi3ioB1bjXasl4p4r94wOm+9Nn/3fiJCwHHy1o9qE3iCrTeM+AEIB0SExw1fWsOL3dO02MU+v473N7M64zwe4pIP6RUPRlfVCElmefj//Xrd51yYCX2ccEkBkwIGhWAMO0AFMr7gqoB1VlQa13cHaJsdqXM+NlFnYTSCTAQxMLEBsRBtjAQZomJg5ayVulIX+ZOx6lJX5dz/zfXvHcgAJpPwZmcfcRaK6HH/OVtA4ca3rKvsBxKuioSp8E/Id6YrZ2bR8JJDvC9nNwC0kp/Y98AHAQIHyMEyTel0UfrmjFrbfGrkRCp4SXzIWLIsVo9ZOUmvyQ/Qf2+bX4K0/cmErokcXZGvUlkT6FzK2xusi0C7JhHgf9Yyu03YzslVCnzVD2tmzwYcQNPAeqWeBWnItecAH/HndnkKto+h/zVVV+Ag2SfJjamuhSl1mErfnGHOshw+CN4BOFq4o+TH46mRdKFcSVMupKusFNc+lWFKLZQsp1Ta6X0YnS1b+pQ1w7SXMRn2vIbmAY7PT6lhSW33NmY1UWxX8VjALFIioP3af+8ppCWcOFcqn1mwALPt1g2xA26K7GYXORIjcqYUcSdgSFCIhoAVEWyClRBCX2xMVg+CuPTySCFgeb9KVjSNfliWUzj6kZxM2egnMipKVgGHqwgm4QP6ElaqioqEebDZAjvPxfcXQnW61wUIjBgRchAI2sjGbkjyq2TCsecGV5seg1ZYbdIWO+1xyAnnXHHLVw8C8K83Zn2l7beODApYsq2TB4MdGBYtTE7PLRqWVdaONHX0DQtf3NoN27T7jpy6cO3OoxfvPh6AgTmQnG46kCIEMmdsSVZAZpweHbyuNfM4BbKDjJC1JM8QJ4sxkIvqJKhADeEZ7k05p1YASSd8VYcl5caWZGkAl4LyZmKI9HYJaTT2NAYvm61dC0aN6DqoQmSkmjSqPWComoIXUXYrMm5kZmO+mxszcL+bxfQM1BgQe6O1qTgbktEluZuaRc3IEbiCU2Gl0ZVa1q5uuq16x1vIiBNxIk5D3eJcRV50TWwYYHyVMAe7ibm4dsgnns4qAlBFaA7QASgbN9GleP7lLanukSZDJojqMHR+hOB1SR6AoJ1SLwK8KzrJT+KZ/bjbvu4LuuLqmFDI6tJUbs27/98QMJ+yExAfAahXNh3AYeDEInNFLYQXOxb0uQcq8iAQwHMP51VUFf8/loQQiYdryM2yDLzsuDLRoQe6KH1qBgnABJS2BxViBO5KtRT5wL10lK6yplwq18qtzHrlbXlqT1lXrv5UfXr16NapLQiuoi8sbDrozq/8DHvjHchpMTNtG/O2sJDK3wN8apNhFpmkEZuhuNwqvTYaX/wZxTqsUKjHSlXGdYePJius1WFWs8oI06zKCmM2mbJS3KzPcqtSwUY78nBxgMX2KhqrIDr9AbhUqPnB19lsu0ZdloWPcvVa9VppglqLTkOyl99mVqVabQYijEo9Bq6mc2l9P1aqmgGwGN7QsbL+Qt7yeulwa0tzU6Omob6uVl1TXaWqVC5WVMhl5WWlJcVFhQX5eb0dHuaz6WQc/KuXL56Pcmef3T8dDnp3tzfXV91Ou9VsfPhOtrG+N41RmHF1trGvlEQVnTmbpSSFzKCU7wejhuB7Vnf7tl5TWjvFGh7c1vsLwlRaAxyXEknahxzrVN0Bd3u5pbrUgRpbDKU2rvkAwyUpUNYD9Ji+aUN6bUb6NgGjH6BfJsCYlBcjMGvnvIp448VF9sssRo1jNA1rtrNMWdSw1Tn0VWFI3F9KTVBGRQJjvnTyjAuEstzC1OeulcoBWfA9BgUc4y9lb8nDtIggLY/vrHRWWGclj/QtD9xQ0plqcq5oHx3LWlmXS5GgElP8aTz69Eue2yKBQP9favZXQsp8xcXt3TKRIe8YBAxuGmZKMpgO9g3d5VThV8gviisYy7UKhFei0aOJUEdu4tBwNICpjhNPEfM67RZG9TuxNpKSRyAEdDHOj7BAL3WxIfyaX/db1EGbIqrEr6Xqf4QkQPjNYAfqqCD9rn9Y/M0kVWEx0X/CBehIwV4aCTYd0XFDLAFbTEay9ja3v8WwjZsEGpQV7jHKpXqkEcPr2+IpkFURZr1TfBsxQZSFH1iTjFfajdrVdsAmO0uyPFPs4urVcrcek6TalayXbzn22jM2Vpw3svZgxaU4O6IyMNuecMN7MwxuR9HWUpN7Kk4zRc8WUdaQns0hQ/GJYG0kZiNym54lZxFJxlWYziqI0grigvPk3JBItQHXZv87rnOd9l9Li8dE8Hf2Qc1dgGnBcwBPKypyqGjt9tNyieoRRkytXOr2or81dyNrIJxMUnbRoiUXJqFeqaYVaxlyfNpVc4ZOnXTl48IHzbpj4wpW890caBoo74FbAuR85ue56QcZ5lbiizzlgY3+Qho0CYomTsnsJPNdtXIpHVGyxfIlxZmkox/YyfxNz8LA2PNYcWyYerfNBxDzcK/C545bJhLslgGuT4PQd0Jdh2V9q2nq1o4PY9fHXRx8XcwRmHXSIckZaT3SQo9jSHWFDb0qG/0pHtw+Ycx35GAjjesKN50ZOlBA0SQxCR/xGzYKbqKmECfpohVOKSm3IFVwZ02yY6UduHuXObLxrEJl2+PRuG3GHoAJWLMaZKdVjmKMvCPvTTSutZqxSNM8rDI4f927uNJ3uY0+CJLv8GH2KGWganYhNWMtgk65/MICQQgv1gHkFrBJyrSscNYQjaUygnCQrv0Wuoq7hsMMpu7XMQA2qN+VLIHVvKqzdg7aIKeQwGxBMH5z5hNJG4RFbyDsnqwszSmZeYTFLHHryb1eypoyatCc66BESIZsg3bHELvDlJbZYfxGDrdMXFy1mhi03DF3NQq3KgEmLMaGKlUg4dwzAlp34IIkpHAivyg+Yz7YMN32eeR9razkCFQrEvxZtsdwlYbfDyAdZ+g4baK5cyV5EqMAaX3bgL/uAAMFTCtuG2T0y3NTxNx7E4ESXCYIYYiEvxlyO4utgSxMBA2y8IH7BapoH/nIou8ZfOfCUNohGDIXSmqYODxuX6cEEDZvRKo9lV5qFRZSEQQMn9pWYgbsLIZF+0gGWc07QLQz++Ph5McPXUJX3alxYuUiD4gmR0iT3pcOPbJbMqxXlYqpZyDkRloxuj9m1+1cElTYgNIGJw0IVgFrE0DaSt90JQZYNYiGphX8K0Gq04MWBStGQlXh2lOpINveKls8tvjpO3bxnQWcVCceSIoMSlhi+fiMKqnZ5U1Lbu1YhvtkbpUTYKDN5JOjOUdlVGpMs1SQUDYKkkiCALD9NeNDUGqnSKuIlwGwS+kg3NqTuzhTYQf8rbvgQXQ4FHC0fSnPuHRc3DmoQez27OI3ENpDKA5kWY6clxEfxkJQWsNaf2gnlIjmz7ObDpFl1N9rnJ5jhaRSaOjCov2PPjPiyaAIr/Tgw7gVtkmhEK7KRl/4l2xA7EBRRDHwvS9/2w0KoNjMoGYeFd7xXbbMpToivdzQLm1adggdZWD2KK8ZtwklazntHK6cIRB1SBl9DABb/Ajgk0+Zx4RZUTwVeGXKJSl1B2Kba1q1XfHFbt4WQcn3xaIwQ5R9jREhLoOVsNITCPvd/1fPPrhNkCH2Aabt2Ie+/mR4Ocdt1Dt0uf7q5svI0H4HGQv+R84Y083pvlQpBK9sq7feMZ945XeLLN69LwhXN/Q6gGdp6te9LDANStGDnXaBlA1Vhlux7zPOfvW7/S/Jgw1yyxmlJ8mJ+l7Df9wosARurVp56ID1ov12vLbYu6Bs9ouGYky257HmkpXABj6mmWMU66ypHdKhqUCfLWWJhygqtqgcHIC7H8ycjSo2qv1N64D/7BkmyU4lMC3gKn+pc1JUwBJ/pfUihjHPrV8DnkXDbzopDZPpD1XJeyuwQQjRQfh0skfRNENbtmYFin+AVNgo2pvHVPsf+hY9YZI58mi1G78Ca8/HeYHxSaVNcicBaUBU4xSKZUHmWLNLmhdfOS2QI0f9LDBj4KUBAQEBCizwu0E8cI0/MP+SvwfYr4epPmxAf6KP5rI/fu+yJ6Aa4b5k+yd3JWC5xCVyLoOi9zMUvTjuw/YDuFifNxzFobcdG8N8n7sgdCmVMdR3VfBWCSNV8MbE0hpjGNM0eE8pFWUvZTxzJ33XHfvri85xXtyEN/vGngbfdNGc7q3eMHHsT2upZNxyzX2SAsxT02KtEFA4K4v3KddhD4JWhSjWNreuQCfhADcGZxpy39QVY4pUWfVdNV3BxkSTBAEpjqBqCqBQ4qrgKBy5KaUPfN4DG0SicYbtZUga6QyrAqrrfEdmIzhQWGc4uaFWUxWYjcEf5rW5b9Qt/7nffLWzXmu2FtehbmYeAgwyCBhb96sYLahqi0MByE0TEFIJSKdEMi0SyF/eVkDNiKZrFDW5KdvjGNrTkKZuyYbthk3O8WDTHG1ZIyvBGDPZBRupAWznqk8oTgsZq1nF2iTU6xIUCOkAOvH7HtWAdL+HoKMgy106kjPoj2aquR31sY+nruOyPzWUtBggOqQJOuXblGuxBUGzUiQadZIz34HMrmX83G1ALjfODI2TDGqMY1MHCrQYp+l62hh4yo2oS+TNhYQkbELy4ug2olA6HootKgUIyGuekVbyTRKlBIYSyF1aFtJTOioiXbuMnpmWtADgOFm2mYRQuTV/ke9FuP83PH5hhpfl1YX7NPh+9+V7EBDKBu7fMGTL+QTzZLIzCNBfjbAqgVG9YqoC6DpvOO+QL7kyWxiV+GhHIeJg3sqIoovrQXu+WyopQZ+GvtQs5ObQLos+ab0TfedJRPbG8JBU54NiBM8ia3pNW6xC6F55PvaK3MlCh8fmnbtbZlLFkefqQBsLYhAAiy3UUJCRVEC4EHCDb4BdkGVrRnmNdq0dbH+LgCXLW6KLnDCy6tpGkhvUs1GOZggFr270+Pd5wEJtONx5ebL4Zk+2vLDv1yzep0tr8ewABhWiKNvJsDXP+zsV2fhFh5LoE5SuZ10pmEFgLCrFb9kp21yM89B3T0IvRlWIQJRRqylhSjb8FNCmZ7K9eyVRsNtWWuiB0N0563tGuBdyYrt0C1yk/H8eJ+CH1c8XXY7ds8cgoORmsQrUWnBDCQTc45vC0fx3PRpRKfVw09oj/tElkL1qx3PZWx5y2tNoEImis/e8Jq6wXAKwOPclw+h1o2OWzaYIV3xsVNVSAHd7IG60PU224gIRRGCM7yfXt0c/n9b75IRtXQPnFUu+JWV/zcz3E4AhcTtpd4P2DLuCJxWS6GF+SA68vE4zw8m26w5/9Jndzq7EkyGBiwHKzFYdCtRyGl1w0k6pOA52ai5VlBZ22cUb+Rro4wPEYY++nguXr5vOp02ZxKPKi+tnTZqSZyMfLWlezqWZnSbcmVHdnSotOW/jJNVp4Y7a2u6Yrk/Ma8v9FDTrTts6r7skoDdnxYcaGoShFGEhHfLmhoMfsydtzLLk2lapUCCsCmtex1Kf6youTGG4x5W5ZoFQHoDQ8ebNAz7Mf1CZ40TpgJeSq2SoKzJ8ub5euD0SSqcwjAcAXyvVpBpgznj0HSv+XefHxL8teBs0vHoBVn9cb2/EBotI+aTFuASJ/iqZlN6nlTYYPqW3FrsAM6giivsAz/4EfwEsCNGJ6IAG7zB6V6322lA9CBfRDG+GBGoxGIns4UaB+abTiIKpKW7NNQssNj0fjPXa+2HWc+9gXOCOF8sjH6xbrGmCKrwHy19t1jvZOL7YOAtjh106AuzzzXTmNk3r3ejVzfpk/76O/e3emZtQ5xqcEVWkzMNMM7Td0Fhot1l8OpApcBA4RL74dPK4yOc/+n/R527g7b+IPZKiyQI1k+5OFrTGYsr9zzpfn9kEtDnjfHz2Mi5cQ+3i3e4ZPBNRu/hERN9g9O2ufY2QL80bRz83d0A8YveVuA/lRPDjsiPchkpK3fpzwvmqogljE4U6NNbPhynwC+UKApg+sQH9gUqEzRQiIWL/TaB4TRLJa6cho/WhESkUlm+m22+kLUwETaf4U4HOo3ZXJqgkKXlC53ElyipKK9n9778oZm7sSYqlSqgUQ4jKGe4UJOAxiwlk87vgFCYZnWGSGkLACplKbq2dP4qm05qzmTnBBcJ2/HpsgVlxxJvtzHC/UG54ANMnJIAbGuKX5s0r43kB3uxSjHFwsA6oXwO1o7woBwjNhjuu7iTsMiBp9/35F93EmsUsXMh/r9FxMX/+4ri03Hn9edaR9gX8onF0ig600DFNzEq7wGqyJjefpCGpuk0ExUwQoTPjAzNGWqvmf87T1/rNj8xvS9z8V+2lxWuNo7/eWnDu3Mzz+T124RAeXHDy2IOFIYhuRMhVoKffyfPaWQRhufpzT6rf4cE1v3L2wp5inh6A/c7tX+t7OKUw6PCy4R9JO+HaySbESAxXIxTz2sdiqhHovPwaxGgMr10s5GpGYqzyc3SP2wIvDLX9CtqtRWv3/w4ZaOeca3xu/bgyqm7Mo0ofrV+62k2krnwOegrPKzakJe9rX+xxUj6SzcDUweVpPj27ot6279toumjprVtY80az/e3Rb3qnMliL4Y2YXLpijHpG0Za8N58BDQ0Nnv+jQZU8EmZynXsgJYbrsra0FOdvnRwvnDD9fOKTDYH80/6GcqmAKjDSWPFr595b9qC3pngHG1ujRJkfh/4oMVJ1qLXE4mFiRI2LvXMuOPBcpNnWOLhsaycaudX81O59vZXn7ucPZo2DjzBUoNMnui5/yuiZYWe7sMrykGAXhVlfXVMqDM5UOIaFffYqzKmQZMgkjmFaCe5GJBjnvBu9LZjLxG12PUQQ4Mf5vuumKY5DVm0CpBtead9nEbDuj4XzK7DrOqvIs/JWsvOWRYlxASwHW3ZQVWSKW5Xv6HDEVOHu1vffyiZGPhV0XOjvkR7YWVEM3i7KDqiJHPo5aiBHliij+Z1F/rTcbJ8wnpTNUIoKipcQ6Zod1zfk15O3uFJCFWCG+o5XMPg10vq+Y7sVZOdw9WBVFdqgAJvflF3YWPeQ2VLx1jWekvognDTiIS0roTICmxk9oJ8lJUm0yzOEls0tdsiwNh2LJEb914Y9UZq/r7UxeWbs3oUzstRmoV48FG/9WKQ7N/nBSHHHdlNgFjdD7RRvosJ081iZBKpWXvm/MFPbd5KqqhSpUlPzhU7jShRV8tahx4RZEKqxIoRnIX8VZc4cPGGqP674VZA5c+CYyX+rrL7oKopewd6ehb3Kf6vXpJJLn+k9PYV8WvAMRzKXAP5hHDYt1Wz++c02YmzepH/66j5A0ycNWlmnOOVnMPnEBPqc7eRXrGZCULDaodxkAE4WeolSSUZeZtM//gbr4QUli0Jzsdw0ox3m/uxX8ciXDmrqxRdk4AEJ827hGE6IFVTrR+WmfXHyPEZ/GFF1KGnzZlOLlF3JoT21eQJLgyDjjEBadnA4W1obmoX5XIYQw0zRj22vRQiGQQWHK/EXyZLXTF7bIO9jBBbxE7mJaofcbJ+T3n8jhfnbKHH+9239TS/f96qy9OueWLElkK+gKt42/p9z++00wzOOFJ7pvrcMermlJ2aJU7lptMHKAByNtKcGMtO6cem71hYoarCkaGCT/ia5E1uWuXLnVOYKkoNWLtY5xlESXkcQ2239asuPHxeHpNe6Ck1V2O5oltQvRXTIM5wm5codpDZmfZFgFCrXbG1EuYy1PPN7B/aPwpzXcL9L/fi7Rjv+ra7tz95Ly+bw8uO+j4nhUfnnqZYh6R690hihumRdM5/Y6F3S4LmieznGHy552U1YqtGeErPZIa3/uQm4uu05mD6TM487kz4MpnsW9OfVy5TK7Teb7d6DLTR0ImmN0Xh6INbV2NxW8aA3Ol94pTU/tKUqjIeCn3x6btvQLU3Flw2H10OMOkdRTwhPRk3mapZM791eS6Zb5jL9ojOQYv22DN5qaaJ1f0yClRG8OEPBilRbZoc/QE/TTv06do99rImCfvl9dpvIKCBZHZDQAKZLg5kFwWCWojkNHxnJcDc/jf+6P9HU2g9pCjRmkUFnKHeovtUFad1NsO+lINuurppHKSf17xHubUQgZYPfL9JsWBWMzjpuoR7QWFbp4xK7DOoUZl/JRPbf073DmuEySrqBXfpQWePQmd6svxMlmH0eU3YZFL8WtsWyoZR9Uk4Qk1Aaa4+zjyWWBjN9g4VC+6GMpSy8f4vNVfcP68oA204KW5bHXjNV979sILGMOjm/eo5+KPm/eRMjTUJR+NkgQhCBRMctRAztTcSuNcO0lCRpaqITMkEv2d0vPlma0ZDtf31c3xX/D1ObWq9UpCWP7pMMvfQJoXmzwgs3B/VBFvDd64MS4l3d7K8LwSDfJnY1s3DL82COmOjvEGlIetmfaAE6B8fyakTrhLuskpzp7mR5ayyhRit5CXUhNBhpAiay3pyuHtYsjXoUJX04/+Sp6Y8Ax4ciNhCRdVtzIj++THcl1KLUnKGUJVIxt6GyHdv++mlLU/r6fY1qCQ2uxjlnSxoihMOOZaVuAaU8K9rolxLRzHoHzNz3uQieiXfBYHTuSPnDb6lqehBgO2iw65qzLFLExIQuqJ7bmowmf757SGamGWY52Sit+ZCWUDvQowAzi4k2VqceEJQz2YPbS49AKt8QYnak/SfYMXgFdQIqGsBsDGu70k4IoFh76/QbkB1IgRRSyTJppJMZmZMNZCPZRDaTJbwlPBzSU/fq9BITxTpUE2PMyXZgcR7eDZQZJ9UFGQ/hEKAd+QnAfNTlGTVZJ2toxTaZfXW676/uLIlx4+KoOr5xmivykgxna+oCAd3wvilj9Nv8ORoWH+8BsAC0r9s8RSHF9Vqu8uq+yxKAfp3YmP/OH9M9W594DdA3erxBF4wAENXeaQfsydX9TVfixFT3WXlLewhaYx/UXTO8/4y/L1WO6fa6XbSDP8eO+AUBgDuVZrvJHHPz8vOZWE9BiPN5oN8lGhoqZerqybxuAJoUynvHbD3QtVZD64GKQxWJS+qyKh+f8fVwF66Pm9PZKaaWXm2/oAH90HEZ31c9W4sH9uMidYLL9XL1jrUkYEwynDgRuvxl8eq04dRTxUtRluMI89DCGeBnbx2qxeFxUMOkRBnGSSHR4gLaKEFIptntUaafIk0CE5fux3EEC0cz2yRD6z6vTY2oy1GXsM1FZVdFGhtZ6tUhEr+6zvO5I6nJpAqGX9tLqZ3BSdsBmpIL2rhSbsK5NM60oEhdn2YMI5ByeCc0rq7klGY4YSHGAxZ7LXgeHU/NEadyiie+romEabPx9/JFYTQlXSd0QipVwDoYgw5yiv5HZtSiIuNBsES4IuQ8MSp+QQDTevg7xiqyizHoX5gJN735v4rig6C8OsFoyhG6f895Yeh8hrMJQOtpUhYhmucEIH3qcqlPZwjGcj+QNMg02jnT2JUktvfxtiCjFIQ0GxHYkHrOUKMBex6iSqI15xKSvtTaPIeU0T4/vPrqJvSXyg8Q6tuOpEOl9q2hYf6zdjcC5Gbwrq6ZlGLeepzEpNhKdDfDTg8VSXvjuFgIrZUr1rGZyNgeYcv791/pohh49vELFWe0jLhejOjggiJni5/Gly6yAoxT71Qz6G67TogtGx1dXS0BnPbMY6T+s6sFPz+/uIDKpxD3971OPaAKmj1evTxEp1CFYq1mifnpgRIy8xNdPF6dM7hudOIA++NV2u7qCuPiZMGTKrRt2+5PMXXfD8OJITNIBaZ8V/MFS7lKmU9lbQW+edlh/EGmC4HWGiVH9dymnuWsuFoFm/hquEBn1DbxEplFCdQmBPOKMyiw3QDbMlCh4hVi3N9fNtYWRQgluIde8xT8a+amqEmeB5acSsD17lDtc74JPFnsyYdhPqcaoMHrvBpCdNXl03KnUyI/9zEaamoo22Wgnlzhsqxvx2zqeZFpwxVA4Gs0Pom2PahgMQKIxgFbYnfNqgVbVb0YMwqzvngPgLMQrIhTvCgBMiVEpzpFqDyWJcp1AsCYHboAvqodHvply5LR5+ev9ug1WF1u1gKalj05GXK2eSde72dsxL5TnRKgddVK+n+nXozj3mH2/vvzFw7Z2nCdy/QGwDSzVl3841RsNu748Rp8BmQYcRpEyiXJfmxJq7VnZwUex64bZv2xrDs6KnS6UQnkYcuinftOnpnIwHBsRGcqyc3kbVAh6zpGWJRBzN9HOgHA7+KmOisAguLi77ZX+9KM2P/pL9QHuCm//HTshw/xx3Mu7s+erwcj80wQXYLgX6O9DR+HEB00vcta7q8XHc0witYMaPfYU6sPs4NmTpot1px1NvSGbgllQ8b6W8uxiQB1AkgvRq1fiev9wLQwq+t3HDUWT0ucb9uY20e5erYRzPJuQ/8Nv4b2LiwXj5O+kTrbgjApgG2gAX7jVBY0GoBOri7Bp4S+M1rpQ6KpAej+DwHFAWcJPNl5FuXkmNOb7bjyWi66BVpdeLY56tUx6mEnaCw05pU5woHO59koEFc4TR+fPg6JA5NMewsXVSozwbTS0Rxte10kTTkwLvedK75WXALHZz0zdR11XrufGcgQMJvQWvP4mAfwA+Zskd74/ZZAS4OQVrhbAcg9y41gqPSSryVeXdAv/BIwI6zZMiPN7ZlRnOjUjOog32c0u8IU93qX6UtOjZArQACbo2oGBNgYLVsg/XgQfLS+TxCxfkSQcm98A65SZVRk8knlqWDJk0c/sCQ0cE4Qo2wWJRAIZICQ9yCWbIcosFWWcRBAMYs8S8lw0sEq7aJMDHy4s7RUPpLGuzO5yeqyWEtnUdq6i+TIFaJLVJBz574T8np7jmREYHjtItlo3Hj0prCEihGhAjez62ZX6CsuGyNEDSJR+ZS2sPRxV+3yiHkdymXlVZVFpNxsBkXcCMvK3cUIESkB4rkXCYLKzpGKRgfFMpJOuAEipTALP2vgPwnD3dkY4eldXDiq2Kp4VdJi7xhQ4f0PrPDeDMoZFxeJIZnljKiyRf/AUq+oEpoELKbpIrplFtLNAs+o/A/wkIJ5HlUePGRgrkcwmEOV9JS6oyCLGgNmuufMDHft3VCnuWVNiVvBCzcGKHZFPXKJmMkuBc5FCiY6U0GC8wAocpb1Uyc0h45a4Jgz+Y5RPYd6MNZB3M5mtL2+tuPmFUV3KXIUj+IPhtuaLRvdtCYzxFrXrXdEBVkNgFyrqAp4EQwA9QUYMf0sC84spaAvGfQJCaKOiTLQh1j1kBgDLvI/xpCAdJpQM9XDGXR0iAEdLAg4sT3BFbSj+IMUFP743G3xVNAGB4LWuH8LDUpBS9AfBJc2ds2XsRsX8/YOHJs7cLbuF190rzQvfzGA0abq/q3A9ze5XIVtscq3YZfv7NpsszXdmh3defozva3E3y1t9Vpt+Zpt0TewXdqpHdv91287ht3TfnbfrZoDkmuxJWu8FTu88/hnfJskB1Klv1jGf/i7qpluodr9LoKxEfBLZXMh73s5JJ0xTOYjGxF/zn7/4wdsqXTxO7e/MmgFLhJlPZfJWUHlk2RPYgbxyUwJGii5NiZskfagkGlrY5rNMwDnQMqrvjte937mL3If) format('woff2'); + unicode-range: U+0370-03FF; +} + +/* open-sans-hebrew-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAB0kABIAAAAANsAAABy8AAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGlAbiEocgWYGYD9TVEFUWgCBDAiBfAmfFBEQCq1IpUkLgRgAATYCJAOCLAQgBYRgByAMhR8b8zAV7NgIbgeQiOqeJoL/vxxwA4aATbX3iIjd6oDhQwvf1k1owNqIrXt/YVOL6gHhjHBGGCOiJUKgTlitTdjiOmraAREQOMTPCRhPdSIhHCdgJ/Ll7zkKG8Ff+xemzIQRkswe0Zz/s3fRixIkQggawwKBBi0kQQIEPCEEs2BSA2oKNYUKFQ2ibX9LXX7Lc6d9KiH+a4jb/+5fSnXU8RhXquyKIFuVDC7KI0wGi3Dd+VAOAjoVLDb2ZYxF7eZSKO8pFwDLkt5HkPrf+gAl/e/T9ZuZ1VwS7hA9ZP8Lu7hU+0UNMd2Ah6Kh4/VqFXQlTXX+p2nbvTtC3iMkEb7ml7KpU/KuE9H2HF8LheTEUHS5hvl0zRNRV5KiAP4f7t1HzRPOPA1sDhtr0rrvHi0+ftL5ut7prFh2UOW/JWyXYA9MHTvMXRbdO8k+sH7uyw7IIUPB/iU5bIXoQ5knAPoU7ATIWzu1y87DtHYYu9ZsaDZClgmXBgY19pzyZX9M+5dghzexGAFZAsZxrffXWBkQYMAGKZTAJETgXrKjpMAB2QBcLAsDYbodRScSi02HFJsApPQKThbgCE3qsyEn3k43gdeTro4m8HrRUdMIXi9rKjvA623FghbwQgIAOIJg8gHQCNZVJLQR0JpMcEPGlozB8lNA2AjcfW4OfmEXp+BM30Tj8hPWAmhCgrWn7IDDEhgsF700ATmm6wAOO6VGFDIDGpbKTV13/CeaHIzjaWxhilS2qH6q3fZ/nntxyw0gcfmUooKV7PBKr+jS4mQ7twqyS6Op3dWfXZ3fqqHa8CJ7aa1esrG2WuFB+1QNZU/Uxbpat7Mf4nN8E9/P/pTW1tf4OvOX+iuAUdowJsbL5/QtZQsiiV/8s0OiSWz02SnJjCmF2eWpTVM6spdkKr3ZfujyrM3em4M5ljNihOxLuZ59lz6kx/SCv01eqo/qh/yWfwYGgNNwNu4yRMNryEbgUI9IgMeNRAjb1mVKCkzQ+6QIrppCLoD+CLQzhyz0GQAToW8OAySAqIhKxokiNuhmR0y5EXEEMLEjFmoAhWkMhQWRgC6mQSoh6hiSY2rSwfAqIQWyQDaO7yXuRG7IO1BCjhAn5SSM8tHAKwQj05N04i+Pph8NPoUpTAE1bWt4l1AopAFzM+QldAcARiOSwS9hPZACaml2arMzkgHlCsAOzDrKiIQsIUvCrpHhE24hEtOAsUU6jc4OxA21IK7JxRRQPStGPImQCGWxSAO7hPMRsEre1xu1cnddD21Nk4U9BpECCP/LPhiFeAfKaRPlEg3REP+kprejRQLcg6onzW1wvLy8DnQQ8BFIQyuNSak623N8YJBEJGXJkGRoUp0MT85LaswIQR/fPhl4XLgSEBJxRyLtyAwyADmsnwBAv6oBo9tTZydpmhZg8LEZ7mYZ0OAc+2Nsy78zAe2/9AF0BACQUuZ5AF5IgKo+IQ4ALnCAF8YWP11QhxDA4hd1CxAA+k/BYZAYBhTgkTA2BUMi1WDYTsFmAOCA+Qd5AKYgLJ9AIdUmwZJQhMtvliDPzKvzprgnvjXn/tb8Hft33N86iYx3QB7L4Bv4ue3/d+RErQTJv2enL/VZZ5XQjwZJP/WP/UN/z1/zV4BAilFcMMjnubUn6FwuwPGtnFOr/5c5/mPhqrV/B+CMc/YO9imrhZ1a2x2xzVnnw7mvWa9+jbYa0O2ELRVtrX7H9HptnSWVMolu6j7snMkg9K253QFHoPCsMbx8ylBAmvZXBwVV7EzwwUrdt3+c3ag1Nttf0dqttME2A05aZr0+e6gXHvHaEstttKtSdFmJP7fd+p3euMm6JwEuKzKHx+mraQf279u7Yf26tWtWi7Fq5Yrly5b2dHctWbxo4YLOjva21pbmpsaG+jpbbU11VWVFeVlpSXFRobXAkm825eVkZ2VmpBvTUlMMyQpPLkEPROMMIsE3oYYICoRUYjw0I8icoicAshHqraDXEfwzseOJ1D1jrTds4cFt3T0rLvWoAfeQKOAA0tdw4ymPn7VCtc4BdXrNSM9u7lUbj1gIaqwhWlzd/EJa801fbWaj2gdlAvRpcSwBs37dm4Q9+xeNX8bR6zzjiGPLskLakoakbhYeKKOSwUrqgxopV4r5eN7iOWeEtlZgwtoPoDqQhbzSNMM+fkO9qgCzIIK0PH8qWgecY0PbE2E9b9w4W/I+1/6JnT4ktt1OImhIWfm5P/nyxWAruVLAfB6Sr4TUGO77tD7jFGSINwga6DXMpKKz7JwYuuJN9jskKD7AmvrRjKAjGu1aCAkqVCIajiYwJXind8I8oRPB3Ii1UVlhFwjhU+tKQYIVOtDdg8Lv9wf8YUqpmnBIfD0G/IMAEcLXBFO0USCTyi8Mn5GiyQH9yQsOoCOBvaUJNvfIxzt3BnoMV7LucCvfEkixqtCkvC89QbdTJ+pxvL2dcSHImghrwRvuR0wQ1+Cn4lINxvpe+94dsMveBgmvDPu05KReqlOlejDWxmetwJt25TS/1wWnWw823EKurrc2MDtccBOiVQa3vRhaCxc7dPAjEF11U9Voy+6QETUs+3zdzCbktrxd3E5IMvlUylb3EWf3LQ65U9wxJFKLgcvY/5Jrrunsaz3KcyL4p/LKrH2EWcBzBM/um8ShwVp/tux2qE7Q43rdzvhZ8k/c0xfiIJxIWjRR95aLi3hepWcNWzW5ddbreUdes/7k8yIkrdozv4LNRjNHWiban4FbAgzyKmhb1+isFU2O8aCnstZ3NT3MIhpaeKPjC+YrvW6n7FHRY88h5TWS7v3QLtaXlbMp5oHnA9cPE9o+X4FYp7fAgEdxmUqwqR1cL5PQ5VFirHEilpbe+pFlQJ+sfDMzcrKVjbJUKzdIE+lB2/Xop5NN8pRsupMCuL3CmsBRhE0szhic8850qIhwhNRUfJ1vmBfcR30hFuVwND6kpNyD1MCjtUnmxnpw95RO3XnOQfV8wuvigvPtXGPAIbEgW1YEoY+C70VwUb+2ZsaiTOu4yeDxK5/WRa92KxRGHbwjgPF7qQo1JBt6xbC0OuX5hRWCKexvBBgUQFWLTD/huCOarRhBOEg3vKUtdslxXMGEtNwQhKDxgrIEQRumZusD9AROYQZrmeDIzcd1VLNImA4Owm7rIjXXdGwXpqsC3C12gmNLFTW05DoaFWZDDkH7G+SOsCLLwjB5E4fzLk3vsxoXShfdqLR2qxNgQNBnqhQiwS87IS2/GoJZWIgD7YviCxaAmelhwJEPrAlSJ9AQ+vxVDn0UjMYbDyC9ZNhc3iT2oispkwRFSOsLjpx9z0yqsnKhgYLJu66IFS4XAgJi+mRhCBV6wYNa1ZYiC4XADij7yN2IybW/2cJBYHAYpqF0RHBkMZSeoXB47l/PCVjkZSNWw1K2GFYlVCp3sHFL6y0WIMfiolz7yyA7ey1YLGH2093p3X/oODpVWDr7ew/ykGjRnIt69k1H2wuxlu0+Y2JaORIGnR6tsfCJ3cLokKDKRlQ2XDQQTQyWFYBsUN5UCgMUDeJkGeOvBKizq1cULZ8I1Sdc9lCKVEcOF0e5L4XlJ3brUwEcNDcjMCsyErDGw91wDBiSPdUtv3UWO9xcWuUUMMw1NEGf0qkYlRqSCk8MlAwGCmD/+52vhkJHRVrFsoyAHUpXwe1/KWwu1KIR+G1hI4EYjYBwbwdaPOLKafronRombttvPY6SvQY1QraMI34vE0DfFJTWsGswk4L8ePm67KGAqBD1e4vTNVZIKmMNbZhrtd/vObmzAQjvtHlmXhB4kwqFF9l0RfiUDbh3FC0oAXnLwz8fB0WAWzGay17hE7/AgT1SJ+QXmslWdY9HyVEFZq/zyt1DKF3r4eBY5QyBaKkW8ZcBaM7ZBfDFV5nXC+M68Ezgvut2tNCpRZ/7terIyVvtuUdUGPQ+Ft2lRsSN38aImJfRRljuCoT9+L+Vgo0tOXCHLgesXXoW+viTpcM5F8J06IR5auvCnslHYCz8j8wYy9PZrjRzCEnZXi9edF/xghsnlo/80un4RK8jeGOZBXOBCk0kiDb2sAu1mDdl7HO/n+FnJRhPvkkeYdoKV1TeLG5+V+TzjxsRIXArZvyaB87l2n/xsQUisP1uy0wNVduRdjXHgfN4ukVMrlh3HhOks6YK/ShpYQ9VxA5T0TkFdz+Y8YMiDkr+O60r/XqLmaQwcWCW4RS/sZy0ZJjht9ZuYRh6KXEN+GjpvuC1MIPMfqgq7YgCRgjRTvjq5FLhiBta05sHUPIb9BPO59pbi236ZI5uMqJTn51zzidh6wU4qTC5aKxL/SAgmxC1vBxadUon2HJIGip59/ICGrHBC0zM2HVgQIADDQhgAdXhcAhS2sja69VrARkBUG4DoGMAfgH4AgDo1IkRW9f0g10uGYfUIkAGXCCkgTPIE6B/wz07P4mcJyaRlksiyN5RDB5Hw/P1E4pCjG5Vd5JIGcLsRNwQV1rARWmVx+ePVfMKl4HnvKWaxFLLqt9X5NvHiKUUFDImUw2z4cRCcDAhBpZF7vxTN6KQCb0F41WkPoig4XgDOAPMxU1TdPLKeEX8KIjlTqNEeryB+U8CJDFC7JdiRhyV4z6wD2CjxZCNyvVEOkndaafsfek9DG1X6Dj8j+RRWTK+y+pikHMsk8QwURnOvGfFQxLvrwFn3D1NxMj5TJVpJZHW3Mv7uGT9m0Yi5SF0w1EbqG6BohPUI661XNCFEFbG/9AblSDTbF95rCIqFB9qp69ycH9PNj0dfqJQQEW0HTlnIyimK3qdj6bDdyPAfnY/0qgU426WI3Z/8tOYeY8xlY/za1iTZWw8pTIUj5WBM/Dwui0scj7yP/WSlcLDg/sYqKLckv7KYbe9BTdWXcGDMUDMZXbLZ48elVfYGItS9e8/PfyMKs4cBEusPbqDgtsB9uSFB+INuB2j9A0oRrB3NUdu/SjK8j7gkPNoFXs192bedL8cynkrnr/MTDgvc82w/Gymj7BReDT0+uJnBhAKGMiMLKfv8m5WifVZrGIpYxUHqrOBs/9t2cUn/e/AFGHUUMqTT2mSKf9N576IuSDPPhPsBdbujDc1GsRv7Rq+x5M+gM8xR597hSJn+V1TXkoB/vp+az1HnFINvYFVsq/Lv8eetrJnoiYKA8vDtYEPqcZ8C0sRq2BQs+KDChxSpBU4q7IoxzLAW55lXHSGl69DdNxkFmBJxNLlLeZIb7T5BmbcYZVcIMCObxGrIKVNz/sNenPEMKsPCyvKBI5V67UGfVTOQ+KbwrmG9ZgfemgPy/P87oO0UoFj6RlhxQ7l+3LHLYSNiZq5+ooZhenMrJ75cE/KEQusNmEBIuqNIqDislnMmc0zM2cuuTAW27NMiAXQo9v3zN2kIA/bpnqV+th2sFy0WA9ygNHD6XtgDcgUud8kEn2XRUmrQ1zN/1kGzRILrj1P0TL9OXxj/o7yVIOb02TW2rWLrqfWxIe/E/iWwalud3lFVoqAdz573UZS2ejbqS8EtXOprWZ9qZ5X9z9pzAC9k/6djhint5Vu5u48lhWxYdYzn2GL79k+53KH7f6Hocr47UsSm0Myj3kUR68yBGVEBZkZ6T+0rbRVrpG2XfM/Unnmy8CrnH+iU+/pmgP5GfP9nVL//jYt3/Id5c2fkjeVrm2J5C4uyo0r+bRbz/DPe499gjtnqKfnpZG2kBIWHhMOXcnKKnZm1RmKyKQgEn8QWMGwh8W4FFjjO+Kt3x6TGUd8J3t3miNLvu7Ja/fnB8kCnQYB/WJUL/Op5yimRccE9keZGSU8VlNqkaqoyFhl5ISbvX1ycF4wf5SXuIXf8o41K1adH/TBrm5V91LpmOl8tiI82qK6YhCPNDWITv185cg/kvvyp1fvJJJP2kavxXXzjTk+Rp83+yqF54TJ3sXNG9L8t2/2ct05bQlePP4Re/l3txK5tpJTX3ro5vUEZOLVn2YwTD/55dBe/myjqM4Z/d5HKp3MJ8n7ZMUN5rRz50W2gf3LhffMHqouPFN8sTry8FGWOcSeLt4UGLJYnhS/mp5A3OxY9dOvXuUmLsT0gfB7/79p8ahjd+rOFgn3e6ZIEsorMz1XbRByn9S/PhG65+dgcv/90ZLar10GAc2mUScsVDvV3GMX/0DtJWYrnWrj1r/13dljSoueg39uOi7zycN/4qzJzg3BKr6MkrzA+/JMVuyGdA6oeh37RXZsbmePV2reWtW79/s+uep+vJqmnPtdHMctZo20z6nCsj3uTu94h+y737PvQwgysne7rXwvti5GFX0oodt1OfdQGgQRxXMlndRUqdiP6fthm0iaSaH+aJujRFcu9V2+PKxwfJRhDBBHEcvYrZUnOIt5fTUhOdLFa6Ql4hSPMVuhZG9s1wdOSyk/lcgJqp2Um7nRc5VB1rDU2yxO9hiptbjud9F613buyQrs0A78GGtRD1YLqxlL9JsChlceTfMO9so9Gp8e+7y31ePoZ9fy1fyk+J++9XdH7naalQb1R+RvDstsDdtNs4brlGHhZL2oS9FwJe2Q7NY73rWcuxJB+P/nOrtER8+JS3wjI8t9hvskxuB5vqYvWzVvPFK9nYRK0cGYLmnk4YZi/bGqs0nB8VpxnyizeL/sHju/ykPrY/S9tbiT3+ic1EvqpPv9+vWX/oyoUxs9e318W5ITsSRVPLVo1+mgivpVq7y0Vq/1D33zQtQ+pvsdlpvvqd5NwnfW8CenDTF7eL5rshpTTx/PSHpT21YyoHj7dV75Mx+j360lBzRfBacG6FdYEpxH67lCz+8U/OcJX6+9ue7mhdiK4smgq7Wa/qr1vRorSc/YxzfPqTdQqJV3bqf7vhdZsCGkj2ISuPvzkZaZy025eUeaurcmKpHtSB/2OMYUMIP5O50yW3npblkTo0j4XeWFOzHXhLluOW2NrERGClUnCFF/MveT6if+0qL8pPJEnsXmFdRB6qHeeV1OO001bD0qePIkM7PkA/1vwXxJeYPlp9lCTpBYD3lWGn12+PhsobfrJxPi1u/SlFJxKs69yKw726ipj2hlHw6L9Z2XQG+LuKHMkKc2dKbITZrb/q0e7zKlBk7r+5vCYtX61BHvZLL3XCNxhzVNySvfzm3y7n0dk8Z3w28R1ZdrgwutKZUp3IM6ycqj1xN4jctPvbyxwseVkNYmK77K5ZcVSvtUtit+70UzAw3J5EMc1wP5N7myXyh/pFis/d/glJcUisfyyi+mKaa/lk5c1vNWnSuCXP6clExBN6Wi16H4Oa95r2zNtrOCFPxtBD+iufIlhX+vQ/u4JJi48HCtrcm29mFIpsIGc3X5muvl8kXTHTHyHurtyscy2fv0Hf+V741LSsX78rYoS2H3GZuRyWc4QFFkQxRn2n5X/s/ckr9LzkHQ1yS8+q5tuY0e+uXhJtsiW+9DAqTHcVrk79FAenvL4bJc+X7/uUNnFHa5j4jcvvKY/NGVP45A3GDNUVdoudxd5Ia8GUJKLts+C1xvmwInH3mR9hF0fG9L8aLiHfd4+Oyqn4c3SBtBPn/n5mfrq348Pqbkk3bbqrhK9/foJ64zbRcrtPel29a1i3ngc91PX6+/mSjFZEQAUSF5ZlNephp8xudJQS5pdC2jbV7LXMgrjNakgjbb1g8C65L/TUqK7n9TAuuoHRQmrnxS+CQg8xPkYo44YAqidO36awmqccmnWwcTRILogCHvBKNYehufCaTMZBFjgjM6U74TENzkkR7fBewC35qu9hJvJ/gdxXHs9AWguqvyhaCKghERY5OS6a7+5RRREBpAX1HrMgCOo0sfW7UWkN+SrmrfbDpavFz7rmDRmP/G0QDXnrB5ektePzKJCCAR6uNBdEqv82Shp5bjRRe2lyb1r1f9VnO4ztcNmhjw3wUfaaFfc+POvKIBkDgUl/DoMaQLsD+Q4rIfHSxFWoGKU70H6+TWtI4fkLGwHQA/x/KnpWlYP/NXuhrM58P8xC9qImJ40EjAo3d1iAFU6gA1jx8VEqql07ndHe4IAQHxaqewALU3MMOT8PZy4ndTgeiAsxEfFhUV/1k9H9Not9BDBGzAOS4mJBIq1am7A2FQqMriKeyinZW64OiS3vOxeYRYKERUKjJ+WEukDieAMg/iyDIgm9o0A/DpaEJ1Q20qcuueAlh0XVgB+bQr5L0KnYbjZErE4MlwWnh+jcpK3oD7NABX6keEO/OCg4W2z3GA3JxOxEOlSV0fxa3EeSbUZLCYoaGW7xcXxtLP4Vh8hJHpLhRgUwLkWN2QcHVxcwMl7R4sRqnGRZkKpRKqUa5P9wcWrHlyF2dEopKBgWGERRNAQra6hTiO0Kppp7ABRrNUbe4isZjDZLLeWF5c1Tm8bEpxZmooLceDIFydXXg4eS6V27rTg/6H4L0hIfz8eE1RhumD3lKc3DTnvZ8Sc9o7ig83lfB4IGGpKkxd0fAs1bx5FF+lku/hAQv1MixHKMBNvi6JILhcNzdAm7x+MILGZru4iEQQhiwTCR5fwnEQDuyBbpAUJo/yfDaAIhBIOOBJAJqagPu0H5lAOfHuHOKxJUWxtBSkyi/gnZICtOCJgJyz3obTbaYlhuVHEwl8BVonLpfNFiJSB43G43l6QrImTnUQtrv1MpV8g4AAgINer4gylXFify2m0QoAALzz4+bvAOCDj7Kcvw/+Jf3gViUEFMAAAAAB/LVSF/1UCoWDZkvpzRj7CdyYoYr7sNpxQXJXCJg6g2lv5SvaqJc11fqTbVcnCWhP+i5i0A+8Tm0KpY5Wxf1LyZhOkqdHV/+qv9Q9aKS/XJsSgx0tYCNJ7RxgULdAyIHBtnOx1vnSepHHqdYwiHx6L/U200I9FeAYGlP/7cUP0YOUw24KsA4nmXYMM9s/6iRsl/mbhUYgADDawU0ZMmDApdIPsKuHa+CAAIANI8QGJDoADIHLNAQ8Q9MwoMHVaTiEuDuNBGK/TSODqHiYYgZOZUN4JR8DATBR9zQEBFrfg5KmC4my5nYhLuZB4YG9/DMStGrTpUM9mzoLeFEL6YZeTA6uCbO0zaKFwjwVJDqryEbDVg2+qnoNdRbOos5THXZSEZRW0aaG0VRD2abekuablYJVVdmspbNoPZtNatQqmS0W6KTyUvud5/6U2Qh9et0m1cIEC+lMimGQJQyK55Y/dwbBtuvK2Yj8EypR9Tn18EqxvWG9it0zTagqXlVbRSo4pGiagSFhy7VmSZbOwjnuhYVV9UVlWofNKkCe6oBKeVGVXNYgfREH6fQcB6m9Ae26ke6bXVuXdVFkFgtXx4LV3jk/6Zg1q33OaFscrVNGy1BK86CbRs9qHK2GPqO+tVHXDmBrO6htk6jpNF3d3RGp6rKobDCrotHlddFlNWqV1pGSWoOoii4qM1ZhGbGWNgoKjliKXfmFrs15sUyZzsswKzfLyElXZqcia7YyE50Rj1Z6pI2RnpEWaUkNrZRAG3y2kn2d5N+RkejtSvAy9DzR4aSdjBXvRuLcg/lO0bE2ZcRYP6KttaKsDxG3/wzr8EGJhLYFWXr+BBSyqYvEvSKObkglQxehqCPQwddPbw68uOFpaYpwBBa2eoqV073X2bVIZdkNMNRfuCy8oO3mKHQO5ZmdQrlmnpVrZan3zFPd5j1rWw9JK/p7jnMc7G1XvWPeVG+Yq4z5wLpj3bD+pnwvMbB+gBVGfY/EhejqLfNQx7xljfUQW5HvCefCtVfJ6GJtPzEFGC9SHbnGMXr24zG08USapzS0OYVjFHnRYD4qKhhHaOujdVu2gMd149j2vIIJHFYR6ziGJdwPWSQ8ou+EAAGd6JwpwwWEp3WVHqgDKNE1b9Mj4BWBJwHpnbbdeuctX703KQAAAAA=) format('woff2'); + unicode-range: U+0590-05FF, U+20AA, U+25CC, U+FB1D-FB4F; +} + +/* open-sans-vietnamese-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAABuoABIAAAAAOYQAABtGAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGkobIBw8BmA/U1RBVFoAfAiBfAmfFBEQCroUtDoLgg4AATYCJAOEGAQgBYRgByAMhR8bZjQjEbactIJL9JcHNhlOCvc+UuWKikprhYoK39g3ooJpyuKLwh5ubiy0V0xP/lsjJJnl4b/9aHfmvzerkrc5NMhiiUMSk7iHqomQCElbME/J5uf5bfXnPh4PfISogEE8MAoLe9oOQDCwcoxGxsyJsqacKmd214nvZkz9MTbKjZzYKmVqLV26XT6iZ7ggnFF1qbCd2Zk6OmOqRNhGVeUjVNpLXbm7lmQZfsYh1o8iBYA04wcC+y5A4ACpqFL0eOkyqT5dmabJ1fS3/6mWkpciT9XNQOFjvuSEXdUh7y256VL4oByATRoVnWMtz3fXPDjySqeWydHY+L+m6goSd7pTdemb9Gzl0SltmMxkrHx7tizL4QMgDzhCAo/0M0801ehWSHfSlZILaTndffLLXMfSJLcqpXVlq29PtmTKnikvY6Ylc5Z1zrDlNdQOMLF2LJsnVFGIP/blr9VXBxS9GfFCCE1MmpiE5lhkzq/3tlQAAy6kYrcciwALfAiEbJZpYvJpDuKmJUiYlqQtQEDzd8/uZiAAMX5C0qtERCWogAk4AN0UJfD5wTajjya7YqivAvcb9cWVMPdmcUH93Lv5jdVD6SERAt+LLZ4HIP3wO8CLm1vzmb51H6TtK2ASWiu878NHk6PRcYTJLjLH188BjG5gowDlmNFcDH3hGQ8PyGMm3uKlbAvWUtRYhiBi+0ZZIwL6/2jSSMyQtAwRrMxDdlAE2gtDIbBFAIHpXZKAuStxYg/dpuFQFizjKd8mgWjIArmhcnQCzUt/lv4q/Vt20WQCUDDEQ66oDB1HV6XHpb9If5P/0U3mJtrG442rGx0bdWu9a+5r3Z/dBwRpReMDi74AwvV9Ig34oP8gH90G/gtNGyQEsvxHAC9dcOg27YwecRFK6xyz23llct6CnUZMqzRhRptTxstm6DNtzogn0K+1xCyiDdYcdcEz2uS4eo8px9zBefNjuTMuEeXb9JDBTezruMcjUT//SRdd1WvMZNkMdboM2m3Gae0GjDqYv/YVT6BVhyH7SwwYdImf2wHTzrZXhjY6CfwejB2lnQ2Jm5o8fGhwoL+vt6e7q7OjfZexzdDa0tzU2FBfV1tTvbOqsqK8rLSkuKiwID8vV5+TndVD1F5urq8uL85OT46PDkfDQb9Xffag2FjfnackzvlgtrGnlaU42evNPdX5EDnCz4JBR3BnYkfnUnaNtd6whQMzZbYiTrVe4Xq3yIZ8CBPnGl3w6KwWKrUAotRdFjje/QTjuSwojwE6XNw3wZ2J+HBd1Q3dYzIBhtSfTxAYveBMwrsr8/yXaQw6z6g5tiwzb1mSsNV6GQ4ODelYOfVAOTUZjPP6yQ03CGW1QBVz33cXgAxOW1w0cIS/zX+oAFUngjA8PhVtbWDBpjjtXFiXRq3Ulrxvmn/FypPEtt1KBJ2k8efh5PJPo7U0GUB9GpNfCSkPHZ+29hxECrswQQwPYdWR9ea9555Uz5rGWXHlsRIaF+oNggxLdGsjGJTMGgpb0gmRwbAjGGKGTFbK5vaQDGeb3QIhYM1SP0HPXO3NBndrbt1tUQttSFgmfg2j/kHIIoTfUmzBOqrw+U6/sfoVOdMQqXPFUAUyXNFDE8G+hlx/ZZ7XjAew83gtv6WwjRsuxCE76Wu0W2WiAcfD2slZkKkiHAze8CMKBNEg3IWoDgRj/V377iiMrvdIwjPDPq1cqbfLlGUHI83P6rFGj1umcsUGp0MOBlqWi2dUhsAMJlwFywCDmbsY1LKTawpBLbj1Gioq7RgVMip/LVidKDAJmclfZa8SkkgbsZ51kOgOMvN19josULgUuJr177jkkvY/aJ3HRHCn8t7MfYSqw3EE0x2TGHSs9ft5u0VlggHXbbdGZ8mduNN3oiBsJ/VttGbJxklcbtW1hq1Wnanbul7DLUk3nE8Eh116ak5w9YrtHGkKdwZmCDDKa7+udT7PZS2anucpX0hyb7SkSTQ08UanJ4z3d9ut/I6ymuXZiceSpnxgJvPHlo2CceBxyemhivVh34OYu6qEz8Pm6A3jau3hcuqA7HxxiiA/F0tTP2R8GJo39rPWolggBMZ4r2anCiaSQNJptHEpti7LKusIYOYxjX1LhveyuGpw3bs6Z4uoaqQq42d8pk+Heqgn+Kqnqse3kxRjj1RCwx1JxsZ6MLu5S0ecE0iZsHQqbjqTZ2ECjokFGX/KUQ1R8BSCioa1NRziPTSPgwveu/I0HPIyrRYKoo6O+jA9hQYQjokxO2NbgMy5MvbBxSsyMwSMCmCDeu0bGFKmMlcQuIWwgytJFbcdxxlUYc9VALrEllR2gGyVKdn6BpmBS2i5wYZgfJ74RHVJmA8O3Ozpcq9O6NQtzBeZSU+u65uzpYIq6modTQGtIAeg/XNgNe3IUH162svihkvzq0bCIHPL1W6SdlsCjAiG6nihQNy9owS05kkTvM/iSL3zWEf5CKr1IIwh51ujXSDQmFBsLwfPKiNBzBDSp2EbdxcnvFFPnHCKIiT1TQfONl4tQ3/ilJAnn5rroEDd8YAQNKUICXMVHnqYmWHs8xA8QBeDcJGzItM0l1JE+IHB9755TzYEGtS0p0vwGLYjy7YAJHEKJ3LgQ3W5FwsZOgYY96met3ycvXzTXGKOzHwNSD4wHycln3boArqcnGqplRk8IJqkHE3OfmyUvRNr2a6aaoi2jIRRp/XQkh9ZTQ5nByL2oLzirAKPK2B1BtD9/NyfKeCkQWTlFfwrQS71kxWKNk2EYQNXv42Kiu0tX+d7Jkw/qUtPBXDcvGhBa6AoFJ3d4qFjwJgsb1jyiSuUzCM3iukFasRj0iGbu0ImpQRLEcchEkjABWDkNa3j4GVjSHrJSUZAZ6NjsGu75GIH5YZg1+QCsRhmEDClffXvtp40vzNBg9Tu6aV3EJunCDM4SblZ89wBhpoWUuEr/1I8UUm3pcxmQxRe7++hTZ5DIRKeUYJ10DSbX5sr81YgCEeSeDXXpqMThPCTrDIRLrICNpEIohRO1bN+wjyKQAxR2c3G4JNeMSEr6IR0rUtZ2rDsEVsqEJhnfA7YTYSl1pOG1tCGOaJe9cn8D/HaWwCXfbs8LUxryVuBF67dUi9bkMOuSb3tBe9ltX1jpfzfYU2cI8l/vojok9EA2OoxuPnp/znnOZhpmTB/DgTS3n3IeU/Gs3Jc17Toonl56GjapfwETAX/gziEPdzaTJq2A2t0jC++5b7pyp96V7x5PbjcW9GHCJbn2i9CPlAluUmib7lAfVmV8Z79jnH3J390/uP4PBe1cEH5i+zFryHFfzOKhMCMVCufemDRNP+J5yuIfNPLSi5VqWKvtZOq5cAS79uXbz2WOUsewioRQc4Z79XA+Yot8r0XYPYPmbsxiY0p8QvrqL/sqpakXwnUDVzmby0XjhhY4O9svYSh1Jdi0wCtpP+uV69uUv+ZylzLBSoRov3wreQZVU0dbarnEpT+Cm1g2TS/trW1a71Gj2iuS7fO/OCXYMilcDaxU9pY1cJxgH4RUuO2S3VOZ9hyUxpj6ZG7A0XEzc3jztvw/qsDAhowgQQOMEwm8CBtfGZqYUP5LjD0AOSFhIbswdFu61upgAAlNMc/eMEzpYQ5MDnNJZT+XU3RcwFaIHRZJouNW5rzzXCOlGXDxNlyIjZSjjlXxrGysJOYi8xlDkIrEjqEVrZc1uQIubY42yqTq2UbOYbmzKMrK9LZpSUbrRXPaAFcjANszJzVGqex6/2lz8mRL1Y+RN0ffckaXfugtWt5mfXqapn9kBzZEhiJLsOqsW8QgyNYxQ/MMFZyWnE2vY1j4CEL4+XlZU8gb6+srLgj4+gy4KSGfOnTEjmysoK6VzMyUPcKObKk0qyulquWlsAI1CwsA0w3pTOgDq9AQmpV7dSclesqI5NtluXxoYuGBNe4Yiapksvq7OumXKF3NuzbbJ7OwV29Ht2MkzN1YlnCOrlK5XJajQw6o9Ovo6v9/IxwrtYfTKIXi4l5G0fXPoCub5+TbDqJWPR8EmNB9kabGH3nyIe03o9Yo8vLnqyjQaLf5ikOGMAuuuRm2FigECBwgrZt9c6XtPtLCcZZ0wUN68QDxwIH4+oV6Mhz7qEDC4VAnvu+rE9S6ougObYWV2Ueqntg4wQSdO+3Yeay+l0C1rV4CymohMVIeKcyZCSiHcmKPq3bunauqn+21Yeo+wVyZMkRnfVgmzby7pek98KUHN9djRjIYMFLh5q2UgVqrualJwyxSmrbyvnzXk2fF0XISM3qveTePq5/lo8Ov1kz/I4Ro0rHwxbvkCOLYpJJ9Hb+RaqNZza0RMY/DPFprq76VaQ110YtxEMJcGDqO3+x/eb/Gi5UqxxRVuNrOWwzTu2A9Vie9AeVZwnuk5kki1w0yooXUW55+l5Zhax6ctK+laosKUsXYXFAX4jb4Ic+3Xhq4NveLERgHp2tr//kfDr/wpv0imeeyQ6PO11w4csDKQG3nj7xvXUgNWz+q6mEj0829/TBKHEfT31zkfH641PNyv//8tRfL1w/3PcLe/w9e2+X364EdD63f+/eko7ILXvr2nkuv2b76JKk6e2b/L2l6YMp1v5rEWljaUy7AfknqpqMst9F71SUplRpc1LfFVg6n2pae/rqW98vbz7M/Lcwvtshp3A2XjdruP73ub+ZL6dSm5WaljrjmWhfdEfr9XGAdXUTbT+tPj8lKnVzWMFAQ6WD81LDzGfNhrWTBx7gXXv2dVdeU+QoHqW5PuvUfQ4z7lt/+bU+/PGjY+/rGuuYhksQvrM8e5uthK/XK/WTz0Xkb9eo80MiIvNC1Jq87bzYHuVY3OrEgbfiO5pfi99zIGl17HYv+rX//JFf+keQT8rtau+DxfFpqUXxXgera7z2FcemGapO8+Ic9fofXCd4wZXR3fKo1muqgmf2fKAcb1Ub9DnlKvdTLVyRPun/jUc+MQt1INT8nPW7jdGSA4/dG4anrydW+seTp3+J+NMhJCtgW6ZAaOcWKBe8m5NaqS1NqXhXRNeUqWvuWLoGLHyTOndr+49/LsYVn/nvqGp4Y7jo/fWTJY83Hqt6P1/7+elc/v1bhRRJIqv//SBg8x4LX0oxuGtjn5CV5oP+flve3HLC98TMmzOXfti8h3PneFyLwvaX9pJBbEh8oHB2qLjuyMED9YfcWSRJKkrkd7Jr8sv9Re/kdmijNAZN6LsidX5ZVs3z1oFRCqKgZPKSun7+vRuMqQsxr+VxN/vkW0QEqCzpjqv0ZM/G2LhsxwC3JGmCW5zUUdr32kHWkZlDZW5JVIJrLOVI9b0uIclhN/VgSuBf+BpRnp73lWsSvyrUc1l+Zvhel780WXI7bL5iIP7di2J7lLd7ab8NnDvyy8AI7bbQQbFe+1ZkZHhKaLK4Mdrza6uCmHMTbbtko3YjPikpvTdOkfrrhUWL7UnS+ijPZV5a0N6CxrlkY6VqfM87fHL/6J8dvmWw+KCkJJL4ejY9aF9R06nkdgvlD64TlsGV0V3yyI7/CcaKX7jOVTbJQpOpxmg3If3ekdTCZCuzqCvCfXGsNCfZXnvXMPbf597OZytHR2sEJMlJq3IAR8VmF4aHcXIPfDAnr0zfkVuRbjEnEsbrYwsfb1l/OKsPI9S+PBqSSYX+LLhtLL0w6bCN/wE+fet6jCva2F6enrujaofPX5neVfqO4BfzLiGZRjsHsZBNcHiR6f8CsX48Xxudsjk04mJ2p1lDFMYXChIVwpK5zjnMUyL4az1Jp1I1iybuNsYk5zbHXBkXRahUqVnrfzsSob4VOdtjPJLtouQ/iBVDd9vNCqsGS5WpdhHyD6XuY9NO5mcUZgduLV64dvkGY+oQQ12frlU1ZpoliQ4KjkbFx0eLekU3d1T1SNSyawd72uLm0bG+qMj4KwJR9H39/qGmMCxi63uXtZVmOw22QsFDieTAXNmcL2V+BiMGrpyYv3jzDNk9zYxo3KLOaAhixMzZEaFK5x+WZ9IkUQ+UeiW763JkXohKk7cjMiJ/h0aVH8LEnAEBFAbYeYK0hWkWeQhUAnhEw7ScqBcpqD7hxWAGvbnwDU6zeUzMYMKZENclIFMDNpEF/RkGAGDH9wl3Ou3TAaUReGa8i8XuSnnsrng9tj2p2PZ4s75DL7Yj3o7tTElNJ+VmVvVnhLTX1sscudC2vQlOL/owtivdYrviTmx3utR3B1Tfg9X36EX31vRCxmqvScSkFQHS6YcAD1Bh/OJHiizgTxQG3us2FClqP8I6RVqK1iVA3dtR5tXzWixS7wKL1EsYi9RDYFHtItR36NV3gtVJ+6E1HuESg8RnWTgtQGsebqu+gpqNaODNw0PFEnjRwJtz3mBn4h/BRyTeW8/mSOGA+002fmDiajCqYsLAq/WiO6xOBnjZwFtyvrl4KjY/oX8QIR8ClubMMSeFJFU4CdUBFstEmplMmOPB4jMmpb4FNtnxNpNSw8AYxNdNCm8oOuBug9OWJLWH9SYH/4VlM8zRf0peqJ0UsUzkOZMJb3NKXGTKzY2qGStarmSO4U4lL2B2PRGQwW1uDoqw4H1gz+TiOUVA7fgs2CQ6LvkIwb1/AmD7OWVKQUJhkrOf0Qua/ohtIRTgDbKJvmBaAKi/MkpM0wB1tXHhSn/E9YwSmPaJuZLgmLHBMAD85+PjhJwj0+j99EXQLMe34E205h/qVIQfzN4gOhu7hi1pZhyeP0f8BagGIMOQ0LcwDIsJORhWR0O8HBnao2EQdGZvoICb3IHRFyA7W4A3oA1sxh8OOtBMnJpFMEowd/ofjAcLcZzoNL2HsHSP487pM8y4ZewC8ZdoYdakGRJ7M8UMw1xCDvsba2ZHE6hb3UvYj/6iL+iE29caH1oK9G/zjnp2Em8o7f6Iu4cmGXB3EMmAQ9ckcEDzDDigSUbPAU0C+GK1SHxHdgfMP8xTZonk0jngNz44MJAEXOF2PX0Bppfjc7h+PJl/yFNCh24A8HhEAyE3/4irmyWSS++AT/DBAZ9O9O8yfIO+MD4X4/rxav6hThXNkk/Mhez/i/Ql0zSujcEhQthBlmFugTtYBefVYR5lb7/WVAjooE6LhPJg4cz6GdYkiN2V3OW142KbOgIn5W2RQNalRu6PAWaIIUuckA2z84DuJTB1tVdFQONRSEF1V+6y+j5CNpmobhQBlVgibQbY1l+Fr0VusC9qUQpE1lf5Ch2AqHglElOLZCI/XibouuzUreAabmaoxSQMubJQJkuDw8Oq89NO2xCQB57VgGrQV32hV8j1K/5OTweBimPhu8gmghv6egOPmYMO4kPM3AA2/jpJwjD3PFrKCNiZpKzV7wMFt9vsw9slq1vtG71AAiH88wXc0WOCqKF8LFA0Mzf0/dRKEBeHDfU01KC6Oyx3r7uTzxvtEUjK5LtvVzGpMU7QFIX0AhjISw+r0t+pmr2PHiNuG4OLmywJSmfuYjtwRAunzz+ofpM4dHMyU8z2iKo6v8ucXg/qIEG2DJ4jkD6sko+UQNBud6kbUSukzHNXWdYBTmQ1w+9bCYp19OYBCU4DvE4w2rCteMWo5UD4raXE0ZO9Dxp+1/WQqOOoftRJVGFVSx5Xthc9iUqt9T8Ihh1JvY8BklkTSzf0lz7N4wXkM1fzPbg+F8EcRX03fjpQV6yjNlEhnlIHH2KC2gScJRDtm7o4F4fM9aKU5+MCmkYu/sofGn7WbZGorTXjwB3surBMRFx0H8ra9pV1YO1Z+1ZlXVuXswqBZnUMbZslbcvImloLa2LNrX3rqM1lbSNglWYFwlAfpQ7yKG3aNREhNg30GGTviUL5ufeZbMJ+mjetqPagxA5otAagOqhK/93S8V+5M454Mhy2i2n09lqEtCGua0NUHs7GzkXuqGCSugcF0O24WrVH2bzXy7yrdUOp3hGM/Ndf1YHvLOQ0pvLyJI6NYY3EfWc76bk/GOXk8Koyc4MoEjQO78p1FnfcNJUyESKUPQwOkYzRUPY206zbjMqwfnrNp/I/P8iUf0b0ne/I3L2GAPHl8yMCAjBA2LGb1R255lt/Z7KYAPj+3it/AvC7xTn139n1h2azzAJAQAAGgALwn4BTY2e6yB8k1en3+yzueJneDxBGuFnPwM2mh5bGhiuxATDEmf6jr6XFMk3chuxaB/vjN8jOMJiOcQCskI946xMPzQulL3vGtOD1TdM0FFwmpYaFjNaAFnRHadPQkjWQPcL32I2/Evz9gGb4W0v3mNBAiBDGfgrb9N5RmD7DISwb9qegCUOX5H6ugI/9EEdlivPQD1Bw/uLAuTowiHM8JEDfVIC/ngB/2EDyAyoHsTo43hc2oM/hmb2EctEBAx5v06C+YN4LNLRnGq7kUrhZnPUWdCKwdKkTAya80EkDH2904iD2Rycd7IpliDA9FnDBv0TdBQFMorZOBCQaqCHoU8jOY+4RYjRnhcT//s9BuBq1DOqVK1WmkYwvnyyQUSmhYjfZQ1hUY5AuH0RDFCkjQY0K3SvcB6GaWJRpXj0uXclIFLVF5WbevJUqVyC+1QW8FEa5U0pY1MyrqxQrEaLaIxp0VWNTNSxHcnNChLl2rlLEjxefj44toiWLaMHVE8suTxg+nDgmNDME4JW7UiOj3l86Hihbko5XyKdXG4jnRSWqGJgRpf3SZFESZFCcc5FBXlHiJSkFO+UPiFiFMKFcoTS2wG6aBukT9Vnw9Qn29LatBrVB1xycTDUFm6jG4ItUQ+Adqj5Q2nWBEbVBJqomIKLaT0/t9NNV/ppd6W9X+EaU+5RSZT7jLPWpp0p8IqlipYkqUt6hCpXJVIG338731nleqHO9Rmy9V1GOVyCV7Yk6y6NnZ3oU6TxKKa2CijIU+ymNotRqd7RVbjrdzW+nuUWkunZRKa4ime0kF53onO0EJx3vVEbEOYVQsY52jIOOtic7yl5H2o9GRMj3U+HyiDDqDhVK6RCqZ++QFW2XlVLbpKC3SiBii7ie2izeYZM4mQoKeSVwSPv7iXErfRSUm2sy5SoQ2Wa7iDwpZ6cQyolrl751Rzsl5WBLUfa2JkpOlVIyKoSixDbCbKmNmJJYmyix0ESJfG2pLJtgYVCWHYStswLb7Z1fbqaV0lJtoeSpLXU8HceXrab74mq2DteZ453406CZm7hqli+pZvgSapQL6mkdqSN094inDQPdA+h01VPAeYDMfJlqmi+mZuownTnWiT2tNB7QQkLo6CbaM69SxN9kmNLi581SsubR0LxT+mVVSGrmPEETBvXpLO01hCZ0/ePjINkXP78nXXudBnOR7hqGhac2bZxWHtYACopNRQODgIREJuVQiz4kAM3iWLeiFAFPocAXw6/5snrPD9IG) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+1EA0-1EF9, U+20AB; +} + +/* open-sans-latin-ext-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAADHYABIAAAAAZLgAADFwAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGoEYGyAcgiYGYD9TVEFUWgCCDgiBfAmfFBEQCoGHHPZkC4QEAAE2AiQDiAQEIAWEYAcgDIUfG0ZZFWNbRjM4D0Ao0f4RR1EbOSkSRb0epIjs/y8H3JCBb6ivRAFQJYrTKB4iHJ9YfGOZVGHVwXlsxGnE0b3WK3QNBe8cbxejF83rexThsUFD+amDYBXb9ghrQ/9Ud0sMY663cdTi6Pe/hKff+q2p8/QZOM5HzeXhye55z50dfEdASamLO9BdfhWiFPx2hge39Q8EJxIq4gAF3IiIOHaKg+GE7SIcDHEswBTNnGjLscrGdmXmdWZkZmt63l3XL28sG9va1vVL/U9bpXoJe/fQluGrfqiZq7oMeAANw5Z6DdLQ1UUmDvE7S56MvaEp9pUu3d0DSf/yxAjyKHdhqG4iM8nAqAApWKbp8uk8aZsv00X7v6bJq2quQ8wNiHWJ/r1NIdmuEcbmp6AGR9PM2TZbmqSVdJLuun3293NqZ7USODRNAH9FNNABNCwIhH1R3FZStjubwTkiGhX4fwZFDDrpNCWKRGkS9McyuDTM0/ylotQtw+jLtCTr8Pcuw5bJeBhz35zfTqjt7kxSUGccKVsAVIfJmOR9l5z+AKgOEOHftpXk6S34jsmECZZPMvTq5TKlq1vtl645ubHSoQ1YABODb530TVq3llIqQF3zKPAnLIAGoD7c8flsWqXVasvqAWnQ+zyZvagDCjKiJNq7JOn61a3uquq2yi17plsGWrKWJNsL0qAkv30e+2CRg+gQjDOzngPTMmcHABlRhkF6ebx32V0Qp2iehC6xxsbwYotX0d3q1NyiijJz3s4ldEYcyYpkQwiu7P9alkugSc2oKA1+E3vtGFOriWR0ZQ5HRBBFZQknmv6/K0Ahnf36AlA2AnBA8B4KQqAgRJsh0mSCkCgIqYLI6UDkbX+UwrS67Ja6Y0H95k/1twfqkZfqrV+HH6DC8sbwxUS8NALM+ZhDgP+bBscZZLMtkoXAFAygr6Z+bUlrGPxnhEN16mLgfaRaUYTZoxR56h86LldbCnx7fkrefmM2AeC25yRj1m2HGPGszy6clJ3AX4I+E4Sg/7q7EdhxJ8qKgSN0gu7R5QPUAB2ig1IoGHORly/luOnKMX60t/71q//85n+/m7A/bohQSZLlynPI4eafNySYU6b16AUB06HTI4+rL/jaZz/7Z+0lSlWpBsvdaRYcKOvkecAN2U15c//U46zlNmBRyWlWveWOHBbkQICRR03bJ6PAlDFtBeLWn97uWxUDYEkwrdJUtZz3eTWrgp55mFYFgQBw5pEqLQSA+NOjCggOlDFrJ/cBpHAkN2pHVOgsGSjb5gSASHJEJSRvgfki1x/6bGHCL3iRG7Koj544GMdjKd7EKlSnkJSxOMR5Q2e98z7n95t/dksSBgkjhKNEm5GTq6s/sHTtEEZeyE9aD8R38Xzbl2TfCpw3cG7Y8m7zu3ZYGyMnylYDEv/EL2nOJ8s5CUt8/j8bPxtPAeOTY8+n9+5vvx93P3VxYfH5v+P/ev+7CMBHj2uog6mXZJzwOz4vvgoeWvLKp4pmUQww9DKZDw305+JlHhgxfYVx21n+AnCfMduvLcOa+FGUVtiv05Hl0b+hxBa7FOmwW41B7RGuxS6HbPGKXnWw6dXYZZ8xJzpL9brstF+Mjjh+kh82LkIFv0kImfdQ90BQcu8PO+o7zbYZiHAVGrTptNuQOq226v84+oRXqm20SW+w6TSkr7Q+u4zUS0NNMQfoHkr7hpGNEncO7Nje1qpvaW5qbKjfWLeBtrZGV121vlKrUVeUl5WWFBcVFqjylQq5LC83J1u6TpKVmZGeJhYJBTwuJzUlOSkxgc1ieuFR5mY+kO8tzONc4xTmFB/wx1m8lAXlx3GQDxnAuifotAQzdKY/cs2GNsZrNjDgqvl4WlzKzEHXi1wdBJDfn6s/5v6wcNSUSdBlwqRwatk7vP0WgoKI0GDjwFO90TmarOmrxuYZmQBdEs8mYIoNGZ3w9bZF8HOITusZ05YNu5VWlmw4qp2E+t3ozpRRGxRQmavmefbiLS4RZYWDF9a+Iw4BKTyMGZfwhL/4uF0B3oIIUvF84KQWOMm63DJyrKY0MWskeV8mF3GNS2VTrSSCWvKzH7uTyT71Fq7MVXTmH/vcL4QUhJpPV8MkxNNNjHAuIe5iXqtqzVpH0sYNdWnc9EjyJxYOzZQIK90mlwZCA3m5TGKaajVq4G0GU+MNdkMUv67ZsdxRl0AIWFrrIIFSFntyIMye2TdHlEMVCZ/5LzDtXwTlIPzqYg5SJNJH/ZcY/fHL6bIQf/StRYjqEftdT3AgFdf3Vq0n9HO/e3/hfnXhGCsO1Cpq6w9SrTQTdVjWaVOGIEUQHAxe8z1hnJJBmLHDGwja+FH5RhwMa4XkeKXZp8KrstlMuXm9L8GwMDO2GpumdnSwom/QspDze0kZmOouuBXMAwyuRt5Vw8WMwJ32pEeB8pY0GISIkwcFxYmYSshV9kg9SkjSzaT8VQ1pv5a4/bF6HJPE6gYWC/xpbnKTbj6XGZ4TwQzcM732Ed4ChiO4X9OJQ80YfzOrVqiZoMM2qpX+MJk37eDCPQi2kMR1VNjScRFn52kYzUbib+43Gh7bbSYqY3x4sBpNz2hxJm6zniMtYYbgigC9fARFgX9vJoUTd5aXPHbJPJEpWkRNC68lXAi7v1GtZCNRE7aByQ4F2XukFutpbOmpeeD5Eyyz5mrSZxO+9qiaBNxjxU46DksLN5dW7NyIe7Bg5Awtvb4E0AUZ48yQQBhJjinKvZJ7/yGOFGhxLZJZCBOLorVrDeDqFgsDTVT3M1jWWPU2fbaIaJrEy/ke71lOrU3aXGz5aCY6JiHNjipa78Lk5tp4cB3YJsZmAr07pVwd65Yec6cjsc8ZkKpLOaIuCp5C0JBuZfSqiTyto2bB5XqDpuQHhWtwFKU3LoDQfgZg9TmncMXmhqj0IoVSwPa2eoBeB6iQ2JcMhg/eciwjCA2puwuWFZuW4wpeKMv1OMioiyeCQUFn6CYbT9IUYkSrDZYE8/3yF+JHwliwEOpM8sW7K0OXMJYrh7kWs2DZUE4tkrOK+oYWEN1A+fvcymQ4ipGy7T4aazaN7aqIHXRs2IzrbX1+AvQ4dKVLa0KEu/WIqOSOATUfxJ7CtbyQgIA01Q0xxARGEw4RqG/i8x/RzefrCOENkrlcYdYZXvW0zVDKre4Sh9hq3XIzBMmYoi6Z4nBDhS18wrytymMKNj4lxoQf7vJcrX6svhCVh9LzJvKuSJfJBa7bg8CBmYC1tJkAm9GVMkNt8TW13Q5IdLaxtOxWvypOpibS4hfJaIoldmfhCK6nTC4IDTNricQepn6wSNvmyBxZ9JYE/g54R0SLwpzkcKShLlzkAJtdTWg0NhJ6rcw0y/tBoF4PGOi+D2UtVi2IMIRiJfN+J0P9ygNiO+jqXCr4F4LM9u8siDMyEVoZLHZERfnxUTzDY0dY9tKlAwd4rh/QaAnhTKFWse+WRvW57Yotry/mo/PAGjAOSHVCcWCPbZYQhZ2cFYRWZDmJJBIHBFPvEVwJsc3ItxUZwAkYEF0BvfftbUqnqwd+9DYK5T2JCew5kNit5dPYiXVGrj7TlZ4jpe7CkuCQiaVwagFdbKUdYYtg4mrhp2XWrg5JnvvJv/SaXjWLSKkxsOwqk1WeGabVAphgha2dZhPCMDHhHkVrx0MnWoFtRf6hhR7sAr5DmzjY1kjJMiX08lkuDA8qYXK0iduq2PZIacrB1D1RDuhDWHclL41JS8cEoV6J09CP8MxLAKMGltcKoTx9NHBmqxWJ7ZzESfcS5DGyFZw9PiHG7gqFVIB0MHaBXxKO9EfdglDf/gc3EEB1s63nSwFb9t6EDXkiBcgZsrgm8/HF2tMtE/cthBT9h7RqmC/a7IRuN5TEzLtzww5yxbeK5W9ehcNLEz2P4EHmB5PhFnmRPGnBHFwk8RQh4tV6h3FvYtAfjYznGReOc8oeqAdvQj7/xShyBK4cUXnXAyfL5BkOqjANVHtXMhGP8jO6XLxz4BTe38I4lxw15x5IjUF32nZIjAPOK44obh2D6z9j7gHyA3Teri73r1tpgkgrgX4Ji/yFEUNJCeP8paFKGB697VxmAFxC+0teYm8Q/h+pjpk7IIUguY8BycWiaVxSdTA/Efc7kAxOlcnRlE2ZidfaAS5t8mWmr3oB+hbgyIFtc9rgDT0H+JWgql1uqYzKMBs2COGblc0LHklCTlQm9oD9p2suAw4i6BddRoId1nG+sicA7gWotwDMpwDkU/LrKQGw79ozwutE7SRfnJygHo49x+ZtexFeGv74VorpFQFWzBQs8qaAXZRrNGbcfNfHPhkDCaqugBDUf90gqhvuiHzcgrQIx9FYKymj8q9k43fehUOQTcahpXZlr0x7S3UybvxmMAdzVRlLGepQ5I2e2v3tOCqYFkJcVFJOS+9fDmZ0fhf7QWnlWbHC4ehIY++RhWuEuPEhhlKkOoTQTWYcByM0t0w7nmtRLVnnZd6dhX2r3Ln0VSfrnun9YFSVUX5NaFBEJvdWeV02uQodLnIIVZjpg8iR9lcpfNsY9EYjiFjN/pf49YeQKRqt60BG0lKR+5KcYmskUHPYMQj8/9C8OsWt/EBHRtM2kMlwTFJMbinUvL6X0t5A4fp+pnXDOFty4Y0BDYtZ4o6W8uQaPSQJN880aAZusLzDWJF/DVX3f7+gM4n9qj8UvsZBfrRqrFH4jqBRaKqhh3kdroxwLKPCltQsFFwJcH6aLKXjmqdyn2VoGFS16qKq/8TaujCBekZDtnz80N0PY2T5vyUxvoP15TA1uuhbpsNV9MhdK8KJDfdqjC+xJbLzaDPzhO4YaHqUSQPbekbccdxkpPiMfk3IxzJbBo4IUubly8qBFxUVWvyqSr7NvWT5QQ3k7IXonCaSjjRNMdBicz2d3q+pZaFOrszLUx2POkYLGbmIbgArhxSqZPRaqiEq1GUPYdny8cERywg/QCJ7JtJp6P3+4Qz+5oOU3nPPrRB7slFFXBEHlONqvl3D6g0xZCvNWKFSLnAcE5Xc9McidC/nrn24V8MwQXGN0nraFrxSYrS3GaoLXwyoO8J+VkOmEW2WoWidM7R7EirH0lxNqMZxUqALQI4wD9QiUKG8EOeK8we9GnkQBg7wKLjLYemPE1LQg/tl6z4QH+UZmhLw21SCBBo+JS7pHpMMgxo0M+X1mZBo3XjRKG1tmVArzUMNqtEL2VAzlZonGm3q3zE3wGrE4DzsRSrf/s61VBJuI6TE0OE2nHh3i0QcBvQfSnjh27PR8vMSrnTHQK6gLt+jl+SAReQMW3N2u3tkSo5GC5xEwZSgzI7VJjqXNLtEy5yezRf+A4RbyMQ/MOnaHj5q4qhPn1uTx3Kqo4lmssv9tYBqBDrmnH3uCCb61/UVLCnEUgPCuR9iScWaU35isK+8kTeBRrt7a54qCyHr3ytAICChhIxbSvjth2bHuSB2GTcqX7BeEa3bz95BQoICEg5VAGIh5oDNqn8rhD3kOObwWbtXnyBtE6F64YuB0rP5gklGIdfUHO0hFuvLGm6HObcReXLLfQbbsny4Wry0DMJHJtWWEXlAB9EhR6nDHFbvBaMCjiiaLYTxqlJ9eBwTAgwmnEfhKHtfcpT7QkWbgO0E4m0wJqFQ1DnIx0IjrVh0sWwXG9QpxOSsv78SXZbmTOHdn67gpMuvkIh9+xw6UOmRmXuhYJBd8zPww5/+DwhBEdBMzsZ8ttJPZCxkzXwuOwf1zRf/OK3EU+gqCxvYVIec2kq1vvgMuzQiTjOkK83ievIbkyI5VxYmJkx6yowCJup8Sshi0VK1i4PknceVz1XEkXWBgoEc2AyHFPBTY5kn98EDkksFrcgdc6narl95E1plKnZUqxhZO0ys7BxqvliqdWZ4xM49J2yYvQZqHRmHuGKKig/Vti8CIK32tVJXAP27oUcN0zEjt0zZmWZh4UWQqdfjIdetnpGJMK+NfoMpzQDQsBaMJ3m6OQQAXfyF7AlwiHpfjrgCsU7+9OhAiY62BYilw+vqDmoMFGy34f0OGB2iuUwUE99nPIEPUoCmghm6lTiVMajTjeVUNefkiwjNxW/dgTQ+Yb7ldTfICOfWWMV/WxC5NfeMVYPkEHeZQ7lwZJnvTrGR14E6O9Me8XejjGeYNL71AG+3jCLL6v2/v3hTu7wpOD0zU4Wo3SfbmEDIqbdqLaUFg7GQMoemGYo7YdDPW7dEmFn2yl6FtmqCXf8DOvx2qbE8J+8r/DwubzixXL19FrVzuEsTRyFMa2caW7a7tASRTmSJlvD90B9SkGU7/vOQSmDM1hIUs5DsowXdhEJC6cCASzW+SKkSYP2FNzM2xUsaqac0u5N/P6huyJj0VLnBclY441J532VmK3dxOMPm2M3VkuGS34NlVNn/eXooDJXGf/ZpdhvF8Nd94LNffcw7dDoq5t2hA36elm0a8r+b1j/48y0KmgjghsQVdMzrldc6tINvQFD8str9k8/e36lH93I+Pj7OEZ5a1i7SsjyVn2KJRynStmu1xX/v6Ez5c2RDW2wmYj3N1kGcA4Kq4qqCgTAEr41bG+QwfaFyeQjnY5GZiM/QZTaCFCzyolUUAXgmedT0We3jn1UIEQBhY37TOnOiufY+jxA93/om/VurI+ltG3gA6YqB1ZrZmw6anE4atSXKh20HpcaYD9Lh8x4SpxiwEyaH7M3s+nQ4SReIL6/wzYzi4VvhW6CM45h3qc1zimUCiYPrYXpI7JSdnVT91xEBeuw6vPDECWmuSxbYjj3o4wadfv3K/3QfL/b4w53Jfx5e39TCp0n8c+fjoyZXmwfXP1aM8nA3XIdm113skyf11+azCMc2pEv8hmgVfg7v/SbdKt/VopSrOtKcYiq2N9Wdf5M/ntxl0+IxS8in/JNQmizxJDEoIQkpDXFcD8+q+CJZfIe8uer033kD6h8Dy2myN3Kv/T6CcJ4bKdYnMJJZE5NFLgvcpxbtwr0MnmqHcqHtNqJHhskdLe8Q7T+4UD0/TATVn+zt7lZuZER0V9Shaq8a7BiG3Kur1ZJhW4iSksmodegCm6y0K99y7EQGmsUJZw1ahi5GyQMZa+TWKpuMWktBgLsYLrTOtCmg/s86174D1/6dxWFnrOd7iV9GqrOgLiyQ6ixo49pV0G+S7yyNgfIb5MuvfnIIXIznb+ObOrYS/xKWpak+Ym8V5nOL09fx5mytPQYrF19fvvHsbvgO0//Lkhpd18n2JGXs0U3+N/qf6UU4LT2Lx+ftpqS4yOfTff8MsiutNOo1Uudymbzw2LxWTZGrwmb4WbXu27X5LdBl3WHtqM+rjBcsXK1bFLcgMaC/oiyku4CZnN3rz6DAGeQBDxTE5sxzNxx+yeMCV0dOT1gyz0ZtiFX6A4l+Ht5lOS9OrCI7vKtT9kH7iYdl45sUFccGB9VD7h7/0+z+Z71u8XDfbVhDV09j0ffkdeSXfK8p98ZRaG3Pt4tXWmBLTft/zdBWmOrGQeBbIFnr8PjF8+VDvYq6Nh3uASMzgJ4gZHiluStH1DWFYz9k9OJ5JvFmk627J3y0dgLq1Jcb/8Q+zK3CYJITkaHnpi/s3XmFueB2rWSPlyAx0BtM26TsC013DaCTo6tZZg+4Yk5BloIvFwgFckUWv4DihEGvFZj3+6LC8lhVRIbuhFA21fUbrb06TSeRFAjJg1VIGpBorBNaKqVJB07G50aJRbn0eEYOXSTOiUIxXgSWIRPeJNBNSVGieMUYbUGZMnpMBvMsEudEMTDviY0TBj0dbVYnhb2gi1ihgvQzD+9V58RcaVJJqAeE24d7TkNI0Jpzly4t/ObfXs3TiXWK8YM0WjvXtSghKFyUI/Sqyt2RPvPqsHJQsmqJ9NoxDkWApYkMKV60Kc2J34IIzUzPXrdNcfYE1r8sYYWsJiI2oYm2LXGho+9G0sb1V5K6+lIXts00Q97rj+x9p98C8ePOlFL7FUl8njzJt7+0zLdHkcDXFQ+haDCN3RVXjNNDOTqi1Ckt1r+YE0aTPvE5s8Y0T7ox1CH8YrK6cM8d7r7KYSehy9dMr58DORnJgWTcS0VoMUVFbs2g12TvfrPnlmqWJKNk/cF37aEkx8W5umNJcv9cT6nHVmHSBsf1f/tLbV49gHfhxPJ99MwDXdiexhFF2ovLr8IehWHp7CinRDep9LlXByq0iNVIZFZ/L8w7oaBmkU66TvN+DsKGiFrz8Jvc9jjrS81KnfRue/FbNBlNbJuHUr+GV5ftOqxbmKY4RDZKieRHbbbjNtkVY+qsWuCmNBu9Y88d/Ssy2k2Klab+ot37l1mMq7EIve7bj1qWU9+St2bzrsmUosAk86F38Z9c6VlBazNtMY5jmin4hSfPYq99mjB3sKqsY3Gjw8ME0aw4QUxYODemJ1bZEhkmJEIS+TmKJAUTbefW8YrS87mFc1i4WCUqm7c++J9Gv/E7Csvixug1gaWz05ire0JYFiJl58XxbQn+vokoNRcUSF70Z0V4fTRsXwmIQa4gdQGptJya1HqyV5Chj/Ff+JyfunDzymb5r98OK5dWloTN/y6+fX0o9+fTMjwMf9K8UUI8PqP1YFFGm1yW4zEDx/dGMe7KIAo27M9Pa8rNzXaNP5lh37/z/avYdJtg5zznowGJ4665/97L19mFQvScYXy0pv3e+urFw313rLpZcZos0QT/4FqyDvq0ZFIZEcyqrD3e2pyDSbl7dFVFA/dS9sPPwYWM9JgUbj8p0SXvZprvb0HaijF6WEwMfTz6eHG50Raj4lwuMzk8OloWECZjubxW1lSY6iZA4FMgWhuQ0ESbaTb60DpK12IYsfKdqjgZOzF1oR3jSv4Wv8FRFczbURQmiGMn/OzHbaWZ8Rsjf0/MwuuKh34Y8oIz1wXOh9xz1O5LBJmvhYVja7VFoJYwxPsnf2VetKYtMCDiesRB/4O7r+8ed2/P2wbdhOuT7Rmzt79Pvd2b/K+xgf8+8L7uSnjhPvk5wZKmaW1QREYUKyW/XLPjsSRK9ySkbYATFCS+2MbERacp09enLwVfirsUdOn09dOU/v++6+Km4jydMOiDEdcjrAXm232tw3JZVUSmblKYN9W5h8aFr0OLyIerbtPG91zfc9DVgtpnT8qU9NRqHpOEHenI4NKkNHcEREeGeccLEsNKsObmFhbTL+O9yi+fLL0QDOtI01422jvKA7gDf7G8y69Ml1Foaoa35srpsgHHmt+/6MYJeh7C/h2Th6Am53j4CaCxVG2qGdtkJ3xHyMBgphN6E5JxP6zb/63d/X70ac/dzsQG3H5JVSId3jxLd/FnxyvelGSWZFgy3Na6Dpt8I5Fh6ZVTXXwla3SfjFjWxREIxY0yCD+vfM7z2xfO+7TySUiMeXutvyJd1mDiuRPObmmJQESh5gONXAlHg9RG/H+ZNZczIjcqVb+cx7Fisiq8c+3upY0GJJ4XK3zo3OEUZmhy5CDteGfOvu/o1Xl63G3mP94cK6R//5xkI+4g65/ncVa+kX722ZkPHz3cp2SP7pc1+yka38x2CUj429aK0d4RHr8zc98Q3RXUMFwlaDa5bNPGssKeulIf+wQJXuGaXJBgV5TwXUq3gnDAW+OhzRFjxfhsxxRpzmPqGl9KHoniTyG7JDahbkbHRTCSxYi3iQHSUEkA0WO8cA/M+vjeMh+KkR9JRvGReW1jqUPjVAnlPfVF1XNL5QL3CAimOrEpcWGOsQgUyENAVhLnJWW5BYHYW9kb05linThmDivKVWWVnbWzdfvtbFapvl+EnYvRKTHT1p99Cxt4N33/aM1jqfrxO8N3EMFMsnGecmBcpD7+wymTnWPsKznIcL9cq/ggofWaVnRfPIRADy5wghbbrbeupLynvnAbr5LE93Ug3e530YdKIbnf4hIfk1KMhLstwDkUbUKixC2IlOqcTEp0dnNuudJvsXf3dpXyu8IneyXg3fAtV50il4m2X1I58gwZL+sQ9hq7gFFSkoM05hdVHZ6sxPc+EDdNNPcNHNuKMT6GvnZqprP61h8FfbJB/N92NCADh7b99Da3YylS7hNRrjLGb3MPa6jdUCZk5FWS2Ox3QUUKrTRXLSXp/N11UBjuWrFDB2OHiIl//IFrdmy2rdUiw2UHkpyMNOcwMgx2egubgw9glpDkZDdt3D/Zv1K2EsV1WHGYjISH2pjgYzunnaVyiJJHKbgmFwZbkJxdkX88X5M/WeCK5dGTan+E2X+OsUtluqTTJiHUTB5P/h7vUBuuC3xc7hqIZu/u5kRMtLYtpg4FmRKBMGi/CSdjt7SrtMUbVbSuuiXUbVRAJCs2gJpknf2TvgbHyt62Nrm3MaqneESZ9pzScDYyWQaX/wRvSDQczNmy/liGdLK1PkNiT7mCyHJs312ftmeMvfHw2fEdLYorVwe6Yp/xw5Qmly/GkBL8gjySotk5JOFxF7ISjY70l0cUuk86tlslofiWqX5IbyURO2JfaFOS5WibTEtRSHNxfVCcNG3QSJf5HvWOsrmfG/wH/L1xgSDnoVcqujiGcpc4vPmnhkBnjtNM7PHCt5Ystmcasfdd6xajGX+05PIbDEYcN4aD07Ioj2zy2KMdNRsIWx23VFNzR1pLxIoeGWatolKd1UzKXRQ/pDtPe4hTq1Q5nh07Dvdu/V3HRbQp+p2UDONHKEFIj7xykFNnRXvu1WEdWsRqIDIGR4/5NsW5SSStkhDDwWtZJAz8pxSejGNjxpzA9CRa8N0J3S5esYj/Rm/mImhbt5bZmq/vgQtaMwrd0P310uUW2MumfbsWK3X3D/XdNmro9lxbvSU+/6bEo+nSOHhFKVwXyc7QVjj46edG3sv6DfYb7v9dhj6cn3FEt0n7wyu1oczgwvc05vge90npqq/MlW4rHExfeLy0jh2a50BX1DMiutV1QfsMfZ+QGz1QipuljUnC7aTyMt+YskRiwN73peKlES+7r8tfkxKtQgv7UpV73Ctba1r+jHHrMz/5C1mdLA6zY5nVfj2WiXG20Buuu5EP/ygI1MtELIQ5G1nJZm7R6BvPvpEPL70MtlFkT7XlCwXCGrb+cETdrW0lRVnBVF45RUYIqSwsLG6vJaUhxvMFpAVy53dwkSaOHyhuObIALZ5Z414e4n3KDUxuOmPMwe415/9D0WnJ8S0llQffiSNL5Z5NdVY3xHGLxAHwQ+52zjFGDl0ozolmxOdGi4W5dNMJ8Nk7XHrQKnt7eDmE89n0zsaoPOwf8cFNEPmL5J6fNKZT14vYeafq3dOLLsW7n9xgU8Rd2mMSe8quEF2ShIR6gADRwJnAR7qKt7R76DrAm7NeTc/aDhbPD5WAQz0VBmjTVZ/40sP2KY3lZ04HdFCRbMNOnk2oDvNspJszAavNbBeNULccHFC7PVytgNqHsPyMq+xYpDO8OavXnLVZn41KDy6E05pim/QMlZssO4DhSpEmscmSrDkb0tbs1tYCjCYs+ozgI2cDQOYF7/yyBjCqYDwbD0FkxKW5HoGGYHKdX+hy/ljcZAPAz5zpE4OK5BpWz3adx468Y0CpnV8vOn0k09o7Z0mCa7BgmoYBdLrqnCq62XS6wBfmZQohiGYKD8ETSeChjiqA5rkPJhMQqIjmLVlJJHRPrFKhY+12XO6HVm4bA6zR97ZOBl1bqMlJW0RIH6aQQewSYRxghAtuWnLxvA8qxkaXYoNDgBXCE6tqc9+z5eLhVnLFBWlZj0xyTYd5fTGmPQUYGEk4Jt2OrcDNiK+xm0EclFziqZ4iwNkUXiOGEeQOH/r81GnxtqN5+n+wSIkKwBdpIswZzNrMGFEOZuzo8cEPuKIZ+fbauql+A9Dq6oVAX0fP4tRxWHMxjzxxhayQRp7pPMxzcc48F5n6YnR60mSg2Ao4ytYLiX9JL78/2MY0rJOkZAs2J0Mx2njkkzc861+bZ0Nlng2gZ0icvdnvwTflPgOUaQF3VrFfEShg/7GscazwIsNG94/ko0ITk4wnMdGrXvuku75I83iTHBVM9gVtJjGGjalhTsTlhZkeBkBa1NMMEyn9/Ptp+tfQjAIIwAbkK3lFkr6urmNX/sq/Bd8iPcRPXtA+U+3CHhif23rDqKjjPvYgDGPLeKBDdMVppPJxhW0wJupxha3A0eZ3mhXE+Ygo6knBEOAww7DL3fe9zc1WrHjUqeBSfzvmFC3sIomAHDG2v/fd3c+X6J/+9Vv7P1+9X+1fv/8c8efg/2Wj1cV/foV/lgsbDIj7yxxRxkvZXKnkyjhvpcx267XMy5Wq2KPbTUeC74a/KpHaGXBx7Uq0gD6bBsrp2K9IjKg4KAaua4cmsJbreWWcZHOzkqkY0JUR7Xv04k3nRu8XTxsa73ZLQM1EpmJAV8aIZplzs8ERe7291uX72kI3bEi/NWXftfBWRQKwcE+DrT5duKSM97mrH7Tmlp+/VMnaRnTCFQMJLhFvK9oEEP+2YtMjn/cx6K1k7l5X9XXM1ETX626npUrcqYjCHRzwvbyMdQaAvOEWjUB6pi1UczS0V+ORmB6e7SsHgOEg2lDsZDXAyzUHvDTd/PZo1tACHCiXWmv4iQcw4EoPGPBAHd+xCrYqRvLlIwQbeptDla2JTPHEUHrCdtFJx0uRmk1WRvRBmbOuu2tnjeCKqauk8R3NA2rdGkJKcq8A2w7Ug9xpdddfK9KmtMunDlWkhDXLODeTJDemmDfrJOrOvlSi7Y1otilLAdpj82igPm+pmsch8N12nEvQXJy8EAIMDzhQ8Xg0WUlYzq7aYV2JKg9be3UqD1hBERjx/hk+XJJkLGzGImrhtWca1NeqbZPdd4PJfStuVnuOQAjGXU42FkNnlkrEl/3BMq6cCQkk42xBGKORuuWN3rpVGCxPyryXRh6wsLHBsOImEFlkRNPZNfZqO6tEJoIijS6tFmC8hOzB5FHRJaLMpLw8wsot9W6fD2MUDedCcdLCEBRtQZ6qLueomzMYRbKVPcDb/uIOcqplcyEe0FqmOJKOYXo+xBbtAVQbu+RKzgRFRgjl0fsNmVJHqAoI3eI0DmarBji1H4onwU2SKmYPafgE2kmKgOG8dPahY9Ik17VwFJRBh+KeB1s8J2Zzi6eGGaOU7GWweSnTNEZIdb64S5wJSj5d5YB2u4qRPF9HJIO0ih62WggJCKk77+qTu5ZTSl+ci/nmxknybCIjHAgoAF2d6dKm2BK0lCrPjVkitFaFD8jhRH8RXcKckSGc9tPwZV9Fg49HfVNc4D1JRwugmQQFVaXseIpso3VZH6ypJRpVgLzbbpGm4kUR8CV53R5iXSAsEcFWnobCYi1t72A/MT78kIDeemu9BlMY/iyYrkBumNe1nPtvZ5x9ijQB5dGRVKWomgGTXMVZcgKJu4aLK0f9tp10xdd02E97oZFuSufyBl2MtSOHLcUJugWeeRSAWG6arnWRjmZzqZRcBU17TBOipEZnDkw5eRJ23LRkJJXeTENUC4ql+8V6WUQ8urHw9bBmpnmh1FwGktyNmqt76QMkFseuc+wGhY+D7mERXVooLSKSkE2jeJ6tchE/f3dAIt1c20i3LEeSoTc3rlemhIHYFAA/qgxFx1dwJQe760RbWLK/FmjCas6jW2nimoJTcpGCyjtXtZVwUQz7KOSUGFOm5xJrUFVaxOj+uDyHutbbVq0Sp07tLLJLuxerDWNR5PtlGQZUpO16rXtjDgfN2oS6ysXeODcr1/2Y1KqKvuDxDqZ9i15GeCvS6fT+DjQPQUsRXQ/I/stjtFgEQZb5noPpMk01p/WtW6qRvhTMBj99xV/QvakAnQ2jibJpMYqpmUlsyWa8OImsgaHMOD6uJ+GlDAA/QrHjnU9pZGecXAG61FAvdxnw8EFLur7ril6ktGuyOE9NIOtEE7MEbVysibdTSsh4vGjSNBDdhad7gTXLC7LaBShl8ETWcxsFz88nflsg+82sDohJfD3JCkt/vFPeUslGtX8BuJ8gu/9TLLrUOrFF43nAKk4VMKb8Va1tAN5mzBmDUsYDUBmxDSbKFlEOioZksUenffocSzGQyYcxL4c0o99/OUVz+j87WRDA9pHHz8izkpHVSjcGSWjXAdFijaxX51DQsQ0DAPNIVvxT8lpgwkltjQHFydfT6saySl5vdR4ICveKWSpx2ZFEsl60MViYJ98HUda+QEXxohmIMOfDRpGVVpo6RK3mXqnN7hBN0yRS05SdRxvn3Yflq8i+xXXfZ5b5S2bMxtNE0PSwFpvaESfeEg+JOlFsVyQ/NK80xMS5FwL04AGm4sDTKhonjgPquoDNXY9Ier+8+mAXJ5DybFMUMRtEE0kiakwrzgJrC2QPFMp3F2NY6Pe7Dzc3skI4HeM7P0x71M2tbpaGkNlMdG5pA1FxCqeGeicrIfvQUhfzddduwO4Da2KAfAJYuMQx60QTTlxDkNF1AjpIeR+05sJZnuublLyHybU150BYgBdeiRvDuJV1jRuTzdXVw8Mc9y5mEVV975ULn8B4BDoeXcaGIQsq98kXKQksFumueh2PnPlfF7Uykr2qZKuC1A02/dripsdG3H5X4bVwb2USzYxyYAFO+1eSwf/NaSFJGXDOwMC7sQEIpUccxMwZz4YB7GgzhyyZJGq/yOKB/hBB4UDx2qixldgiumtKLJzb4LGPUdVzPGq5Zi3fJ4XEGVSlHC2xlMI4K4hdLqygDtKVD5+6IkXfvLnZgNamhuW57WkE7ANz+QRcpkQHT9XVtmaFqqPx3H3oX0G4dfDdD15OYZtJ4QjV7FEuGYaqh5WMaeeEEXCqXOZaeGZVJUUbAhglCQz4QOptV+4vrB+P1qFhzM4r4yQIYkODCoy+szqcg7eins11ulOW4SZJbkPbWp8CxHknejurwRezYd0aHHNXewUyl6NMQgCY2MsDU4Sya4E6zArDFTw0+1kjxApjb/Spsd1e7fF8R5GfPGN/v3iMDllqwDVF8HugF8nzsIuOJPKNJGgv2zcDeY3/rrSNNchLr2kr+Y/5k1bbLQx1J9BE8lCe66r5mjoIq5ShVJCsc8NgedK2hcZamWKX81gUoVzrIQUm+5SlU1NIJdqoIHPRfX2w/m7xEMcRrBVP9Wj9zpSlslJqLWFKQGta2gPhYemXQmcEAJSbbRsrKyWnyt+lo1Mz8uFsbNc1o7cuVdbA5d85LONFf3fMAtiuI7se2wHApu8o4Dh94mmMj3zJjhUOcEzwt1ait1z7qGi9fuclv9vt1qtVkOu0pGWAKTsn2Xcee2Uv+0tEZ4LGuJNzaMMGw0EDH0A+vsB46AMgNGbx2nGsNDJJxjTNeAzCHHRyf05vMbm/Jw08Rs0elOoWBQEf/9sU33/nd/83ysBd63+XS5+yOXAfPjjTg/f/PZM7U/dMyQNhDAoggP/e1j71ng0JpKOalhwBm3ex6IGykKry0nSuNV3mplHxQRp+HOgqOJcRvWpbsa42cqmmsZejIs2HkCoCTLRZII/0pdCGxP6VHuHnu8TZiaSgbF2emU7PuMQ6kCr05mCvgy1/mDDaH+CK8gf7DYesffhSkQ51XXxX/Q06twPDV0LyH2EnOWsM9j/aPqB8jzrHYBMT90EDxtXM0IUZxpWgOVdQ2EwtNOi/gnkGsAh6xpVg30CJ7e0gYBqwNNwNqaLvqnUAf9q1Oc1A2gySWUyUZNN5Ua/lsAe2wyL2GOkNKLyxtOl4u35Af8ShunjiD6ysTb0k8A9YBrtqEjyF/XaK94pMn+GJnSbboRQ7RQB+1STEAh5eJAkRgt8sRhMujhO8r5nVgPLTcq+rHiMOiEFGhzNf3hTwH9cNicRgxJt1aRcJM4ZFIxNPK2wHxjq51hxudO6gDdfmXq45M7+5ms4kpAwgB6TYwSusB6KcmecOpzHpdZeqUkbS0CYq2i7g/3fkamZEz7Gthi9Yn/nSK9ZE0fc3Imcd4SXGII6IECxEHDAH9NAps9eKOuJKO5FY41XL1DD3ikCACNANIxscFAq1ukh6Yo5mRiCAWSbe2rNZND0EnABhbfwEKFPnTjDi59oJMDjLJ8A5hrVmHPc5HikwmC8CAWBG1JwAAebROsFYuh3iuI93cZzF93AndfWj4pQpp6NWIJ+KFoE/v8eIQLhoioijvHgpIoFccE1EXOozXsikrCOKUVlctUp1TXgJ0eDlLQpHvfL5CqpUGc7jSxaihKHFy8ZwMQXlO72UlgbVHudrTqYiTcBjhd2LyQXw5XffGoGFw1m33eqcZCmop8XhuXhgelkwxwSC7HilbJXWCaVSZqUsVyF9ZXhxwRSevyvlYEqW5hm7eZpL+alMbYhK5Mo8YUE2vUuGbxRG5ozcvaW+h7+7sFGvidSJdBnrQzn4ytBV/G7oUbwmeJ7VwdPYCk4rD1nFbwSlrQdI8SUBajVwNYoCjWX/tCW/fLzKb4kLfmq80o+BV9BW8bO0eZbROPg8qmrkUtWkr6lsX92Q+haN+Qa/O17ymsqa3MicRRkzn/ThRWmjl8WjK9FjhjCVIFWDn2m83sDczjllpDaVcqeRHCopelpi0EmoBvtSLHeD6YrhZ2nxpZfjSlos8xyDosONaEJRFCGftc5QkU5Ii8CpCcdNG4bjEEL/96UEBtxLpvmR8SQvDl62WAdJw1LwHu503JH2fMSrIw3v6oDHuzisMhGfDwFPB4+zx0hOexzeyW6VcZhVxvo74LOOUExIliG2h5tDFP3qnXdhc/t8enY7n5773B8/PJpuP9yaHoVb4Sm/2MpmdiVBVg8fHkx3H+5MswnVfxIehDvh/5itBP59daF+Q1bOVZnzcG+6+XBjuhduhKd0sZFNLFdtmifbeIk/M322X1oJPwlO1wXwU0aNn88wwwLSlw39xYVLiN/D7759g6paHz973S8MRpFPRMHwj8FZee1jdUtZaz8uJJzSsBgbE7N7ocAeM3zWHiDKvkNhH9c/t0+qr+0bcRMAAA==) format('woff2'); + unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF; +} + +/* open-sans-latin-700-normal*/ +@font-face { + font-family: 'Open Sans'; + font-style: normal; + font-display: swap; + font-weight: 700; + src: url(data:font/woff2;charset=utf-8;base64,d09GMgABAAAAAEAYABIAAAAAe6gAAD+wAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmIbIByEUAZgP1NUQVRaAIIMCIF8CZ8UERAKgbJMgZg5C4QeAAE2AiQDiDgEIAWEYAcgDIUfG0FrNWxbhsSD7kCcVHkmZ0URbBwYcJ9X9P9/TZBjjBj5N0itt+s4LCQEFUjL7Xk7yAgWJms8inzndzJ3R4+oVfKsKhI2TlBSUBQlA32faJ0ttBCLWGK1kre14k900iPvnz3iifgCsiwmfdUt1h5TJ+DClscQSHmz1VWpv1FPnLDufMZpIxWf005KuHqCNzlCY5/k+vD8Nv/c+wJERMawUbESY5Xo31jKGHPxWaErqxHtRSXLZpmsy0Wl6Divcx+lpCCuBw/lfv+e3WxyPxRofIUDlIhGIAtjqqsqVC2rB1m0WcmSLZsHKLw7WYLZB4Ku0lPK1OUVzfuVzd7dI9Q5UtUYeqrNI/0YWIAGiXv2DLPC+pGJQ2xnyRvjXmj60b/ML3RWZQQFtB3eNnaF5nqGklSgmBzhqbeAuT1ZA7BNI+ecs1AJRREUxQIrACWUCgVBQloxsTAw0V7Zy2/WKlnXt2/f2n27i0oV5rTuwogLRWQJKGkHePxN9/reu7M5klOg0EXuXQHoJIf4/0gNMLtAVxy7jO4WdV0yjFazVpFqAlbsNMIy3ovfN6nTZILEkgwYRCVW2n8V9bhsXfYHGtdeDMP2k+1l6j1ufs0gkREIu140W59ULZbwxQSYhrztktvuVC35LZMzc/H/TNXaWYArruIjHCldIhyhi5KK6mLgxVw0966a+TOL2ZnBEoslJQMLQCKhxKCwIEWbAGUfl7iwkJxydSGkEiAclBwoOqbO1cVYuboydyn311RXtj5Xfq7u3fu9WUVEm55JaccaQUVnj/v97/1Y2u8Aie2+tTXXc60hZIRRUAiSe03yj/N+bP5DZT+TlTIxBwgcR7gfO4KAQoJCdM+biRCoNYJE/V+xDBmxMmWxGpNi082Nzbc7tteJ3Cu8mxPvN41sZwBIV4cS4MpEUPBBEm911UMI9n8bBM7VRw+wGzeofGLKy4DOF3lD0jtfDjHmTXo7uCALgSTIsSThql4JBYHi5z30fzGkEl1gM9mNFqS+z85E5PO8wSmIezti2GC0epudkgH1+8LMPGg+fnjo/lUovSa4lmKAghJvoogyUdHeHOEEhQEqHMZiGw65C0S8bQ2MVqF3SwnRIxQywS4VVZI6yFGYMk+FVIOySBLMOYGSlcDsYxjIaqr1o5SYw4UnulfL8ziZP7EsnuYjeIh+0R+jVOpMga8juCXXw2MOoB/xAT8Betf+Fl4FYYi4F8/xL6ohhfKE2C9C21nVpBziIIZ8orW/UG/BoJOu3kE8yStQ8TrEunoDgRNEOTDLTsv9OICLr/OA+dyi/O5xOV3RVQUhhCNooTcBHR8ndSRLwf5POGmzFoT1OQHIEpa10nQrQIkFmcUYADZ7i0SLnxYMJwQofjG8gBT5K1cZonBbeMj4RLmTeEql2suD8HQ/CKof6g3AEeXEipSKDa9q0fG95wlwQgU7ieiZ+/Nk3sl7J1O5q9xXnlB6Kn2U/spgZbyyhTJRWaDcYP39Zf4u9dO+OdVAN6a09Mnpjj6udFcqXlycsvm/cIj9m/2J/cp++nnbsK1/7/+9Ix48eHjr4c2Hu9rR9ra0MUuLmtnwoNcVZ3vwM6XJUy9AUFTxco6cletqpdKRg/21fFsO1LvOel245JVvAKyxzuwttkqNWA/luZaYYq0y29PINN586SZboNQKk6KFkQdh0cvfY5SS0LxEqRtZbJ3t2uWjTDXPEnNurS1z+VU2EBVL1ZBBKaY3xNI421LLrbdZrYnmRgu5qowxJU5eqdxoE8yq7n+T9yhRYawZoWFSxb7TZppv9TjaSrsI8tksFzc10+0oY6Mjw50d5va21pbmJlNjQ32dsbamuqrSUFFeVlpSrC8q1Gk1apVSUSCXSSX5YhEAkHmZz6aT8XDw9ltvvtHvdTvt1qsvlE6Ob6Yx8BOur09uVZKtouDknN4Sj4adwLkpaHcEPRTbH0mzYaz1hi00uGyuNuUrHdthebNIplzYJlr1x9wfZkJNHQaihCY1rk7fVpmVLCjJc6hzcWoWredCawgAamTQlAnQoWY8ApP6em0i/rR3K/mlB+3OM0YdW5a1tSK6IK6ehHo2L2yWUhuUUBGBkbemzLlAqMgEYnjjO+b1QBLLHcYFPOIvq9cqQIwRwZa8GIhWZzjMph4bCTsjRsVpNHlf5EcU6KvLtlqJBOoY40+dUadfC5kUETSafy3Kr4SUhJqPlyNWkYi2ixAI+BIR8aRL2jxSLj5rCt0brVJ8CxXrxwqEz6iLbgwCbZSKWooo0tBoG+/RaI1tc9tS/aomjERjboAQtryzwo0QmX09PrH0kT7WZ1RCZRG3iV99w/8I8BC2i7EEZZRGR5OOMf3naVMQ2SOkloIMpcmPBQRTDVl9V9bzUPcAJvfK5LcQnLBsQwyyVnyZaqUZqc3xuMacBUkRYSl4w18RE4Ql6LFgB4Kx/uH4xiwkV0MSXhv28cwZXR6riqJ6X5Nhlmp0hO0YRw5UcDrmYKRluXQXK8Bkd8mt0DPA4PIhulJ2OSNvjZrJ+zCVWlqXFDJnDpy7X28mI3KZPkzaRCQ7zPx4XUMQ1xSHPUraRmzkFIDngn5vN7lJ5ac6xgsi6IFszcbnEGPQnIPHNRM5qK315bRaoWaENteoVvrDqN92g2shbwySmhpShvdUvszn4xrWsNVd7x7XNLyG1UQn0zYRDEbTU3OCxb3Wck4r6CG4JECB390s0/FPMtFwnDdnLHv/Yx2hZW54xBvtWQa8v1GtpA+UhPYvTqaQdMrn5HLz3LEQYAy82AIn57Sfu9wysTEFmMu99mgZxSFt4ubKACsrp51YMhJLKz9mXOi4bLydez0xricwaXytRi9qOhJPlovRbEq0T8vWKh7A5S0qXEWG38Zi1mDeu31mypGOkoqI7/KaNtbaqC2sNy8dy89O0k49Imi9iSQLYz24Gu7RhMOelLyji2DRmYRz6mgsigXJ/viQdlDwDxFU1OlYkzTLo00+uuC8mxoMxxtkMuhcroVZF3pOoQE4RenMrtkWIFM+rBAZaHtvPUBBAGVqYpNhjyJa3RUES8FW3Q94r1p2nK8hhruzBIAu6UtpcIBs0DTZ+goJEErwXKkgMK6dFB3FttkMBAdLXukpI57p2xsYKCVHZzmTx7KlErXoUDu5KcALsguOvwdsT8NBUn263ElhwcWBQynh0Lfk9lZC0hMToEvQsY9yOLKsFSVH529Xofcl7MrE+9K+KMBupxvmkHat0V5PoCKzeS67TW0jgWYM6HlX2iLpbtTRbFXZy2iIPOQ6iw7wmLlbOv1JUkIVrGY6iKVWegAc2rJJEbHs8MXjcp2za+EQZgAL7+mc33ymyA9rJXMDE4zQv3J7ghZUtNINzBjudu/KAmr4ayRQ3TkE9iu/UM6UoY7Nqc6SPFdescgPKw427AZqikz+CEoTdmgCTadWrewDBM8RLRf8VMNsw7mW6QG2h0bUaMecUHA6dm6pH5Wa6qEDyU5BaYuTDrCqLJxL2Is7Ke1PlEDKgPacqeJfCYgb375G3uhI6GR4zhv5SudnZowffWEVqMsHAnhq7tdAGtIrYWnlpm8aU5T9sj1vMlhJbelUqQ9owCu5BckeR5HSrUsrBUnSk5GNbPgAsvujVueDcXtDrgpepUcoGp0HdXSf2tVQvgf+mdrpWPQYCoC0q8a3eXHgAqC5UF3p5c/Al3fgMEySqsbab7nQ0bdyD9BrdyIzsQO9ZeRpRZSs6m/TJnvNQbYyXHDjFbl92oybSQEKeIJX87jZGqwTCuFJtt5EuMsWMYFkn4K0PkR9Lh558DrN0TQLg0Bvc4dsx4mI+5vIXtm+h6+oBCbvqtNSJ+GUjj7vwMkkEQvRWjUB/kM1cgOgk+TyYtGje7I4cH3vhxq3pGaXRwfVOTUX2T7/YntNdxj2EwRJ/gKxSXoGMO4WLPnd/5hzNlxKJmKdDdjBtWW4uCd9VE621RWa1KenL2MT+Q4UlfsfmTT0urJvwvzu2GBg46uXXKIrv1tc8f7z4GNFQU9z8CSN3eHA5sQImclCvVxOzYgo8+9sHWOVye2PsuNLGmfCJUrvJ63Mesa8zPAJgUsRq+944HCRv1LgFQ1+sv1WNlEhSlc1nKxTIT+CT/I16xQfwliErbhIRm59xvDB5KvOyDSPwdUFmXVC4oT4Cutc/71xXFL7amBcwDR/aVWBs4FB/srKZQwh3pG+JoBjtD7r1YhNxhdTfTP5gKMI0V1ISs6UjvKjinreg8KfQDMcKfL1WWyHbX+HtijTo3c4POUpMDkX+z7oa6+xvOufAuKREMkculz7tZctV2UlPk/mdACijiTQGCyKzKAv/4QwVDhBYLdzxhojEmSoIkMNHdk9NhTfDDYwQ++V6LvJFZ3lGHC4awJhWgKzGTytcV2AGmCqg6raGL5hRDx7x7Q17Iq4Qvl7s9uxHGQ6EawNsWF7EazV5uBeQIUhmJ82Rl9ngtwMXzADKaihElSkaW0NgyLFoANdgV4NXjOWu7fDrLcXCMy48oEEeS1EURoF6aFW1vVFeH5hbje9MFLoALfzn3qpQtwlMp4TpR36urQUO8vh1dd2zxA9vENapdO1T70fXjMnsGCF27a0IXfaPgy9PnCN17gewcvLy9wBP4ysp3oR5w4a6hqZ4HSf1qrTROegEmAT7iXszDDlJGLx5zv9VQY5RFl0yFfmK5IjIBQRZgDO4UfjIWFzoxIryU1XRam6Pov0VCtmB0GsU63lUFVjoirEjQRmaC7kVS1WkJwKiqFmywrOeU+w45jRLk6FuhMS11UKZaiSIcNexDJygCyLgQFcu/TKhcoBvr/bhbR8HtoBjQoyAqqiatzzeRIoyWZVqTGZter7mf5vpJKkvwPH2k39y4rBj29NeqvqxvMbLmh/fPND+53xbY+oynwlNLXe/I3xgulCxSe8y1KeyDcQ8uVkoR8P8rRYyhYHpiAOuYLq8vLNa2sHpovPwAoMIQvVmFLMGsMa9CZtRel1vaET0LoldNyai0HaQ5W++5Eep+t8WUrWL2YEsOD+pzpgDu9KMThbqeDT+mlDeMEUFX2ERqlwy1O9mUMgR9wATVssIRgvbfQ6slc8xgk4b1Kczkc0yD/SKUc7zpfAhwbXYX7PEerbotgYN4JQ4vUUKgvcyyjN1tIIT41C23RNoLE423nrdF1BJAq84rOMDNAsX4ofOLWO0esmaOcu32zA/VcnvB2Ork6NSd1cPJrVaJCTaxih5ElF/hFWUDLMwtBfXgfBxGf4/XYIsEJAVCi9QvpamG71d+QPp3zdPKpgp/VL3psBXr2ib/1TX/gagBLLXtz8aGQaBLmYVmeDJ+cM7+OOPS+Kd0IUZxbC3sA+iF/jOYfbti6osZADSNJTrCU0xk+cmI7D1+nxobVGm3rmCIEzeteGKtV1Fnr69r/AyMmveZkrJn7giakX+sqmVX8kqe4Lh4HsrcaKDQu34rK3NG9dN5YZOqETldIT5Eguq2au+K0NvZ9KkwqatBFrunrUVzdBP+pFmaQ4kVaZAqXknuNorLhIjrTh7vOOV2VtFD0ZS0yj6zZlqz2rmIGFOmFQFPRXY51OFQ6ZrH6ddMW9TEG24DN4309pa8YeGratlFqrR8g9T+3nuyw796isHc6H4dpn6tATQIFCQ0LoOeRrKFsbsr2lm9u6YdxfeuLfC5dlxKXuWudDMQWq2CqpEzZCrWTeuKKtjapHIvMb5DlAn4oQmYif21lK6WvYnIllZr12Jf7fb44yp4Gbz9EyM2k0HtVIMdkp1Dmyqg0RyjZxLglucrhZssJv2245Qw4/KoqrFaUOK1idDgmNqUfoQ3ASg4ImwINnsU7Xk4G0pE2YqfuQivjDEQRdHU1effoxBQFGLArxRmec/GPk5RLS/nUV6Q1mF6/4EHGTtAD5KGC2np2/o9QeU77nAsv8cOtItwgs6RH0GVS62mmoLgR+y6O9xvNbWreuK5uyFjti+gCpJ4Wyb0nxxS4n/eKEfZCPH036FLwmI8STCaRBR5Uil54gomKT6K0U1hZvPCroDtVHwvqs8E0C4Uyrs6BG1q9T8ge9z3SjgHAQQYjJ+J05Aa+Ij46trXahDH42r6xPSD8mg4J4DaFjeAVfPViQDF/2MfsOE/g5LZrX8nK/JytJZL47N/rPxDz8WKdtXmfJDj01kFRoeTP6RXZTBjbRrWn5/ufUN++Zwkqp+MK6j5mL7m0gJeeCETacD3uXruQkEumazVj4HheINohKkjfnLeAZ7uNPet2gl+EpHQvRCgQkKuDfB2Xvs//c8/34nyKocrwhuDT41imuxMwGjl48wHWQnBROA4MIM6CQKROkBj7JVx46l8hvVUdBm+AAsXckL82Sz9wBJ2btVja46cdDWZXw3rI3heUQVbCtGwwEb1IEAVl+S41b5HxUG2rfn4sZmUPXbvcfH3Tx7V9otAGDHEqurnfo+z4QYKeydtDzSkk9/oqQPDM6Cin1HOjXZNSWXRLBH2zkQM3sAYCRp5TGVKAUtbSH1o5G0C0y3ml+PVlZjdeWPyebR26PHLd1Iidu79OAHDdU1pzUbmnfGy6Ry+ZBeYITptjx4SqMUKd7fgsw+09P2tok3J0rqBgHqJVxdSbTM1bBnKCN7y8FWAM/tpzwK5V5sIm+vT6XHqGDTwFPf0VGfKb283lQMVxsrB9RDGGQZnzXzjkPWmTun8l2/ygQp8um6fLpzsxz2glW0vW1bHXh88PVuNw6rZpbFQpus2dKcs0gNyY9jHQuq7jyu1N3KgcF3G/3/OtUkqo5XOo8+0pGq16WKIflaR/xPEFch91MPUZyscsInPBtcq0+2Th8RRkQzj1kP9z3QMjHRI2Hzd9MOzBujtNsmgBZWZSTtClfuPHJIuyw2bBg+1OgsRwEdLQV+A63n7BCj6TuvSTPfS/ai68AiibhPG8uCqVrdDWipCX29P8xPEhhhPiVXg7lmHqOY6k3Yc/YqbUH8+Z8zvUbc9z8qVRu+icGhK1TGGFFlTDu8CSbAjGyUzpYnX/7rzp6GAk09KxnsKNnhuJceaE9DZMbjHhhfhkNu5G3+sz56bMxQyRcUxJpbJ3T25F+hkfS2vdV1f5UJFNP11OD5DuV6xBGHtHekgckRqhm3K8y+De6XW1qpA/DTPN0/LTOrTdUdYe1DwgsPpM4NpOWG19cMpQRA7PnzaPkNUbKVhriOXKT7LuSuhARk4MenNr4bOaHl1Ml0A1CcRGwiXKerYKRwtqXxw0QQM5lTQxp3OMNO+pXkUNNppKQH8yQYdIN8b1K+n2enWfPLxyEi2Zojh4hooFPGAJ5mt9oIiD3s8X1ThobiOOXtuh+oU78BTvKktPCtmU8taFI2T0DbmmqKsZMmnh+tAHpXSXTgc5iNKJMxWc738RclXWVxPJ/Lb5SjSTifgZ7PgtynAouT51mlH0pcPFUxPxWAz6FITky2h0qNtXfvBrg9wvmQ+V0LxEyxxPadquRrj6sB2YASVGnEc91xcKBGlADUt1g6948IOdy/B+9U5bvKnNqzl1PT66CfKJO37QpHoXTmU/W9+ST2KqHH5n4y3mARyESNTWbzAmSPDWTnO33Bp60IOef9Org+9V1SzfQIp/YXAyjDd2hDx2jDt3IHnp9ESD5fl72ow3PuM5T9OEbCW8vP35yIvI7PMm+2tZucymSj3Dihb7IKHSIX5F2oJKzQKnWDx4VmpzHxg0ZbM9EysLyn7EDJxBZ9iElyNPSxoHaoZtnZzwv7CfOxbeIgsycOt4leGFeesvPb4MZCTSf37jtza1b0x8sa7d8uHV74s2uS+iIepMpohGNjmxoMkXWp209gNlleUvuLAbbdvMp3vzhgIXsOl+9O7uwX90/dbiBDPYKJSSPAejp/hXVdqK8cLixomxtR8oolD/1StO4r0GLHawp40bR04tAhSla/fARjnWMQNzvRwwTtCkKMsqhL11jLDHiGDImRvIXP1IkSUvjxKK8eAc4s2OmselmmLr++4RDi/75sLhtoilQ1Ph1aI0Zgk12VsRMvia2QzQ1Xw2NjYGtO3blGlxKIzy/6fuw+nYYNt0Z5eCFLK3UBPzo6XMXeb92WWJX/IvqO0g2MPhbhiY0AaMU2LaZtpaZFvdr1zHjuv/dY3dy4mTGZCDljicLsS1gwxySOHX6O/C3sGBynCucY4kWGMAC4P9zziXUzGyLB9QePa7q2zq7vYj14lUB696O/Vvuby9mnXs1Db+bW8qgC0oQd9dOI+4JyuiM3DL4PTdGHCPIWs3ovTZmpJ+Z7hjce736t4v2982sipLyjtHUxqxcWQ6bv4qeQ54+9ahPui+5bdFFTen2cqP0tOV4c/X+ra6NbvjKUhV3YEG+AOCwxcWyYVFzw1lbw3njpWBRiGO+6kK0cKq9QpuWxh1FdZe+Ku/sw2AESQxpbhmpAiaKDl5wlZ/2mP3XfcddvmT3qK1RkVFlN5CeW/1Gtt79GkCljJSlSJyQobS9cwd9gxVTHZdUNScXr2x9aGM8YjgXTA2ZSw25Gi8RN0bj1KyiheVDSXWAnjp8/FOggzPI35s5L4isN8E//397cu2faQuqwiH3R0mec4TllIH1t0On01Y91RjOad6vV10YXGl8cLd2rOwobfEK9lvnp/+X17cXFdQpCerUBDE6BqxIYHPQ0Acw3vbLdsBjsMGPnoGTZ01X6U3LqwWEtqoCCpyO7NULFsvrWrY/ko9OPMqv2VynpAw0FdIQOGShJt2cW9m67BrDoT2RWaYuNZQXsBNxXHkGZNNPCTlO6BoUSlPQyZhoCivhy/WkODQ1jqykgwjjJBP8i/1oamWDQ85Pk9A5cnfiBfsO8T/dac0ljXv0yosDq2rv3zOOHtCSpe+kT/PeQqG8XklUpSZOP4Z6BusxkZpxjgy39Du76NuoCR6Zi86nu1sWcuO3H9e32uDrYd8Wcmv21t5vnpmdccnds2BVvK2Sjr9KFg/PhxQCQsuVENAzFCKMEI6XZubkrI3LQelvKxKeEXqvP/97JS+2rlDLTNr/ozAsFcl38UG2j77iP2n4HtFgj0BKrSBr3ZZ00uW7T97e3lP1762aQfnfsAHPca85DvznfpFpIuiYeEPP27cVY6s/qaZ2877N3N32B7Xtq7FqlBZyVI58FzPmt2bHIc6rfXXpj14TzGdneFuPEnHW0hxxAVPDHXKoFd9JHYTJDTxMe2iCTgTQiRgBxAP1AaoD1tIR3MUBhQElo6OwWmiRWssFzzVbT8NR4xe5sWYFn+zinCWp0pB6DOaWg2+VU0GeCsPOTg2Py6vLMo+nNJ7rKy4SxUexyyIUUAzvrLCLIG6J2m1YRru9uqJZuD1EC7eTheyHVd2H7etlzU4JPTed/bMxVXw7XhGl+NEjeDLJLZfz7Mv+zqqpnyvBWc8+Zq/Zm45/bxlwaY+ia3KP+cGdd1JKaTTt/Fve/s3vDyYv4DP0/qutw28X09t/H92iY+IIn/MQXyIX3Y7asIL56fkWJm/358pZtChE/UUduCFC0nmqXn93ZCH9znRDZ0aeS3UsAJgjs2pcnFkTb8VZm6RlpsUB91QIz07svyk1z+Ur/a5xCY3nI9HlRVZcv8p+++yvfHxJ68IHQoWmNd9Zs9WK5yn8571vBb9Ge+rv3cK2kgR429U7+DpNCPZ2WQsQK1cBJiQO3h8HTOU30W8n0W6HYI37HJ9BI0S8yGp8yAnOHFsC18v1UOIW9A0aE7KT7GidyZlZM8nY4eMjqfhvHddr/Wn7wu07GKerzQWsfzDIitv75jVm7yA7Y+vDMdqd8erWdmhAuTP2eIPjydqJauUg3JC7LGDb99cHJW1u7bzF+MvsZO8+jv6atE2d2xRBlNP1NVrTP6vGaa6rTtQlSLv655IFzg4dHDQwGGE5bSMtPzqopA7Va8gBmxoE4uhJdDcPWmb8kvQql7arldoFuX748uHWxsNvNRtpizzbgw8EaCLuZZfQxCGhxIiEbHpzJis4pIZQpCAsULbV7L1bMFpxMbYMrXibilwVzk1mw0MzwmNTSXV4Eao0dmUFfynkZfzOfhsW7W/If2TZPtL+3mXSOVhUyMdNjZt2DSxerDYRUxaXN7px4yxQgIUDtbc0d49Rq6C1AR0ikb/Zv1btzlV71p+0+BAt8pN/iKcQUOgmQaHc8r10nqLcE78G+fAt6Lk7fAxeCi+9mzKWOF8p03oK6+dx4xE8VOiR56mTv+nkvgsg/VvmjvuA+TIrY08kF0l7+O7EsZzkebHzGGeugkI+GKKFDH9uY1JslD+3k+VTjjuLuvJqvZXnadTx1/8AKzIfWtm/n17938rSP3T1ANzuBlwwZfek3roru/+nLol0BCssi/w/WD/gW31aXWNnCZw+jhOoI/A/Xmmu9pPXmUINSy/IZ58HeARPVM2+OX7m2bXkEacfKdSWoHzFcqpwuXH7t7W/nI5waIGIzWEvi6DDlBcEkXfifEqqbAeYisEsEjs5o6DDUBTk5+1ViHWob++CIozIjAeeISCHi2yO1jTX9+daAJi6Z1a2fO6gNh8f1mat9BuXbmySlGyamCidRKg8p57VGn+dPN9j89k0Xrk2/LXwBRlSD09n6SgxQ+WlCYt1JJp0AEOMsCdGjAa7WXvufw6HQF8FH2EZUYLsV85SaUOGGmPFy58nL5p3IZlSgwK+L1cP2gz5jSs2dqnKN01MVEwigq8alt2rNs6OD162a566pKVoGyof9ZKD3IloWWtTP/3X0ePtdq9qVt0UVpY7GTdYJUTrxGnA6HGjkzHWuHZgms1ZKFu5FWcULoZcpt8LY7vH4ZJpqSQn8OMXzz9bZqgaO42QB8S8GFw2j4jMRainK+oK1/8tHICyHQkO20cv2xxe6cON2vn9TF3GQ3mNtzeN4pp4aM+RFWMnSDfgp4qXI7mU2DArY0P6ykRBUAwOha0lz3mgzWHqRCqOksvjKlUiji7Cz9srjes8FO2WVECuCSQad/AUOxfdQvfX5hrFYh0PNVHjirbi5WA/L4kELRndRZCn5/DlOAJRhuPnyNLdiC9iS12zP3bCOYWm8wmq9egbavraTQq7kCIfJqJviqeft9ce7JzGAXYv2vHJiVzB/ofXa2X4E61acQtuwOXNTUe7iOWGQ8eO3biF6a9lG3OMqo2r0eh+VlBRdlwyX8ZD2nNjJM+QC9yBanJ9IK5+PTOCC0bzLXQkeqdhx61BhMZha36f6uAO5A9HUiG5NRCc3Yruo9xYMHiGaqo+QV00yLjRt6/N+sOotSvem8dbR7P2lUQNqagctpIaOVRSGrlElc0x6ifdoh8aDj5FQA4V2xytNbENSDbuqluNIzf0ONqK7/wzfKrrnV7U2nD3D+PwpuuRQzI6nySkhw8XT6gmETHv3l4Pc+D1mRdGGJbWH3wKT+EbeqS2qX5UEkVwAi2wsXLoTE7pC/CodmtF0LhiY0exjh7opoumEGg7g9uJIG+/h0qvlBK/3AyMnpmEljwJ3z/fqWCAKRGYfJRWUbj8Cmtl1ZQfD/azH/JSLFNIi0VBXqoS9RFaVIcQVydd9nb5Ge2BUEWEaIYTtCSClpkZhACHKjHyEElwL4/aAKq+i5F4vn5gv0iRo1yJy/trEXhJy7Qq98Xx10mPksC4rHQ/ClwieY5c4JZYRG4JJNVu4xXsSI9OvlGSr4XNCrweNCHB3mjw8aqPdoJ714Rcb8AqD10ACfyOAmgXfLm/uWROibcZvgLaYxC2Znk+lEQ3vz7us8CjneQEcZFK1a6cNt0+rFYfvXeje7u9E9rTDFpyxfwa5QWXgNuTNbC8m4rbirwiWEOy6LnphSkPImH8W7nivzn4AAe+PP/XhQKy3+CrMEP30u30oliq8+RnwpeAdqK4tDyAN2i9Yaf9kRfPMk592SQCXs3ccjAxq74gBZ9MLw/ivuGWw5IZuPSCrLqDiVtmcQzvZUkoSU1JuZtLuXNNlgSVtJwBwPlBql1n4NTddWIn3MfRARsxR5fNdymTDm+ge+NmaVepK0jHJTPKYV1ByXR8Cqq/mn5wDQWq84lMbiAFPkGY4hmpNd4ypLRioXdESj3R4wngnmemVnv7Ted/ZOL/yQM8QkhUVApJQ5WINAwSRcXwjOSfXymzXRxWL3xOhtQHpbO0FzG06P6BKu0JYQb9rq8MzLI7sO1Em8f+VsWrbUe0bw40NrpPeaFOni89FcUMFD8iQnpg2AwpTXq0ZqZmYXaElJCCuWjn+3VsUnKYlLF4+8z24yPVllNcxP5/4yGKnmbTkiUm01o1OCZOBpoxNQ8taG7uBqvjE0AFyxsaFi8yNUwpwHEJSt91DXWLij0uB8svxsVi+Hx0bFwOOob/wuzkYBSHj4l7oMDbxI7C5qbnx7d/7vnuEv/z/e/Lth89wwdrn6eGezenmmmB+wEXxwE/AaOO94RooLbcXWFRb4nkwdmHMqALYujs7PCowJ35aIqfBLFAwqhnKwm1lTfStZTBl5vPF69DEhH/ZBvD60AxZexMNOySICYXrgpdIKAa75aFogkqLCPg0cloYmxoMEGJzQ+IiM8CuVc1klnY5CQulpzJxScls/BLMoRYahIP8VDqDXONw3mNe5ScO1viMb68zO3vC+6Vfy13K7lwrtJ9YnzB+gOXe0k78PJF6yvjZP8erO3GtkH7UrqBMjDK2L5xZEXldGdUJShogZ3KSz1smsmbnsy/39Usmp3YcEfW2nZXNDkletDVJbw/PnkvDwycPL2kd6BxX6d/8bp6LCVbH5VSQGNxpMsjiu0KGPeoj22jSwPX4zvw0FXo3Z0F9nmcJCD4SgBdwMVB2akVp25Xe4u8RberK05888g9NVPDrz9syk/AMwew5Bm9w4wkGtTtPr2s3yyXl9x81bfvWG6TYFbNYrJw2Vk4odLxasRAz8t46xCuRhBO7eVyVuwEVgB1q3PylqmUXLZaqCtcJciRauKqHN1BfB6HTAEDjzMo5C/rJpiZnfGNaZiW/5cCox7wOtfeu32ewPwHjvgSGpqDZNSN4BJXk4vb1zTVpYXr5KXMLG2+zMNn+ErjeEMhiaUQQFyULjID2bilZx+tLRAHO4wPaUNnUwhxsaEEvLxslVibkhka7B4TxUV0KvvuDqeBQ+MDAefz2UUCDavwPNg+Zzi/9IIHpV0ieRI2NH+6I1WESEkriPzOB9rmUFkQ7mxPr4mHSkTaysCsd+wy8NpV+N1siXlKcgo3HZBobu8/UXbvXH6H2GP1N4PZtCWCPPfMmlPcef5+64MQ2UkiF/q8oxv7sjGRFDd4x9Hi14fA1jkM3efwvXn0VnpT+AuPSC/xpj2HVgwcOrRp8+4DK+UjPMHqOwYlTplFxiqVSmwBOQtX4Ja9JqjixO1qgAgQcXQqUFsNwj7dmdk2+yDYms8wfA6/mUcz/0t+flgffZ8y2jTWjH8R2zjdOLoj/fREmE2+clm0ChXf7MO95kbB5ooxntlr796eOSDo64vIDU3XCpCmeDa400SVSyK1DYaDHYrC0iwKMb4xTl7+l1iXnBEWbB0TfYjWjNI0jDcUEePXNU8ll1V+rK09GFiShcaGqOuGPSamZCJ0nHwi5jyVACOG42QE/sPtK8Y/JfYtOv/CvIzG8jTMHNPbeb1pLhVaqxGGF0OiFOQn6+zfMe1df0tM8Qy0rI7RhFLDKo+Ms0z57BePgHPXd//uTr35a/nQV7/f6dv+n333wSK/tFcBdSZslFC5dHQoOjo8cnDk2RUeNjSC7AgfGQvDp0oHLFgbQIAKO1YXCTuVClnwvgnNzVFtDCIGchtWaXJb5XJpEGGX0Hdo7MNrtcAz/uGm5aNRMWjp+W9fUvN9Eic5KsnG1pTlNpKm603my/SlY4hp3/fgo+2uP/7s26mUmSKwCnaRSdPVAGV43aIllfBYvNQBEKhOlERFZ4RK8jCV7Art2Hn6SMFiyOr3HweFFPpGsnLT0uA7mCnMCG6UnBOaE49LEHAzOKkJRDS2hS7PKglLFxC1aMOSRQe+ilcsfU/tWwToe8t5HLmh/3p17ez44JV74E7VXpRY434Tt4tWh7fnRRFTSDWi5WGVstVU+XJjTdHodfoq+0Mc7z8Bns4aCqXACs7mRt6Kqyxfj0vC43EbsVv1ZbY9jH4wi0RLxmIVMUkKMuyNuq7cybjJKiFSx0+LidLXLcQCJUFbSB3/9yrG1mkUeR03CY5rDrQ7fRy/esX76p4Ha9bUzd6s6ifqALQwmSGQLTbjUh/1K5Zt0QVTIoe99FxVemSDlBdlUpE49brx8SgQLyEjJzgwqrPOTZmZnXk7ujmHzOJxMpISuBk8Fpccv09YxOQbfObXhld2K3pfm+3H0Wtwld7EDOWYNlORRWHc6PcOQv1KbABp49kjRUnczKzsS9GsDvQcTnXqbYoIatRP/j2JtCf1j72QcB1016nihnWvUNXoQzqbg7UmVi2cn3bNNUaQ6H0SbSUEegzaqbS764VkijGceeAZIt5nQjVZVCsdsBl+9KH3nJcR6BJtvhDfPPdcamL/O201YneTc9z/gfv7uA8e9LFge/+3zq3M5DSFWAxj5DuD1YZUkyenN7PRKyK30rDqcXXj7Pjgc4e2WQvbyy0oGeolD7kX0dF0g0pjEOlnaLWrPnaMt923t8n63aj1ZWcYRNqHIkI3bMsno35y6g76t9w2iKS+3Ml41CqJ0cnTIlDqwAviUrkuFnxOahKQcow5+PNgvlwrKj3oM79DPrGodPGauFHaZSot4a+IwoHG4rIlTYV9oYqIcEVomCI8wtbVHn7DnhlVmU0Rw+NCGf60UIo/3L/9xNDcFQuGtaEMKA2ZDYVD20/6sXc8Fj92itmqI1Zp7jaGI9fcsxInMqYCs2c8WMHboOudSRKgyiKFl3GXPTMDaQO1AeorXROqLIi0e6PdfN026BNvtjzaeUkT+OYpj6d550DcS9jAR/7CQO1pSWczuQG9x1BO723BMdk8K2qvk7fK4iOcf1IEi5lynO+TN7874nIXrvPg3u/mcdUOekB4P+AWCrAE7c335FxM3FHVhlBGiPwJwb8Ghk9TBtGJMSrnjBlb1ziCPdxcrBTbOG4Mjr4tXsjs9N9rNbHfT/LX98rV9yCrurdXO8Pc5rs4VW4xA8fHn/0qQ409vHzkSNjJsP2X29a420kFThfDi4+HzYHasp02+iv+KQksuaxAuchYpyjFy8bR16iNXvYURZSHKGDTIT/k5yN7lPM71INBHbv7OhcfWmUhdfsCj0DNyHhGfgoZm4NlAwnOnRlh8D3QOeN67o4de5cP4667+eZca9lRVkbjyLZlwovkPMP+kaWlY3hGFT0RxSQnD/GzlLSS3RUlnr+OlflHjCWl7I0I/VHD1EVc8AuL5nPdUX4rfLCPvZKPr08+vi55fF361h9RcSsyYjbTucHyzO4DI+NJtaBS1G32tsxAU0QC9lZUciwpM5aamlHGSgF5ZLHSUxM56Vk0TmpiKivVx9cTu27zx5u3x9/s/L9kwtTHnRcwEQ1NowP1GHQ4fOWEN7oGOlxRUByrDuRRgSXGdEyxLUk4ODCVWtu7uF3I7BlgqLUrRYIdZhlqp27hHp7TndCmI6AgIIEWFocn4RITcECfnCu6FT0dHbKwK1mwl7cAku1o3q9LAZbWitPSbumS9o5tG8e3xWYQ8QmJ+GRk0xEg3JcgBl9GS9AuJMtfE82OqfrbD6sajqYAtkV0d/7W2SZnX33v9aOgUvDt7wUJLTpYQSD3VE/KnhTd6pJ1o/jqNZfmcHiSpR/P6K6dZmj5OZW2xiTKieTddGNZeHKC98B/Ej8fv92qivCXRNlktfCZ4xVK3uO4xDu4jS4K1GsTz9jdq4CPwwjbL9n5TnBL8Rx/lF+7uWcydcBUSEfgkEX/PGxtW3aV0fBvxaGZbdWH9+lzT7bsPl0VjmHF/yEx/6W0ZVIcmq2IpO16xIyL/i+iSKcq/5+4iA8p818JvQJZNHbM6XCSlq+pdKO2mLD48QEiBQG4XXWe8pACFaABUHUGCwQiQIJXpE+te1Hs7n4SR7rbcPmINHqEZadJsWhwvDTVYId2EJ2ih0YH6KHhoXBo2vwdjeyeMHXdi+R0P2nvPzRt+ywa22cjqmjchRMiGboXZVD3kySqu420ttOGbjcjCUexI4viL4DNAtOLzrVbIaOFdmIgYtNAT0wP4hYPoeHVZ7KZlqStIcgqQCPVARbGUl1jj6oxsPVAqUOG6oK0X/b7ADMHou/XFJ1iEF67TMFAna2lekAvtoCt6zZq0XV2LlAImRTdbRi3IO2A3YcgatP7hOfyI09iKZmKnLMNONQaGFNEfiAVQsIpOmEzIZUEA2TbpjPFzyNkdSlyiTS1BiMhGqQGtXyDmgKUF7ioTrILd2oetSft+sRJKgQJ0hfXdcSiJHraoeeZvxuSbtYL9EL9nn5ff6E/0Ov0l+j5/Prvulkv0Av1e/p9/YX+QK+LvuzgIQsWownaXa6sW7L6vWQ7tdjyWeUvoHWsyeS0KMyQuNrMAHCjFhPTh+qGPYlQvJXX5X7WbmCpLQhpRb3DMFcsIu8dhoH506Lx6K9D17VB3oSzLUMVz7fcC1ttznnMYJM2oDYw9zJsvUPJ7w/bcvgxXaKzK25j2Mrb/conIIy2t4M5rP2aA/mCXdVAj8p5Ooh3qD22pjpI9PXsmiHBq7l6NUtdEmMxX1j02kDacdTLaxIDxYbVa9ut3czIaIdcu+3POOsdm98WNy+cz3hjNOfRjsQKGwor8ZOHLyxmf7a9XiyURuio+YbWteoTsYxqWiYViIPlyi3nR2ptlcTx7y2fXpxti3gn7utaS3ETh6LmG3rXrkVo1/celo2zrp9lyM6p6buoUBx0K7fMFmntNuL4936AXpxti3gn7utaS3ETh6Kycd61axHa9btCAjCJ3Xo42o6UsjZHQRSI2OWI/np5O1dGnVnK+/Ok5W4wn9Ru14eLUez7GDvauRhLCVMncnDwDd3imBGK3M6GeGBkcI/19nhc743dS49V36IFlV+BgqV9nbwKOGS4fRf32XHak01qGbapDaZrX05g4znJxoaDH+zhEwnak+NuTYzwElhSB3kPCAmOt2IkZDhkp/NVzUSbLcg6QhJQDCy7g+XZeKtDpKwwRXZngCppNawqgveGYbGOjHSaMwErr+Jcvc6J5pGP3RHrBEJRDr7ZQVW9z0YGk3dA1ozHGAInLSBG6AcMEGsVrZEt7nZCBE8ris2a0dLOaWpfPyvSJQoYSolixnbPzKP3RilsrRbUhO/UQeq3+7qJ4yAYARAetrJUTj8ZgUFrm83GklWvDtVCZvOBsEmwPRhEspVqTNSnlf6xhivoFy/Qi0JnVjctlabw1kwYqYfKiodgOymNvpSUOYs8rMpXQKNIE0Mh78QqC9oUiJIm9th7SBABxltxubiYzTaWpO4wg4WC0Kyq3/7/OXaLJ0n8Tz/tjUnn6I+GSkmDpB4kDOtL65SpRSSDYskJ6izNJ3rXdVkG9rhS3AKGhXme4BPCWhJf+5PWjNIYF2M/2XtlUFwcFBCDzckdVHDxE3MG4PpMsjMevzwdkYlcbww5pZIUmMC5UWRpvUbAx5XQFajLTWjai+qkiFHcihbToLQrIT/V+ozNwMohTL6L3vYGWK+NfVk8GtjPV3kfS3K7iENxjp1tlLbbrRJANj6j+Ibq2tZOpalQQj41lUHsK9eg369jVV/vJUlak7vzYcESaZ/BaHI6X4aLKzh0YKEIgru0vcTpWqoeDnAxVmaiVima6LQKXnpiDQfOR0AaLVE5FyWrtTHvOgWQRPRNlodygBUsJQk9ZCXJXbAuEys9XHGjQTVei10uEMIgWkcNZ2PFsLyM/5/Q16C0NzfWoXNBjKKDTGDPYMkLKOlpWI9AXIK03WjkxLjR06SblwxYw1lHVFphggjQaIXGlBrEMby1qpWujyIQJ3BumcHXZK/ajeQQLh8bpSaeiyclFNjRprE9t0f7228v+bPPNhuwCcOv1bXwBpU2cSy+zn+Jhv3H2oA4r4No03WG1WDxGB2IBallB+NDv7FYrCm6LVO10wco2kTHIecmSOAR4eGQBXw9ghADJFzTbjeYL+SumxhgZbayYSlmHcY5HUW9KByYVVUcU7zXNgYy4JBzKOWZR+PDrlaVpvw00/GoRRn6OAZhh4OD+ktZunapFW1qhNlJlYF2+UyalTv245f2LpD15VqTqGNagsKfhwE6LV9sARTaoxDoXJpOmYV02+pRATyAlEXLkNSQLXIMSicMR5XKw97Ri48lkCjuMs9AWeciFIziujbUWnm/62lYIUcSVEH3iPKThKvmabc3g/fQu6LcAKi8KIBAA0kaZYPfLbkBaOFJFYjGozO4UpjOlrmegi9eCglso+ZMNYDAZisIy3Xm94vkbFZ9vVM9iwBefAKnuqLJdYOhFfelwGiLDVtwCwW7angxD4drP4rW6zS43JzxKHVSeiPmtzej5KyN99sE31DSmTV/ScNd3lGTBnoPmdbmeryiaWw1aEnHZGBlLVgWEdNMLAc4kC0zHT58Op3c8zU0FHbQzOO4ahgk35qn45aZJPf9vwUQMJM0C2aqo0u9vsYDYIx/1wKq20AQY/rYfxlTMt45zhTAMqroig0nhGxCTqFESlksbVAmVwhG4aM5fkSA88PUo4tCPRqofPR0rmq46zoND9VF5+xtCEqr+ISomZg4NfqdwUnU/HfUlr5NrCnZ7vdJ4vVOVyCjnMfai1MuecmdisaOmlYrc7d7WwQTICskqDuw99QYybJw2aqrTXpXgiVpiGgQYkhW4yn/h97b2PgfRjR6czGuCH3IFlhTDCYpJynSuFnzMBxGkTtN0wBL1CbJqXitK6UqrTUHNkQ/N0cY9du+frfLZq65s+QqoPqJ674G15629+7uLhfy9O5dfpToFRrc3XseQpaeN8vC2Vg5MeXU6KVRAAiYbTRJHXQkIeFd1yYQ1XdM+8W860Jxv6OEmvCmM3xNIdPmGJY3FaVM6BtBjBGSyVMb7mtRQG2mUMwDhYOLg6pZbC7yWvV/Hy01jdX3Rl1QBp8sMLdZ04fTi3eFmPb79hf0vin8kR8/9mlPlfWKXETjAgOInqtqzbBQgmgKaznyOOT7h0NI+5CLh40VnTseTW98mQZ4zrKxLdn49JaZNxeKhz2Fg4trW86t4lXkTbgmTcamqBieLuX1M0E+DLJpLUsn04cuYANM+0fzPi8UX79PCV3dmvABlDonQ8Tlwkdf19GHw80zXtn8vvo+w2eRJcvXT8D6cImnQBI/N/u20wCDns3ikR89AHtoQA6QeXW+WGfKtDG3G9lc08yHy5ExjuClHwWgwko3ZL3qdyR7CqX9Zd77m4vHj/tz3qIDjBCBMrB7ADL9Bo/75TIIxmPfg5rc7TIzWPv4aDgdF5ZtDj9kTl8w/JBXvMyUlYffAFeV43icaFLnLePE393JUbZmGru5+OAOSOI69zfTKTLEhkCxOGFCuV3HgBYDrhiBtOtazYvFO5XHDwH4aNI97426DjqHGzP1Yo3nIF4Xas9cJZVgefnYtFHFBlSFkYxv+R2Bync7afQzmOa8XptVo5om+A5RF/vf5pNdXqJSnc8bXtJWO9KcHS+Nx6aGqj6LBrwtkO8ItneplBozb4zQ/KtON5LiFdUD+khpARlDHwBX0EyARhnRBFKSo8VkExtTYCtHdNI9B958cDo5d6to69tVBbtZ76bPLyL8Ggz7XpttGEpVopUtBcAlUhBXd+59sNmPvYbgfd4PTxyj91opOlX2JjZ1Sr0f3e+yOJaYu3TCgzJkNroySvGJrjts/wm823jqq5mDfX/jY488E+cbcaqenkS4dBBGXMxuY1sSnGRMSSfAXybFqrobv7mrpqJGL6Uf5vMogsbp8I1Nw+GX5Ha+uHpXnk10Be9NfNJs+OaNN2q7BV7SdMMeb10/KW3Mz3lYDh4SRFrdrzUksJ49rgAHXmfPJYhP6vLva9gK4rmSBq+X0wsJDMTLZ2h6/6Cv3lM+rZVLyAfjmQYIkPKk+aByPCAAGKh/vjbLQOdW/3cchSjit88d/YE53C++7fFn4eaKw8IdIwIedHeBAP8ofcZh1QnFkhAslicS9rwjWE3lqxvWWWE7ZVSPEFUz9FkaazsAXfoZldZEYLh1GbRVGamx0qHWZCbXnUQTnUGY0O6+0gK0VE1jNwWpxhNHKZJwNdtlvCDK0D4KuEF2dw/F/W3KlBlEaonOGsPXzVUwMId3rY5GOcsEmD+qxQC7zZdIc6NquAFlETbE2NTjQbAfuGRg6wErY3OVKa07Mcw+vmZQtc7zL31GV9cld6ml5c2QOgy1t0HzEFaj8Jza9WeuGVya5fW9isFY7gJ36yueoJCCZcFM+51yJqrWzPNrEvC3yWspUbUp80LTFsK3hscpp3ShNENPUExhkIlcUDzmwE+k1d1wG2ukNilVvdWB0INslYL9N5NJO9CEULFsOZSqrrG0t5Yb7rJYMe8yQvC8NNcvGytEjXoefUy/dlnTsNcEQ7AYYkHjwBmNgb2CC4vb9pd7SxWHaaFUM1SXEIsAA4CYlfoWS8NekxtLMnCIQ4BhyMxtqFWLcU49Dr/Jp2UQFlOdns/MuEDMoIRUcvJZXrbYFC9XZwaF0MVHNnK+0R4ZBW1nWeznsUpqtGtTeGTKyzWmMI6bCjPTgIqFZfmZzgtR/fC3qodKQHw0sdA7rWU2qrAeSfRKQkBPT1oiDLX4x44YscL6uEU7Fkg9E9NjiPlU6p54etBvWTdlVgCPMkk8LaOrckPrsl7egVudYsxPFwMdnOo3EQQgEkzjaiAOFFIq84EePFyLUSLITZUM65AfvgGOJZDZcCyFEAePZRDj5LEsFL4fy8EzZBqvRx4jQaPo8DgEEJPSYwlEZHSIp88QT4s+VSicvlB42+e+RoIfXqqMUQUdDa1KAcAgepULAE/RVDmmsiRKIMclB2GIOZaKWVGoK4VWDq8qCa2mKtQSSUaiKCtyyYjaPA0dgtiGCkRCEWWxlCRRGob0VNSZKLEIg26Xdmkb5rsLdUJkmCbrKcUgEtGLeArImIKcmXg+T0dAreFwlcgJMAClcyUUQP120vGB0jlpKEU4VdlAVCSV0CcIjNC0y5lIaHIxGXKRi0qZKQYqV0w+IbIVKDHmFTjBgm57bRVvLk+BG6BnnWr8RmF1IhNV74/Kt0F+XlCRuVGeCTn3j9KTULIkKF6OfmtG+jYKZ4LONdB6A41XQO1EqOLgKGPWpwgmCobdkA9HZuhIbcYYYL58i7fdOSJtGXnqE6oGAkFfrgxIltLhN2fw2OGy3dBxApuaaUkwk9G9OvTCBs12CKcLokygIHDQbLihCXI6wtAgwZz/YLMJhMABaGZgghp6AYqHYhNuGdgAX5sADTTN3zmt/CChJaQCmgxp2BzChCbgjsVLoLExmQ8djYKGItNXARIABopDwBHQYAQOinAFAcVwEBoaBIRCYcA//KAaaAAUB4VCfL3F/r4QqJ/PHwrvP7wwQKjIN9E7QQSCiE8WAExvfPeOJ9qD745243sI3YTzMC58DmPHFwtZobNdE/uGtZ3/R4kjxpkvwDjwiRS9JEKRkBdedHjDk5/Q94OkMtmME4gS4t0/mu7e35ke9ez0XNLRzkm2KGH04308xj9Z0fULJ9f14XVcA79msrAZ1MMMNs0aurNriYi/er7/+RMqan38KcivDN59PhIlw6rBma/2SRKRRKzik0QQMuCmlG1C6QKYTN+4KuRylLACamxW+53Pg7n5IcsAAA==) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} + +/*!*****************************************************************************************************************!*\ + !*** css ../../node_modules/css-loader/dist/cjs.js!../../node_modules/sass-loader/dist/cjs.js!./src/index.scss ***! + \*****************************************************************************************************************/ +/* + * CSS for jsPsych experiments. + * + * This stylesheet provides minimal styling to make jsPsych + * experiments look polished without any additional styles. + */ +/* Container holding jsPsych content */ +.jspsych-display-element { + display: flex; + flex-direction: column; + overflow-y: auto; +} + +.jspsych-display-element:focus { + outline: none; +} + +.jspsych-content-wrapper { + display: flex; + margin: auto; + flex: 1 1 100%; + width: 100%; +} + +.jspsych-content { + max-width: 95%; + /* this is mainly an IE 10-11 fix */ + text-align: center; + margin: auto; + /* this is for overflowing content */ +} + +.jspsych-top { + align-items: flex-start; +} + +.jspsych-middle { + align-items: center; +} + +.cp_image { + height: 450px; + display: block; + margin-left: auto; + margin-right: auto; +} + +.dp_image { + height: 450px; + display: block; + margin-left: auto; + margin-right: auto; +} + +.cn_image { + height: 450px; + display: block; + margin-left: auto; + margin-right: auto; +} + +.dn_image { + height: 450px; + display: block; + margin-left: auto; + margin-right: auto; +} + +/* fonts and type */ +.jspsych-display-element { + font-family: "Open Sans", "Arial", sans-serif; + font-size: 18px; + line-height: 1.6em; +} + +/* Form elements like input fields and buttons */ +.jspsych-display-element input[type=text] { + font-family: "Open Sans", "Arial", sans-serif; + font-size: 14px; +} + +/* borrowing Bootstrap style for btn elements, but combining styles a bit */ +.jspsych-btn { + display: inline-block; + padding: 6px 12px; + margin: 0px; + font-size: 14px; + font-weight: 400; + font-family: "Open Sans", "Arial", sans-serif; + cursor: pointer; + line-height: 1.4; + text-align: center; + white-space: nowrap; + vertical-align: middle; + background-image: none; + border: 1px solid transparent; + border-radius: 4px; + color: #333; + background-color: #fff; + border-color: #ccc; +} + +/* only apply the hover style on devices with a mouse/pointer that can hover - issue #977 */ +@media (hover: hover) { + .jspsych-btn:hover { + background-color: #ddd; + border-color: #aaa; + } +} + +.jspsych-btn:active { + background-color: #ddd; + border-color: #000000; +} + +.jspsych-btn:disabled { + background-color: #eee; + color: #aaa; + border-color: #ccc; + cursor: not-allowed; +} + +/* custom style for input[type="range] (slider) to improve alignment between positions and labels */ +.jspsych-slider { + appearance: none; + -webkit-appearance: none; + -moz-appearance: none; + width: 100%; + background: transparent; +} + +.jspsych-slider:focus { + outline: none; +} + +/* track */ +.jspsych-slider::-webkit-slider-runnable-track { + appearance: none; + -webkit-appearance: none; + width: 100%; + height: 8px; + cursor: pointer; + background: #eee; + box-shadow: 0px 0px 0px #000000, 0px 0px 0px #0d0d0d; + border-radius: 2px; + border: 1px solid #aaa; +} + +.jspsych-slider::-moz-range-track { + appearance: none; + width: 100%; + height: 8px; + cursor: pointer; + background: #eee; + box-shadow: 0px 0px 0px #000000, 0px 0px 0px #0d0d0d; + border-radius: 2px; + border: 1px solid #aaa; +} + +.jspsych-slider::-ms-track { + appearance: none; + width: 99%; + height: 14px; + cursor: pointer; + background: #eee; + box-shadow: 0px 0px 0px #000000, 0px 0px 0px #0d0d0d; + border-radius: 2px; + border: 1px solid #aaa; +} + +/* thumb */ +.jspsych-slider::-webkit-slider-thumb { + border: 1px solid #666; + height: 24px; + width: 15px; + border-radius: 5px; + background: #ffffff; + cursor: pointer; + -webkit-appearance: none; + margin-top: -9px; +} + +.jspsych-slider::-moz-range-thumb { + border: 1px solid #666; + height: 24px; + width: 15px; + border-radius: 5px; + background: #ffffff; + cursor: pointer; +} + +.jspsych-slider::-ms-thumb { + border: 1px solid #666; + height: 20px; + width: 15px; + border-radius: 5px; + background: #ffffff; + cursor: pointer; + margin-top: -2px; +} + +/* jsPsych progress bar */ +#jspsych-progressbar-container { + color: #555; + border-bottom: 1px solid #dedede; + background-color: #f9f9f9; + margin-bottom: 1em; + text-align: center; + padding: 8px 0px; + width: 100%; + line-height: 1em; +} + +#jspsych-progressbar-container span { + font-size: 14px; + padding-right: 14px; +} + +#jspsych-progressbar-outer { + background-color: #eee; + width: 50%; + margin: auto; + height: 14px; + display: inline-block; + vertical-align: middle; + box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1); +} + +#jspsych-progressbar-inner { + background-color: #aaa; + width: 0%; + height: 100%; +} + +/* Control appearance of jsPsych.data.displayData() */ +#jspsych-data-display { + text-align: left; +} \ No newline at end of file diff --git a/docs/experiment_1/index.html b/docs/experiment_1/index.html new file mode 100644 index 0000000..d20dd3d --- /dev/null +++ b/docs/experiment_1/index.html @@ -0,0 +1,195 @@ + + + + Explanation Valence + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/docs/experiment_1/js/conj_neg_long.js b/docs/experiment_1/js/conj_neg_long.js new file mode 100644 index 0000000..c2c726f --- /dev/null +++ b/docs/experiment_1/js/conj_neg_long.js @@ -0,0 +1,352 @@ +/* +* File: conj_neg_long.js +* ----- +* Information for putting the pages for the CN trial together. +* This is the variation in which the participant runs through the CN trial first, then the DN trial. +*/ + +// CN long instructions +let cn_arr_long = []; +let cn_len_long = trialData["conjunctive_negative"]["instructions_long"].length; +for (let i = 0; i < cn_len_long; i++) { + cn_arr_long.push( + trialData["conjunctive_negative"]["instructions_long"][i] + ); +} + +var instruction_pages_long = []; +for (var i = 0; i < cn_len_long; i++) { + let slide = '
' + + '

' + cn_arr_long[i] + '

'; + instruction_pages_long.push(slide); +} + +const cn_instructions_long = { + type: jsPsychInstructions, + pages: instruction_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.0625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +cn_arr_long = []; +cn_len_long = trialData["conjunctive_negative"]["instructions_comp"].length; + +for (let i = 0; i < cn_len_long; i++) { + cn_arr_long.push({ + name: 'cn_instructions_comp_' + [i], + prompt: trialData["conjunctive_negative"]["instructions_comp"][i]["question"], + options: trialData["conjunctive_negative"]["instructions_comp"][i]["options"], + required: true + }); +} +const cn_instructions_comp_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: cn_arr_long, + on_start: function() { + jsPsych.setProgressBar(0.125); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +cn_arr_long = []; +cn_len_long = trialData["conjunctive_negative"]["round_one_long"].length; +for (let i = 0; i < cn_len_long; i++) { + cn_arr_long.push( + trialData["conjunctive_negative"]["round_one_long"][i] + ); +} + +var round_one_pages_long = []; +for (var i = 0; i < cn_len_long; i++) { + let slide = '
' + + '

' + cn_arr_long[i] + '

'; + round_one_pages_long.push(slide); +} +const cn_round_one_long = { + type: jsPsychInstructions, + pages: round_one_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.1875); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const cn_round_one_comp_q1_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cn_round_one_comp_q1_0', + prompt: trialData["conjunctive_negative"]["round_one_comp_q1"][0]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'cn_round_one_comp_q1_1', + prompt: trialData["conjunctive_negative"]["round_one_comp_q1"][1]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.25); + } +}; +const cn_round_one_comp_q2_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cn_round_two_comp_q2_0', + prompt: trialData["conjunctive_negative"]["round_one_comp_q2"][0]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'cn_round_two_comp_q2_1', + prompt: trialData["conjunctive_negative"]["round_one_comp_q2"][1]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +cn_arr_long = []; +cn_len_long = trialData["conjunctive_negative"]["round_two_long"].length; +for (let i = 0; i < cn_len_long; i++) { + cn_arr_long.push( + trialData["conjunctive_negative"]["round_two_long"][i] + ); +} + +var round_two_pages_long = []; +for (var i = 0; i < cn_len_long; i++) { + let slide = '
' + + '

' + cn_arr_long[i] + '

'; + round_two_pages_long.push(slide); +} +const cn_round_two_long = { + type: jsPsychInstructions, + pages: round_two_pages_long, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.3125); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +const cn_selection_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Zarah gets to turn one of the switches OFF. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn OFF, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'cn_selection_task', + prompt: trialData["conjunctive_negative"]["selection_task"]["question"], + options: trialData["conjunctive_negative"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + +const cn_loop_node_instructions_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cn_instructions_long, + cn_instructions_comp_long + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_instructions_key = trialData["conjunctive_negative"]["cn_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(cn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const cn_conditional_node_instructions_long = { + timeline: [ + cn_loop_node_instructions_long + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + + const cn_instructions_key = trialData["conjunctive_negative"]["cn_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(cn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const cn_loop_node_round_one_q1_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cn_round_one_long, + cn_round_one_comp_q1_long, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_participant_key = trialData["conjunctive_negative"]["cn_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(cn_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const cn_conditional_node_round_one_q1_long = { + timeline: [ + cn_loop_node_round_one_q1_long + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_participant_key = trialData["conjunctive_negative"]["cn_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(cn_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const cn_loop_node_round_one_q2_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cn_round_one_long, + cn_round_one_comp_q2_long, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_teammate_key = trialData["conjunctive_negative"]["cn_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(cn_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const cn_conditional_node_round_one_q2_long = { + timeline: [ + cn_loop_node_round_one_q2_long + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_teammate_key = trialData["conjunctive_negative"]["cn_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(cn_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const cn_intervention_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches OFF manually. \ + The other switch will turn ON or OFF based on its probability.

" + + "", + questions: [ + { + name: 'cn_intervention_task', + prompt: trialData["conjunctive_negative"]["intervention_task"]["question"], + options: trialData["conjunctive_negative"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const cn_long = [ + cn_instructions_long, + cn_instructions_comp_long, + cn_conditional_node_instructions_long, + cn_intervention_task_long, + cn_round_one_long, + cn_round_one_comp_q1_long, + cn_conditional_node_round_one_q1_long, + cn_round_one_comp_q2_long, + cn_conditional_node_round_one_q2_long, + cn_round_two_long, + cn_selection_task_long +] \ No newline at end of file diff --git a/docs/experiment_1/js/conj_neg_short.js b/docs/experiment_1/js/conj_neg_short.js new file mode 100644 index 0000000..03a2a38 --- /dev/null +++ b/docs/experiment_1/js/conj_neg_short.js @@ -0,0 +1,349 @@ +/* +* File: conj_neg_short.js +* ----- +* Information for putting the pages for the CN trial together. +* This is the variation in which the participant runs through the DN trial first, then the CN trial. +*/ + +// CN short instructions +let cn_arr_short = []; +let cn_len_short = trialData["conjunctive_negative"]["instructions_short"].length; +for (let i = 0; i < cn_len_short; i++) { + cn_arr_short.push( + trialData["conjunctive_negative"]["instructions_short"][i] + ); +} + +var instruction_pages_short = []; +for (var i = 0; i < cn_len_short; i++) { + let slide = '
' + + '

' + cn_arr_short[i] + '

'; + instruction_pages_short.push(slide); +} + +const cn_instructions_short = { + type: jsPsychInstructions, + pages: instruction_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.4375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +cn_arr_short = []; +cn_len_short = trialData["conjunctive_negative"]["instructions_comp"].length; +for (let i = 0; i < cn_len_short; i++) { + cn_arr_short.push({ + name: 'cn_instructions_comp_' + [i], + prompt: trialData["conjunctive_negative"]["instructions_comp"][i]["question"], + options: trialData["conjunctive_negative"]["instructions_comp"][i]["options"], + required: true + }); +} +const cn_instructions_comp_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: cn_arr_short, + on_start: function() { + jsPsych.setProgressBar(0.5); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +cn_arr_short = []; +cn_len_short = trialData["conjunctive_negative"]["round_one_short"].length; +for (let i = 0; i < cn_len_short; i++) { + cn_arr_short.push( + trialData["conjunctive_negative"]["round_one_short"][i] + ); +} + +var round_one_pages_short = []; +for (var i = 0; i < cn_len_short; i++) { + let slide = '
' + + '

' + cn_arr_short[i] + '

'; + round_one_pages_short.push(slide); +} +const cn_round_one_short = { + type: jsPsychInstructions, + pages: round_one_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.5625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const cn_round_one_comp_q1_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cn_round_one_comp_q1_0', + prompt: trialData["conjunctive_negative"]["round_one_comp_q1"][0]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'cn_round_one_comp_q1_1', + prompt: trialData["conjunctive_negative"]["round_one_comp_q1"][1]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.625); + } +}; +const cn_round_one_comp_q2_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cn_round_two_comp_q2_0', + prompt: trialData["conjunctive_negative"]["round_one_comp_q2"][0]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'cn_round_two_comp_q2_1', + prompt: trialData["conjunctive_negative"]["round_one_comp_q2"][1]["question"], + options: trialData["conjunctive_negative"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +cn_arr_short = []; +cn_len_short = trialData["conjunctive_negative"]["round_two_short"].length; +for (let i = 0; i < cn_len_short; i++) { + cn_arr_short.push( + trialData["conjunctive_negative"]["round_two_short"][i] + ); +} + +var round_two_pages_short = []; +for (var i = 0; i < cn_len_short; i++) { + let slide = '
' + + '

' + cn_arr_short[i] + '

'; + round_two_pages_short.push(slide); +} +const cn_round_two_short = { + type: jsPsychInstructions, + pages: round_two_pages_short, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.6875); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +const cn_selection_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Zarah gets to turn one of the switches OFF. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn OFF, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'cn_selection_task', + prompt: trialData["conjunctive_negative"]["selection_task"]["question"], + options: trialData["conjunctive_negative"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.75); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +} + +const cn_loop_node_instructions_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cn_instructions_short, + cn_instructions_comp_short + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_instructions_key = trialData["conjunctive_negative"]["cn_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(cn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const cn_conditional_node_instructions_short = { + timeline: [ + cn_loop_node_instructions_short + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_instructions_key = trialData["conjunctive_negative"]["cn_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(cn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const cn_loop_node_round_one_q1_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cn_round_one_short, + cn_round_one_comp_q1_short, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_participant_key = trialData["conjunctive_negative"]["cn_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(cn_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const cn_conditional_node_round_one_q1_short = { + timeline: [ + cn_loop_node_round_one_q1_short + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_participant_key = trialData["conjunctive_negative"]["cn_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(cn_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const cn_loop_node_round_one_q2_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cn_round_one_short, + cn_round_one_comp_q2_short, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_teammate_key = trialData["conjunctive_negative"]["cn_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(cn_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const cn_conditional_node_round_one_q2_short = { + timeline: [ + cn_loop_node_round_one_q2_short + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cn_teammate_key = trialData["conjunctive_negative"]["cn_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(cn_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const cn_intervention_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches OFF manually. \ + The other switch will turn ON or OFF based on its probability.

" + + "", + questions: [ + { + name: 'cn_intervention_task', + prompt: trialData["conjunctive_negative"]["intervention_task"]["question"], + options: trialData["conjunctive_negative"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const cn_short = [ + cn_instructions_short, + cn_instructions_comp_short, + cn_conditional_node_instructions_short, + cn_intervention_task_short, + cn_round_one_short, + cn_round_one_comp_q1_short, + cn_conditional_node_round_one_q1_short, + cn_round_one_comp_q2_short, + cn_conditional_node_round_one_q2_short, + cn_round_two_short, + cn_selection_task_short +] \ No newline at end of file diff --git a/docs/experiment_1/js/conj_pos_long.js b/docs/experiment_1/js/conj_pos_long.js new file mode 100644 index 0000000..ec0a55f --- /dev/null +++ b/docs/experiment_1/js/conj_pos_long.js @@ -0,0 +1,357 @@ +/* +* File: conj_pos_long.js +* ----- +* Information for putting the pages for the CP trial together. +* This is the variation in which the participant runs through the CP trial first, then the DP trial. +*/ + +// CP long instructions +let cp_arr_long = []; +let cp_len_long = trialData["conjunctive_positive"]["instructions_long"].length; +for (let i = 0; i < cp_len_long; i++) { + cp_arr_long.push( + trialData["conjunctive_positive"]["instructions_long"][i] + ); +} + +var instruction_pages_long = []; +for (var i = 0; i < cp_len_long; i++) { + let slide = '
' + + '

' + cp_arr_long[i] + '

'; + instruction_pages_long.push(slide); +} + +const cp_instructions_long = { + type: jsPsychInstructions, + pages: instruction_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.0625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +cp_arr_long = []; +cp_len_long = trialData["conjunctive_positive"]["instructions_comp"].length; + +for (let i = 0; i < cp_len_long; i++) { + cp_arr_long.push({ + name: 'cp_instructions_comp_' + [i], + prompt: trialData["conjunctive_positive"]["instructions_comp"][i]["question"], + options: trialData["conjunctive_positive"]["instructions_comp"][i]["options"], + required: true + }); +} +const cp_instructions_comp_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: cp_arr_long, + on_start: function() { + jsPsych.setProgressBar(0.125); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +cp_arr_long = []; +cp_len_long = trialData["conjunctive_positive"]["round_one_long"].length; +for (let i = 0; i < cp_len_long; i++) { + cp_arr_long.push( + trialData["conjunctive_positive"]["round_one_long"][i] + ); +} + +var round_one_pages_long = []; +for (var i = 0; i < cp_len_long; i++) { + let slide = '
' + + '

' + cp_arr_long[i] + '

'; + round_one_pages_long.push(slide); +} +const cp_round_one_long = { + type: jsPsychInstructions, + pages: round_one_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.1875); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const cp_round_one_comp_q1_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cp_round_one_comp_q1_0', + prompt: trialData["conjunctive_positive"]["round_one_comp_q1"][0]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'cp_round_one_comp_q1_1', + prompt: trialData["conjunctive_positive"]["round_one_comp_q1"][1]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.25); + } +}; +const cp_round_one_comp_q2_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cp_round_two_comp_q2_0', + prompt: trialData["conjunctive_positive"]["round_one_comp_q2"][0]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'cp_round_two_comp_q2_1', + prompt: trialData["conjunctive_positive"]["round_one_comp_q2"][1]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +cp_arr_long = []; +cp_len_long = trialData["conjunctive_positive"]["round_two_long"].length; +for (let i = 0; i < cp_len_long; i++) { + cp_arr_long.push( + trialData["conjunctive_positive"]["round_two_long"][i] + ); +} + +var round_two_pages_long = []; +for (var i = 0; i < cp_len_long; i++) { + let slide = '
' + + '

' + cp_arr_long[i] + '

'; + round_two_pages_long.push(slide); +} +const cp_round_two_long = { + type: jsPsychInstructions, + pages: round_two_pages_long, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.3125); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +const cp_selection_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Zarah gets to turn one of the switches ON. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn ON, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'cp_selection_task', + prompt: trialData["conjunctive_positive"]["selection_task"]["question"], + options: trialData["conjunctive_positive"]["selection_task"]["options"], + required: true, + button_label: "hi" + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + +const cp_loop_node_instructions_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cp_instructions_long, + cp_instructions_comp_long + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_instructions_key = trialData["conjunctive_positive"]["cp_instructions_key"]; + + console.log(trial_data); + console.log(cp_instructions_key); + if (JSON.stringify(trial_data) === JSON.stringify(cp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const cp_conditional_node_instructions_long = { + timeline: [ + cp_loop_node_instructions_long + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + + const cp_instructions_key = trialData["conjunctive_positive"]["cp_instructions_key"]; + + console.log(trial_data); + console.log(cp_instructions_key); + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(cp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const cp_loop_node_round_one_q1_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cp_round_one_long, + cp_round_one_comp_q1_long, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_participant_key = trialData["conjunctive_positive"]["cp_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(cp_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const cp_conditional_node_round_one_q1_long = { + timeline: [ + cp_loop_node_round_one_q1_long + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_participant_key = trialData["conjunctive_positive"]["cp_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(cp_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const cp_loop_node_round_one_q2_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cp_round_one_long, + cp_round_one_comp_q2_long, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_teammate_key = trialData["conjunctive_positive"]["cp_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(cp_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const cp_conditional_node_round_one_q2_long = { + timeline: [ + cp_loop_node_round_one_q2_long + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_teammate_key = trialData["conjunctive_positive"]["cp_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(cp_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const cp_intervention_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches ON manually. \ + The other switch will turn ON or OFF based on its probability.

" + + "", + questions: [ + { + name: 'cp_intervention_task', + prompt: trialData["conjunctive_positive"]["intervention_task"]["question"], + options: trialData["conjunctive_positive"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const cp_long = [ + cp_instructions_long, + cp_instructions_comp_long, + cp_conditional_node_instructions_long, + cp_intervention_task_long, + cp_round_one_long, + cp_round_one_comp_q1_long, + cp_conditional_node_round_one_q1_long, + cp_round_one_comp_q2_long, + cp_conditional_node_round_one_q2_long, + cp_round_two_long, + cp_selection_task_long +] \ No newline at end of file diff --git a/docs/experiment_1/js/conj_pos_short.js b/docs/experiment_1/js/conj_pos_short.js new file mode 100644 index 0000000..e2d2294 --- /dev/null +++ b/docs/experiment_1/js/conj_pos_short.js @@ -0,0 +1,349 @@ +/* +* File: conj_pos_short.js +* ----- +* Information for putting the pages for the CP trial together. +* This is the variation in which the participant runs through the DP trial first, then the CP trial. +*/ + +// CP short instructions +let cp_arr_short = []; +let cp_len_short = trialData["conjunctive_positive"]["instructions_short"].length; +for (let i = 0; i < cp_len_short; i++) { + cp_arr_short.push( + trialData["conjunctive_positive"]["instructions_short"][i] + ); +} + +var instruction_pages_short = []; +for (var i = 0; i < cp_len_short; i++) { + let slide = '
' + + '

' + cp_arr_short[i] + '

'; + instruction_pages_short.push(slide); +} + +const cp_instructions_short = { + type: jsPsychInstructions, + pages: instruction_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.4375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +cp_arr_short = []; +cp_len_short = trialData["conjunctive_positive"]["instructions_comp"].length; +for (let i = 0; i < cp_len_short; i++) { + cp_arr_short.push({ + name: 'cp_instructions_comp_' + [i], + prompt: trialData["conjunctive_positive"]["instructions_comp"][i]["question"], + options: trialData["conjunctive_positive"]["instructions_comp"][i]["options"], + required: true + }); +} +const cp_instructions_comp_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: cp_arr_short, + on_start: function() { + jsPsych.setProgressBar(0.5); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +cp_arr_short = []; +cp_len_short = trialData["conjunctive_positive"]["round_one_short"].length; +for (let i = 0; i < cp_len_short; i++) { + cp_arr_short.push( + trialData["conjunctive_positive"]["round_one_short"][i] + ); +} + +var round_one_pages_short = []; +for (var i = 0; i < cp_len_short; i++) { + let slide = '
' + + '

' + cp_arr_short[i] + '

'; + round_one_pages_short.push(slide); +} +const cp_round_one_short = { + type: jsPsychInstructions, + pages: round_one_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.5625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const cp_round_one_comp_q1_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cp_round_one_comp_q1_0', + prompt: trialData["conjunctive_positive"]["round_one_comp_q1"][0]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'cp_round_one_comp_q1_1', + prompt: trialData["conjunctive_positive"]["round_one_comp_q1"][1]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.625); + } +}; +const cp_round_one_comp_q2_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'cp_round_two_comp_q2_0', + prompt: trialData["conjunctive_positive"]["round_one_comp_q2"][0]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'cp_round_two_comp_q2_1', + prompt: trialData["conjunctive_positive"]["round_one_comp_q2"][1]["question"], + options: trialData["conjunctive_positive"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +cp_arr_short = []; +cp_len_short = trialData["conjunctive_positive"]["round_two_short"].length; +for (let i = 0; i < cp_len_short; i++) { + cp_arr_short.push( + trialData["conjunctive_positive"]["round_two_short"][i] + ); +} + +var round_two_pages_short = []; +for (var i = 0; i < cp_len_short; i++) { + let slide = '
' + + '

' + cp_arr_short[i] + '

'; + round_two_pages_short.push(slide); +} +const cp_round_two_short = { + type: jsPsychInstructions, + pages: round_two_pages_short, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.6875); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +const cp_selection_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Zarah gets to turn one of the switches ON. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn ON, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'cp_selection_task', + prompt: trialData["conjunctive_positive"]["selection_task"]["question"], + options: trialData["conjunctive_positive"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.75); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +} + +const cp_loop_node_instructions_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cp_instructions_short, + cp_instructions_comp_short + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_instructions_key = trialData["conjunctive_positive"]["cp_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(cp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const cp_conditional_node_instructions_short = { + timeline: [ + cp_loop_node_instructions_short + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_instructions_key = trialData["conjunctive_positive"]["cp_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(cp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const cp_loop_node_round_one_q1_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cp_round_one_short, + cp_round_one_comp_q1_short, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_participant_key = trialData["conjunctive_positive"]["cp_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(cp_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const cp_conditional_node_round_one_q1_short = { + timeline: [ + cp_loop_node_round_one_q1_short + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_participant_key = trialData["conjunctive_positive"]["cp_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(cp_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const cp_loop_node_round_one_q2_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + cp_round_one_short, + cp_round_one_comp_q2_short, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_teammate_key = trialData["conjunctive_positive"]["cp_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(cp_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const cp_conditional_node_round_one_q2_short = { + timeline: [ + cp_loop_node_round_one_q2_short + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const cp_teammate_key = trialData["conjunctive_positive"]["cp_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(cp_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const cp_intervention_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches ON manually. \ + The other switch will turn ON or OFF based on its probability.

" + + "", + questions: [ + { + name: 'cp_intervention_task', + prompt: trialData["conjunctive_positive"]["intervention_task"]["question"], + options: trialData["conjunctive_positive"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const cp_short = [ + cp_instructions_short, + cp_instructions_comp_short, + cp_conditional_node_instructions_short, + cp_intervention_task_short, + cp_round_one_short, + cp_round_one_comp_q1_short, + cp_conditional_node_round_one_q1_short, + cp_round_one_comp_q2_short, + cp_conditional_node_round_one_q2_short, + cp_round_two_short, + cp_selection_task_short +] \ No newline at end of file diff --git a/docs/experiment_1/js/consent.js b/docs/experiment_1/js/consent.js new file mode 100644 index 0000000..fb2e3d4 --- /dev/null +++ b/docs/experiment_1/js/consent.js @@ -0,0 +1,73 @@ +const consent = { + type: jsPsychHtmlButtonResponse, + stimulus: ` +

Consent Form

+
+

+ Description: + Welcome! You are invited to participate in a research study in cognitive psychology. + You will be asked to perform various tasks on a computer which may include: + looking at images or videos, listening to sounds, reading scenarios, or playing games. + You may be asked a number of different questions about making judgments and interpreting + people's actions. All information collected will remain confidential. +

+

+ Risks and benefits: + Risks involved in this study are the same as those normally associated + with using a computer (e.g., mild eye/arm strain). If you have any + pre-existing conditions that might make reading and completing a computer-based + survey strenuous for you, you should probably elect to not participate in this + study. If at any time during the study you feel unable to participate because + you are experiencing strain, you may end your participation without penalty. + We cannot and do not guarantee or promise that you will receive any benefits + from this study. Your decision whether or not to participate in this study will + not affect your employment, medical care, and/or grades in school. +

+

+ Time involvement: + Your involvement in this study should take about 10-15 minutes. +

+

+ Payment: + If recruitment materials indicate payment (e.g., Prolific or other recruitment), you + will receive compensation as indicated. +

+ Subject's rights: + If you have read this form and have decided to participate in this project, please + understand your participation is voluntary and you have the right to withdraw your + consent or discontinue participation at any time without penalty or loss of benefits + to which you are otherwise entitled. The alternative is not to participate. + You have the right to refuse to answer particular questions. Your individual privacy will + be maintained in all published and written data resulting from the study. No personally + identifying information is ever revealed to the researchers. +

+

+ Contact information: + If you have any questions, concerns or complaints about this research study, + its procedures, or risks and benefits, you should ask the Protocol Director, + (Professor Tobias Gerstenberg, Phone: (650) 725-2431; Email: gerstenberg@stanford.edu). + If you are not satisfied with how this study is being conducted, or if you have any + concerns, complaints, or general questions about the research or your rights as a participant, + please contact the Stanford Institutional Review Board (IRB) to speak to someone independent of + the research team at (650) 723-2480 or toll free at 1-866-680-2906. You can also write to + the Stanford IRB, Stanford University, 1705 El Camino Real, Palo Alto, CA 94306 or contact + the IRB by email at irbnonmed@stanford.edu. +
+

+

+ You may want to print a copy of this consent form to keep. By clicking the button below, + you acknowledge that you have read the above information, that you are 18 years of age, + or older and give your consent to participate in our internet-based study and consent for + us to analyze the resulting data. +

+
+

+ Do you agree with the terms of the experiment as explained above? +

+ `, + choices: ['I agree'], + on_start: function () { + jsPsych.setProgressBar(0); + } +}; \ No newline at end of file diff --git a/docs/experiment_1/js/demographics.js b/docs/experiment_1/js/demographics.js new file mode 100644 index 0000000..7f464c7 --- /dev/null +++ b/docs/experiment_1/js/demographics.js @@ -0,0 +1,61 @@ +const demographic_form = { + type: jsPsychSurveyHtmlForm, + data: { + "page_type": "participant_survey", + }, + html: '
Please provide the following' + + ' information to complete the study.

    ' + + '
  1. Age:

  2. ' + + '
  3. Gender:


  4. ' + + '
  5. Race:







  6. ' + + '
  7. Ethnicity:
  8. ' + + '
' + + '
' + + // age text box + '

' + + // gender options + ' ' + + ' ' + + '
' + + '

' + + // race options + '
' + + '
' + + '
' + + '
' + + '
' + + '
' + + '' + + '

' + + // ethnicity options + ' ' + + '
' + + '

Please press the finish button to complete the experiment.

', + button_label: 'Finish', + on_finish: function() { jsPsych.setProgressBar(1.0); } +}; \ No newline at end of file diff --git a/docs/experiment_1/js/disj_neg_long.js b/docs/experiment_1/js/disj_neg_long.js new file mode 100644 index 0000000..9a80d80 --- /dev/null +++ b/docs/experiment_1/js/disj_neg_long.js @@ -0,0 +1,352 @@ +/* +* File: disj_neg_long.js +* ----- +* Information for putting the pages for the DN trial together. +* This is the variation in which the participant runs through the DN trial first, then the CN trial. +*/ + +// DN long instructions +let dn_arr_long = []; +let dn_len_long = trialData["disjunctive_negative"]["instructions_long"].length; +for (let i = 0; i < dn_len_long; i++) { + dn_arr_long.push( + trialData["disjunctive_negative"]["instructions_long"][i] + ); +} + +var instruction_pages_long = []; +for (var i = 0; i < dn_len_long; i++) { + let slide = '
' + + '

' + dn_arr_long[i] + '

'; + instruction_pages_long.push(slide); +} + +const dn_instructions_long = { + type: jsPsychInstructions, + pages: instruction_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.0625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +dn_arr_long = []; +dn_len_long = trialData["disjunctive_negative"]["instructions_comp"].length; + +for (let i = 0; i < dn_len_long; i++) { + dn_arr_long.push({ + name: 'dn_instructions_comp_' + [i], + prompt: trialData["disjunctive_negative"]["instructions_comp"][i]["question"], + options: trialData["disjunctive_negative"]["instructions_comp"][i]["options"], + required: true + }); +} +const dn_instructions_comp_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: dn_arr_long, + on_start: function() { + jsPsych.setProgressBar(0.125); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +dn_arr_long = []; +dn_len_long = trialData["disjunctive_negative"]["round_one_long"].length; +for (let i = 0; i < dn_len_long; i++) { + dn_arr_long.push( + trialData["disjunctive_negative"]["round_one_long"][i] + ); +} + +var round_one_pages_long = []; +for (var i = 0; i < dn_len_long; i++) { + let slide = '
' + + '

' + dn_arr_long[i] + '

'; + round_one_pages_long.push(slide); +} +const dn_round_one_long = { + type: jsPsychInstructions, + pages: round_one_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.1875); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const dn_round_one_comp_q1_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dn_round_one_comp_q1_0', + prompt: trialData["disjunctive_negative"]["round_one_comp_q1"][0]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'dn_round_one_comp_q1_1', + prompt: trialData["disjunctive_negative"]["round_one_comp_q1"][1]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.25); + } +}; +const dn_round_one_comp_q2_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dn_round_two_comp_q2_0', + prompt: trialData["disjunctive_negative"]["round_one_comp_q2"][0]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'dn_round_two_comp_q2_1', + prompt: trialData["disjunctive_negative"]["round_one_comp_q2"][1]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +dn_arr_long = []; +dn_len_long = trialData["disjunctive_negative"]["round_two_long"].length; +for (let i = 0; i < dn_len_long; i++) { + dn_arr_long.push( + trialData["disjunctive_negative"]["round_two_long"][i] + ); +} + +var round_two_pages_long = []; +for (var i = 0; i < dn_len_long; i++) { + let slide = '
' + + '

' + dn_arr_long[i] + '

'; + round_two_pages_long.push(slide); +} +const dn_round_two_long = { + type: jsPsychInstructions, + pages: round_two_pages_long, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.3125); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +const dn_selection_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Alice gets to turn one of the switches OFF. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn OFF, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'dn_selection_task', + prompt: trialData["disjunctive_negative"]["selection_task"]["question"], + options: trialData["disjunctive_negative"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + +const dn_loop_node_instructions_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dn_instructions_long, + dn_instructions_comp_long + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_instructions_key = trialData["disjunctive_negative"]["dn_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(dn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const dn_conditional_node_instructions_long = { + timeline: [ + dn_loop_node_instructions_long + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + + const dn_instructions_key = trialData["disjunctive_negative"]["dn_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(dn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const dn_loop_node_round_one_q1_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dn_round_one_long, + dn_round_one_comp_q1_long, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_participant_key = trialData["disjunctive_negative"]["dn_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(dn_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const dn_conditional_node_round_one_q1_long = { + timeline: [ + dn_loop_node_round_one_q1_long + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_participant_key = trialData["disjunctive_negative"]["dn_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(dn_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const dn_loop_node_round_one_q2_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dn_round_one_long, + dn_round_one_comp_q2_long, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_teammate_key = trialData["disjunctive_negative"]["dn_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(dn_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const dn_conditional_node_round_one_q2_long = { + timeline: [ + dn_loop_node_round_one_q2_long + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_teammate_key = trialData["disjunctive_negative"]["dn_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(dn_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const dn_intervention_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches OFF manually. \ + The other switch will turn ON or OFF based on its probability." + + "", + questions: [ + { + name: 'dn_intervention_task', + prompt: trialData["disjunctive_negative"]["intervention_task"]["question"], + options: trialData["disjunctive_negative"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const dn_long = [ + dn_instructions_long, + dn_instructions_comp_long, + dn_conditional_node_instructions_long, + dn_intervention_task_long, + dn_round_one_long, + dn_round_one_comp_q1_long, + dn_conditional_node_round_one_q1_long, + dn_round_one_comp_q2_long, + dn_conditional_node_round_one_q2_long, + dn_round_two_long, + dn_selection_task_long +] \ No newline at end of file diff --git a/docs/experiment_1/js/disj_neg_short.js b/docs/experiment_1/js/disj_neg_short.js new file mode 100644 index 0000000..2c72884 --- /dev/null +++ b/docs/experiment_1/js/disj_neg_short.js @@ -0,0 +1,350 @@ +/* +* File: disj_neg_short.js +* ----- +* Information for putting the pages for the DN trial together. +* This is the variation in which the participant runs through the CN trial first, then the DN trial. +*/ + +// DN short instructions +let dn_arr_short = []; +let dn_len_short = trialData["disjunctive_negative"]["instructions_short"].length; +for (let i = 0; i < dn_len_short; i++) { + dn_arr_short.push( + trialData["disjunctive_negative"]["instructions_short"][i] + ); +} + +var instruction_pages_short = []; +for (var i = 0; i < dn_len_short; i++) { + let slide = '
' + + '

' + dn_arr_short[i] + '

'; + instruction_pages_short.push(slide); +} + +const dn_instructions_short = { + type: jsPsychInstructions, + pages: instruction_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.4375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +dn_arr_short = []; +dn_len_short = trialData["disjunctive_negative"]["instructions_comp"].length; +for (let i = 0; i < dn_len_short; i++) { + dn_arr_short.push({ + name: 'dn_instructions_comp_' + [i], + prompt: trialData["disjunctive_negative"]["instructions_comp"][i]["question"], + options: trialData["disjunctive_negative"]["instructions_comp"][i]["options"], + required: true + }); +} +const dn_instructions_comp_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: dn_arr_short, + on_start: function() { + jsPsych.setProgressBar(0.5); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +dn_arr_short = []; +dn_len_short = trialData["disjunctive_negative"]["round_one_short"].length; +for (let i = 0; i < dn_len_short; i++) { + dn_arr_short.push( + trialData["disjunctive_negative"]["round_one_short"][i] + ); +} + +var round_one_pages_short = []; +for (var i = 0; i < dn_len_short; i++) { + let slide = '
' + + '

' + dn_arr_short[i] + '

'; + round_one_pages_short.push(slide); +} +const dn_round_one_short = { + type: jsPsychInstructions, + pages: round_one_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.5625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const dn_round_one_comp_q1_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dn_round_one_comp_q1_0', + prompt: trialData["disjunctive_negative"]["round_one_comp_q1"][0]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'dn_round_one_comp_q1_1', + prompt: trialData["disjunctive_negative"]["round_one_comp_q1"][1]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.625); + } +}; +const dn_round_one_comp_q2_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dn_round_two_comp_q2_0', + prompt: trialData["disjunctive_negative"]["round_one_comp_q2"][0]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'dn_round_two_comp_q2_1', + prompt: trialData["disjunctive_negative"]["round_one_comp_q2"][1]["question"], + options: trialData["disjunctive_negative"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +dn_arr_short = []; +dn_len_short = trialData["disjunctive_negative"]["round_two_short"].length; +for (let i = 0; i < dn_len_short; i++) { + dn_arr_short.push( + trialData["disjunctive_negative"]["round_two_short"][i] + ); +} + +var round_two_pages_short = []; +for (var i = 0; i < dn_len_short; i++) { + let slide = '
' + + '

' + dn_arr_short[i] + '

'; + round_two_pages_short.push(slide); +} +const dn_round_two_short = { + type: jsPsychInstructions, + pages: round_two_pages_short, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.6875); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +const dn_selection_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Alice gets to turn one of the switches OFF. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn OFF, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'dn_selection_task', + prompt: trialData["disjunctive_negative"]["selection_task"]["question"], + options: trialData["disjunctive_negative"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.75); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +} + +const dn_loop_node_instructions_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dn_instructions_short, + dn_instructions_comp_short + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_instructions_key = trialData["disjunctive_negative"]["dn_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(dn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const dn_conditional_node_instructions_short = { + timeline: [ + dn_loop_node_instructions_short + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_instructions_key = trialData["disjunctive_negative"]["dn_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(dn_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const dn_loop_node_round_one_q1_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dn_round_one_short, + dn_round_one_comp_q1_short, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_participant_key = trialData["disjunctive_negative"]["dn_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(dn_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const dn_conditional_node_round_one_q1_short = { + timeline: [ + dn_loop_node_round_one_q1_short + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_participant_key = trialData["disjunctive_negative"]["dn_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(dn_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const dn_loop_node_round_one_q2_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dn_round_one_short, + dn_round_one_comp_q2_short, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_teammate_key = trialData["disjunctive_negative"]["dn_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(dn_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const dn_conditional_node_round_one_q2_short = { + timeline: [ + dn_loop_node_round_one_q2_short + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dn_teammate_key = trialData["disjunctive_negative"]["dn_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(dn_teammate_key))) { + return true; + } else { + return false; + } + }, +} + + +const dn_intervention_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches OFF manually. \ + The other switch will turn ON or OFF based on its probability." + + "", + questions: [ + { + name: 'dn_intervention_task', + prompt: trialData["disjunctive_negative"]["intervention_task"]["question"], + options: trialData["disjunctive_negative"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const dn_short = [ + dn_instructions_short, + dn_instructions_comp_short, + dn_conditional_node_instructions_short, + dn_intervention_task_short, + dn_round_one_short, + dn_round_one_comp_q1_short, + dn_conditional_node_round_one_q1_short, + dn_round_one_comp_q2_short, + dn_conditional_node_round_one_q2_short, + dn_round_two_short, + dn_selection_task_short +] \ No newline at end of file diff --git a/docs/experiment_1/js/disj_pos_long.js b/docs/experiment_1/js/disj_pos_long.js new file mode 100644 index 0000000..467b62a --- /dev/null +++ b/docs/experiment_1/js/disj_pos_long.js @@ -0,0 +1,352 @@ +/* +* File: disj_pos_long.js +* ----- +* Information for putting the pages for the DP trial together. +* This is the variation in which the participant runs through the DP trial first, then the CP trial. +*/ + +// DP long instructions +let dp_arr_long = []; +let dp_len_long = trialData["disjunctive_positive"]["instructions_long"].length; +for (let i = 0; i < dp_len_long; i++) { + dp_arr_long.push( + trialData["disjunctive_positive"]["instructions_long"][i] + ); +} + +var instruction_pages_long = []; +for (var i = 0; i < dp_len_long; i++) { + let slide = '
' + + '

' + dp_arr_long[i] + '

'; + instruction_pages_long.push(slide); +} + +const dp_instructions_long = { + type: jsPsychInstructions, + pages: instruction_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.0625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +dp_arr_long = []; +dp_len_long = trialData["disjunctive_positive"]["instructions_comp"].length; + +for (let i = 0; i < dp_len_long; i++) { + dp_arr_long.push({ + name: 'dp_instructions_comp_' + [i], + prompt: trialData["disjunctive_positive"]["instructions_comp"][i]["question"], + options: trialData["disjunctive_positive"]["instructions_comp"][i]["options"], + required: true + }); +} +const dp_instructions_comp_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: dp_arr_long, + on_start: function() { + jsPsych.setProgressBar(0.125); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +dp_arr_long = []; +dp_len_long = trialData["disjunctive_positive"]["round_one_long"].length; +for (let i = 0; i < dp_len_long; i++) { + dp_arr_long.push( + trialData["disjunctive_positive"]["round_one_long"][i] + ); +} + +var round_one_pages_long = []; +for (var i = 0; i < dp_len_long; i++) { + let slide = '
' + + '

' + dp_arr_long[i] + '

'; + round_one_pages_long.push(slide); +} +const dp_round_one_long = { + type: jsPsychInstructions, + pages: round_one_pages_long, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.1875); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const dp_round_one_comp_q1_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dp_round_one_comp_q1_0', + prompt: trialData["disjunctive_positive"]["round_one_comp_q1"][0]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'dp_round_one_comp_q1_1', + prompt: trialData["disjunctive_positive"]["round_one_comp_q1"][1]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.25); + } +}; +const dp_round_one_comp_q2_long = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dp_round_two_comp_q2_0', + prompt: trialData["disjunctive_positive"]["round_one_comp_q2"][0]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'dp_round_two_comp_q2_1', + prompt: trialData["disjunctive_positive"]["round_one_comp_q2"][1]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +dp_arr_long = []; +dp_len_long = trialData["disjunctive_positive"]["round_two_long"].length; +for (let i = 0; i < dp_len_long; i++) { + dp_arr_long.push( + trialData["disjunctive_positive"]["round_two_long"][i] + ); +} + +var round_two_pages_long = []; +for (var i = 0; i < dp_len_long; i++) { + let slide = '
' + + '

' + dp_arr_long[i] + '

'; + round_two_pages_long.push(slide); +} +const dp_round_two_long = { + type: jsPsychInstructions, + pages: round_two_pages_long, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.3125); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +const dp_selection_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Alice gets to turn one of the switches ON. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn ON, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'dp_selection_task', + prompt: trialData["disjunctive_positive"]["selection_task"]["question"], + options: trialData["disjunctive_positive"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + +const dp_loop_node_instructions_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dp_instructions_long, + dp_instructions_comp_long + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_instructions_key = trialData["disjunctive_positive"]["dp_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(dp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const dp_conditional_node_instructions_long = { + timeline: [ + dp_loop_node_instructions_long + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + + const dp_instructions_key = trialData["disjunctive_positive"]["dp_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(dp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const dp_loop_node_round_one_q1_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dp_round_one_long, + dp_round_one_comp_q1_long, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_participant_key = trialData["disjunctive_positive"]["dp_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(dp_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const dp_conditional_node_round_one_q1_long = { + timeline: [ + dp_loop_node_round_one_q1_long + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_participant_key = trialData["disjunctive_positive"]["dp_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(dp_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const dp_loop_node_round_one_q2_long = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dp_round_one_long, + dp_round_one_comp_q2_long, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_teammate_key = trialData["disjunctive_positive"]["dp_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(dp_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const dp_conditional_node_round_one_q2_long = { + timeline: [ + dp_loop_node_round_one_q2_long + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_teammate_key = trialData["disjunctive_positive"]["dp_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(dp_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const dp_intervention_task_long = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches ON manually. \ + The other switch will turn ON or OFF based on its probability." + + "", + questions: [ + { + name: 'dp_intervention_task', + prompt: trialData["disjunctive_positive"]["intervention_task"]["question"], + options: trialData["disjunctive_positive"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const dp_long = [ + dp_instructions_long, + dp_instructions_comp_long, + dp_conditional_node_instructions_long, + dp_intervention_task_long, + dp_round_one_long, + dp_round_one_comp_q1_long, + dp_conditional_node_round_one_q1_long, + dp_round_one_comp_q2_long, + dp_conditional_node_round_one_q2_long, + dp_round_two_long, + dp_selection_task_long +] \ No newline at end of file diff --git a/docs/experiment_1/js/disj_pos_short.js b/docs/experiment_1/js/disj_pos_short.js new file mode 100644 index 0000000..980c89d --- /dev/null +++ b/docs/experiment_1/js/disj_pos_short.js @@ -0,0 +1,349 @@ +/* +* File: disj_pos_short.js +* ----- +* Information for putting the pages for the DP trial together. +* This is the variation in which the participant runs through the CP trial first, then the DP trial. +*/ + +// DP short instructions +let dp_arr_short = []; +let dp_len_short = trialData["disjunctive_positive"]["instructions_short"].length; +for (let i = 0; i < dp_len_short; i++) { + dp_arr_short.push( + trialData["disjunctive_positive"]["instructions_short"][i] + ); +} + +var instruction_pages_short = []; +for (var i = 0; i < dp_len_short; i++) { + let slide = '
' + + '

' + dp_arr_short[i] + '

'; + instruction_pages_short.push(slide); +} + +const dp_instructions_short = { + type: jsPsychInstructions, + pages: instruction_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.4375); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// setup comprehension checks +dp_arr_short = []; +dp_len_short = trialData["disjunctive_positive"]["instructions_comp"].length; +for (let i = 0; i < dp_len_short; i++) { + dp_arr_short.push({ + name: 'dp_instructions_comp_' + [i], + prompt: trialData["disjunctive_positive"]["instructions_comp"][i]["question"], + options: trialData["disjunctive_positive"]["instructions_comp"][i]["options"], + required: true + }); +} +const dp_instructions_comp_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please answer the following comprehension check questions.", + questions: dp_arr_short, + on_start: function() { + jsPsych.setProgressBar(0.5); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + + +// round one +dp_arr_short = []; +dp_len_short = trialData["disjunctive_positive"]["round_one_short"].length; +for (let i = 0; i < dp_len_short; i++) { + dp_arr_short.push( + trialData["disjunctive_positive"]["round_one_short"][i] + ); +} + +var round_one_pages_short = []; +for (var i = 0; i < dp_len_short; i++) { + let slide = '
' + + '

' + dp_arr_short[i] + '

'; + round_one_pages_short.push(slide); +} +const dp_round_one_short = { + type: jsPsychInstructions, + pages: round_one_pages_short, + show_clickable_nav: true, + on_start: function() { + jsPsych.setProgressBar(0.5625); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round one comprehension checks +const dp_round_one_comp_q1_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dp_round_one_comp_q1_0', + prompt: trialData["disjunctive_positive"]["round_one_comp_q1"][0]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q1"][0]["options"], + required: true, + }, + { + name: 'dp_round_one_comp_q1_1', + prompt: trialData["disjunctive_positive"]["round_one_comp_q1"][1]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q1"][1]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.625); + } +}; +const dp_round_one_comp_q2_short = { + type: jsPsychSurveyMultiChoice, + preamble: "Please respond with whether or not the following statements are true.", + questions: [ + { + name: 'dp_round_two_comp_q2_0', + prompt: trialData["disjunctive_positive"]["round_one_comp_q2"][0]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q2"][0]["options"], + required: true, + }, + { + name: 'dp_round_two_comp_q2_1', + prompt: trialData["disjunctive_positive"]["round_one_comp_q2"][1]["question"], + options: trialData["disjunctive_positive"]["round_one_comp_q2"][1]["options"], + required: true, + }, + ], + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +// round two +dp_arr_short = []; +dp_len_short = trialData["disjunctive_positive"]["round_two_short"].length; +for (let i = 0; i < dp_len_short; i++) { + dp_arr_short.push( + trialData["disjunctive_positive"]["round_two_short"][i] + ); +} + +var round_two_pages_short = []; +for (var i = 0; i < dp_len_short; i++) { + let slide = '
' + + '

' + dp_arr_short[i] + '

'; + round_two_pages_short.push(slide); +} +const dp_round_two_short = { + type: jsPsychInstructions, + pages: round_two_pages_short, + show_clickable_nav: true, + on_start: function () { + jsPsych.setProgressBar(0.6875); + }, + on_finish: function () { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +}; + + +const dp_selection_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `
` + + "In the next round of the game, \ + Alice gets to turn one of the switches ON. \ + The other switch will turn ON or OFF \ + based on its probability. Before she decides which switch to turn ON, \ + you can explain why your team scored a point in the last round.

" + + "", + questions: [ + { + name: 'dp_selection_task', + prompt: trialData["disjunctive_positive"]["selection_task"]["question"], + options: trialData["disjunctive_positive"]["selection_task"]["options"], + required: true, + }, + ], + on_start: function() { + jsPsych.setProgressBar(0.75); + }, + on_finish: function() { + var prog = jsPsych.getProgressBarCompleted(); + jsPsych.setProgressBar(prog + 0.0625); + } +} + +const dp_loop_node_instructions_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dp_instructions_short, + dp_instructions_comp_short + ], + loop_function: function (data) { + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_instructions_key = trialData["disjunctive_positive"]["dp_instructions_key"]; + + if (JSON.stringify(trial_data) === JSON.stringify(dp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + +const dp_conditional_node_instructions_short = { + timeline: [ + dp_loop_node_instructions_short + ], + conditional_function: function(){ + // get the data from the previous trial + var trial_data = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_instructions_key = trialData["disjunctive_positive"]["dp_instructions_key"]; + + // if the participant's respone doesn't match the key, replay the instructions and comp checks + if (JSON.stringify(trial_data) === JSON.stringify(dp_instructions_key)) { + return false; + } else { + return true; + } + }, +} + + +const dp_loop_node_round_one_q1_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dp_round_one_short, + dp_round_one_comp_q1_short, + ], + loop_function: function (data) { + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_participant_key = trialData["disjunctive_positive"]["dp_gameplay_q1_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(participant_response) === JSON.stringify(dp_participant_key))) { + return false; + } else { + return true; + } + }, +} + +const dp_conditional_node_round_one_q1_short = { + timeline: [ + dp_loop_node_round_one_q1_short + ], + conditional_function: function(){ + const participant_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_participant_key = trialData["disjunctive_positive"]["dp_gameplay_q1_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(participant_response) === JSON.stringify(dp_participant_key))) { + return true; + } else { + return false; + } + }, +} + +const dp_loop_node_round_one_q2_short = { + timeline: [ + { + type: jsPsychHtmlButtonResponse, + stimulus: 'Unfortunately, you missed some of the comprehension ' + + 'questions.

Please review the instructions again.', + choices: ['Review'], + }, + dp_round_one_short, + dp_round_one_comp_q2_short, + ], + loop_function: function (data) { + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_teammate_key = trialData["disjunctive_positive"]["dp_gameplay_q2_key"]; + + // if participant and teammate responses match the key, return false, do not loop + if (!!(JSON.stringify(teammate_response) === JSON.stringify(dp_teammate_key))) { + return false; + } else { + return true; + } + }, +} + +const dp_conditional_node_round_one_q2_short = { + timeline: [ + dp_loop_node_round_one_q2_short + ], + conditional_function: function(){ + const teammate_response = jsPsych.data.getLastTrialData().filter({ trial_type: 'survey-multi-choice' }).trials[0]["response"]; + const dp_teammate_key = trialData["disjunctive_positive"]["dp_gameplay_q2_key"]; + + // if participant and teammate responses DO NOT match the key, return true to run the loop node + if (!(JSON.stringify(teammate_response) === JSON.stringify(dp_teammate_key))) { + return true; + } else { + return false; + } + }, +} + +const dp_intervention_task_short = { + type: jsPsychSurveyMultiChoice, + preamble: `

` + + "Now, imagine you had one trial round in which you were given the chance to turn one of the switches ON manually. \ + The other switch will turn ON or OFF based on its probability." + + "", + questions: [ + { + name: 'dp_intervention_task', + prompt: trialData["disjunctive_positive"]["intervention_task"]["question"], + options: trialData["disjunctive_positive"]["intervention_task"]["options"], + required: true, + }, + ], + // on_start: function() { + // jsPsych.setProgressBar(0.25); + // } +}; + +const dp_short = [ + dp_instructions_short, + dp_instructions_comp_short, + dp_conditional_node_instructions_short, + dp_intervention_task_short, + dp_round_one_short, + dp_round_one_comp_q1_short, + dp_conditional_node_round_one_q1_short, + dp_round_one_comp_q2_short, + dp_conditional_node_round_one_q2_short, + dp_round_two_short, + dp_selection_task_short +] \ No newline at end of file diff --git a/docs/experiment_1/js/feedback-demographics.js b/docs/experiment_1/js/feedback-demographics.js new file mode 100644 index 0000000..b81e703 --- /dev/null +++ b/docs/experiment_1/js/feedback-demographics.js @@ -0,0 +1,62 @@ +const feedback_demographics = { + type: jsPsychSurveyHtmlForm, + html: '

' + + 'What factors influenced how you decided to respond? Do you' + + ' have any questions or comments regarding the experiment?' + + // feedback box + '

Please provide the following' + + ' information to complete the study.

    ' + + '
  1. Age:


  2. ' + + '
  3. Gender:


  4. ' + + '
  5. Race:






  6. ' + + '
  7. Ethnicity:
  8. ' + + '
' + + '
' + + // age text box + '

' + + // gender options + ' ' + + ' ' + + '
' + + '

' + + // race options + '
' + + '
' + + '
' + + '
' + + '
' + + '
' + + '' + + '

' + + // ethnicity options + ' ' + + ' ' + + '
' + + '

Please press the finish button to complete the experiment.

', + button_label: 'Finish', + data: { + "page_type": 'exit_survey', + }, + }; \ No newline at end of file diff --git a/docs/experiment_1/js/jquery-ui.min.js b/docs/experiment_1/js/jquery-ui.min.js new file mode 100644 index 0000000..c52a3c6 --- /dev/null +++ b/docs/experiment_1/js/jquery-ui.min.js @@ -0,0 +1,12 @@ +/*! jQuery UI - v1.11.0 - 2014-08-07 +* http://jqueryui.com +* Includes: core.js, widget.js, mouse.js, position.js, draggable.js, droppable.js, resizable.js, selectable.js, sortable.js, accordion.js, autocomplete.js, button.js, datepicker.js, dialog.js, menu.js, progressbar.js, selectmenu.js, slider.js, spinner.js, tabs.js, tooltip.js +* Copyright 2014 jQuery Foundation and other contributors; Licensed MIT */ + +(function(e){"function"==typeof define&&define.amd?define(["jquery"],e):e(jQuery)})(function(e){function t(t,s){var n,a,o,r=t.nodeName.toLowerCase();return"area"===r?(n=t.parentNode,a=n.name,t.href&&a&&"map"===n.nodeName.toLowerCase()?(o=e("img[usemap=#"+a+"]")[0],!!o&&i(o)):!1):(/input|select|textarea|button|object/.test(r)?!t.disabled:"a"===r?t.href||s:s)&&i(t)}function i(t){return e.expr.filters.visible(t)&&!e(t).parents().addBack().filter(function(){return"hidden"===e.css(this,"visibility")}).length}function s(e){for(var t,i;e.length&&e[0]!==document;){if(t=e.css("position"),("absolute"===t||"relative"===t||"fixed"===t)&&(i=parseInt(e.css("zIndex"),10),!isNaN(i)&&0!==i))return i;e=e.parent()}return 0}function n(){this._curInst=null,this._keyEvent=!1,this._disabledInputs=[],this._datepickerShowing=!1,this._inDialog=!1,this._mainDivId="ui-datepicker-div",this._inlineClass="ui-datepicker-inline",this._appendClass="ui-datepicker-append",this._triggerClass="ui-datepicker-trigger",this._dialogClass="ui-datepicker-dialog",this._disableClass="ui-datepicker-disabled",this._unselectableClass="ui-datepicker-unselectable",this._currentClass="ui-datepicker-current-day",this._dayOverClass="ui-datepicker-days-cell-over",this.regional=[],this.regional[""]={closeText:"Done",prevText:"Prev",nextText:"Next",currentText:"Today",monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],weekHeader:"Wk",dateFormat:"mm/dd/yy",firstDay:0,isRTL:!1,showMonthAfterYear:!1,yearSuffix:""},this._defaults={showOn:"focus",showAnim:"fadeIn",showOptions:{},defaultDate:null,appendText:"",buttonText:"...",buttonImage:"",buttonImageOnly:!1,hideIfNoPrevNext:!1,navigationAsDateFormat:!1,gotoCurrent:!1,changeMonth:!1,changeYear:!1,yearRange:"c-10:c+10",showOtherMonths:!1,selectOtherMonths:!1,showWeek:!1,calculateWeek:this.iso8601Week,shortYearCutoff:"+10",minDate:null,maxDate:null,duration:"fast",beforeShowDay:null,beforeShow:null,onSelect:null,onChangeMonthYear:null,onClose:null,numberOfMonths:1,showCurrentAtPos:0,stepMonths:1,stepBigMonths:12,altField:"",altFormat:"",constrainInput:!0,showButtonPanel:!1,autoSize:!1,disabled:!1},e.extend(this._defaults,this.regional[""]),this.regional.en=e.extend(!0,{},this.regional[""]),this.regional["en-US"]=e.extend(!0,{},this.regional.en),this.dpDiv=a(e("
"))}function a(t){var i="button, .ui-datepicker-prev, .ui-datepicker-next, .ui-datepicker-calendar td a";return t.delegate(i,"mouseout",function(){e(this).removeClass("ui-state-hover"),-1!==this.className.indexOf("ui-datepicker-prev")&&e(this).removeClass("ui-datepicker-prev-hover"),-1!==this.className.indexOf("ui-datepicker-next")&&e(this).removeClass("ui-datepicker-next-hover")}).delegate(i,"mouseover",function(){e.datepicker._isDisabledDatepicker(g.inline?t.parent()[0]:g.input[0])||(e(this).parents(".ui-datepicker-calendar").find("a").removeClass("ui-state-hover"),e(this).addClass("ui-state-hover"),-1!==this.className.indexOf("ui-datepicker-prev")&&e(this).addClass("ui-datepicker-prev-hover"),-1!==this.className.indexOf("ui-datepicker-next")&&e(this).addClass("ui-datepicker-next-hover"))})}function o(t,i){e.extend(t,i);for(var s in i)null==i[s]&&(t[s]=i[s]);return t}function r(e){return function(){var t=this.element.val();e.apply(this,arguments),this._refresh(),t!==this.element.val()&&this._trigger("change")}}e.ui=e.ui||{},e.extend(e.ui,{version:"1.11.0",keyCode:{BACKSPACE:8,COMMA:188,DELETE:46,DOWN:40,END:35,ENTER:13,ESCAPE:27,HOME:36,LEFT:37,PAGE_DOWN:34,PAGE_UP:33,PERIOD:190,RIGHT:39,SPACE:32,TAB:9,UP:38}}),e.fn.extend({scrollParent:function(){var t=this.css("position"),i="absolute"===t,s=this.parents().filter(function(){var t=e(this);return i&&"static"===t.css("position")?!1:/(auto|scroll)/.test(t.css("overflow")+t.css("overflow-y")+t.css("overflow-x"))}).eq(0);return"fixed"!==t&&s.length?s:e(this[0].ownerDocument||document)},uniqueId:function(){var e=0;return function(){return this.each(function(){this.id||(this.id="ui-id-"+ ++e)})}}(),removeUniqueId:function(){return this.each(function(){/^ui-id-\d+$/.test(this.id)&&e(this).removeAttr("id")})}}),e.extend(e.expr[":"],{data:e.expr.createPseudo?e.expr.createPseudo(function(t){return function(i){return!!e.data(i,t)}}):function(t,i,s){return!!e.data(t,s[3])},focusable:function(i){return t(i,!isNaN(e.attr(i,"tabindex")))},tabbable:function(i){var s=e.attr(i,"tabindex"),n=isNaN(s);return(n||s>=0)&&t(i,!n)}}),e("").outerWidth(1).jquery||e.each(["Width","Height"],function(t,i){function s(t,i,s,a){return e.each(n,function(){i-=parseFloat(e.css(t,"padding"+this))||0,s&&(i-=parseFloat(e.css(t,"border"+this+"Width"))||0),a&&(i-=parseFloat(e.css(t,"margin"+this))||0)}),i}var n="Width"===i?["Left","Right"]:["Top","Bottom"],a=i.toLowerCase(),o={innerWidth:e.fn.innerWidth,innerHeight:e.fn.innerHeight,outerWidth:e.fn.outerWidth,outerHeight:e.fn.outerHeight};e.fn["inner"+i]=function(t){return void 0===t?o["inner"+i].call(this):this.each(function(){e(this).css(a,s(this,t)+"px")})},e.fn["outer"+i]=function(t,n){return"number"!=typeof t?o["outer"+i].call(this,t):this.each(function(){e(this).css(a,s(this,t,!0,n)+"px")})}}),e.fn.addBack||(e.fn.addBack=function(e){return this.add(null==e?this.prevObject:this.prevObject.filter(e))}),e("").data("a-b","a").removeData("a-b").data("a-b")&&(e.fn.removeData=function(t){return function(i){return arguments.length?t.call(this,e.camelCase(i)):t.call(this)}}(e.fn.removeData)),e.ui.ie=!!/msie [\w.]+/.exec(navigator.userAgent.toLowerCase()),e.fn.extend({focus:function(t){return function(i,s){return"number"==typeof i?this.each(function(){var t=this;setTimeout(function(){e(t).focus(),s&&s.call(t)},i)}):t.apply(this,arguments)}}(e.fn.focus),disableSelection:function(){var e="onselectstart"in document.createElement("div")?"selectstart":"mousedown";return function(){return this.bind(e+".ui-disableSelection",function(e){e.preventDefault()})}}(),enableSelection:function(){return this.unbind(".ui-disableSelection")},zIndex:function(t){if(void 0!==t)return this.css("zIndex",t);if(this.length)for(var i,s,n=e(this[0]);n.length&&n[0]!==document;){if(i=n.css("position"),("absolute"===i||"relative"===i||"fixed"===i)&&(s=parseInt(n.css("zIndex"),10),!isNaN(s)&&0!==s))return s;n=n.parent()}return 0}}),e.ui.plugin={add:function(t,i,s){var n,a=e.ui[t].prototype;for(n in s)a.plugins[n]=a.plugins[n]||[],a.plugins[n].push([i,s[n]])},call:function(e,t,i,s){var n,a=e.plugins[t];if(a&&(s||e.element[0].parentNode&&11!==e.element[0].parentNode.nodeType))for(n=0;a.length>n;n++)e.options[a[n][0]]&&a[n][1].apply(e.element,i)}};var h=0,l=Array.prototype.slice;e.cleanData=function(t){return function(i){for(var s,n=0;null!=(s=i[n]);n++)try{e(s).triggerHandler("remove")}catch(a){}t(i)}}(e.cleanData),e.widget=function(t,i,s){var n,a,o,r,h={},l=t.split(".")[0];return t=t.split(".")[1],n=l+"-"+t,s||(s=i,i=e.Widget),e.expr[":"][n.toLowerCase()]=function(t){return!!e.data(t,n)},e[l]=e[l]||{},a=e[l][t],o=e[l][t]=function(e,t){return this._createWidget?(arguments.length&&this._createWidget(e,t),void 0):new o(e,t)},e.extend(o,a,{version:s.version,_proto:e.extend({},s),_childConstructors:[]}),r=new i,r.options=e.widget.extend({},r.options),e.each(s,function(t,s){return e.isFunction(s)?(h[t]=function(){var e=function(){return i.prototype[t].apply(this,arguments)},n=function(e){return i.prototype[t].apply(this,e)};return function(){var t,i=this._super,a=this._superApply;return this._super=e,this._superApply=n,t=s.apply(this,arguments),this._super=i,this._superApply=a,t}}(),void 0):(h[t]=s,void 0)}),o.prototype=e.widget.extend(r,{widgetEventPrefix:a?r.widgetEventPrefix||t:t},h,{constructor:o,namespace:l,widgetName:t,widgetFullName:n}),a?(e.each(a._childConstructors,function(t,i){var s=i.prototype;e.widget(s.namespace+"."+s.widgetName,o,i._proto)}),delete a._childConstructors):i._childConstructors.push(o),e.widget.bridge(t,o),o},e.widget.extend=function(t){for(var i,s,n=l.call(arguments,1),a=0,o=n.length;o>a;a++)for(i in n[a])s=n[a][i],n[a].hasOwnProperty(i)&&void 0!==s&&(t[i]=e.isPlainObject(s)?e.isPlainObject(t[i])?e.widget.extend({},t[i],s):e.widget.extend({},s):s);return t},e.widget.bridge=function(t,i){var s=i.prototype.widgetFullName||t;e.fn[t]=function(n){var a="string"==typeof n,o=l.call(arguments,1),r=this;return n=!a&&o.length?e.widget.extend.apply(null,[n].concat(o)):n,a?this.each(function(){var i,a=e.data(this,s);return"instance"===n?(r=a,!1):a?e.isFunction(a[n])&&"_"!==n.charAt(0)?(i=a[n].apply(a,o),i!==a&&void 0!==i?(r=i&&i.jquery?r.pushStack(i.get()):i,!1):void 0):e.error("no such method '"+n+"' for "+t+" widget instance"):e.error("cannot call methods on "+t+" prior to initialization; "+"attempted to call method '"+n+"'")}):this.each(function(){var t=e.data(this,s);t?(t.option(n||{}),t._init&&t._init()):e.data(this,s,new i(n,this))}),r}},e.Widget=function(){},e.Widget._childConstructors=[],e.Widget.prototype={widgetName:"widget",widgetEventPrefix:"",defaultElement:"
",options:{disabled:!1,create:null},_createWidget:function(t,i){i=e(i||this.defaultElement||this)[0],this.element=e(i),this.uuid=h++,this.eventNamespace="."+this.widgetName+this.uuid,this.options=e.widget.extend({},this.options,this._getCreateOptions(),t),this.bindings=e(),this.hoverable=e(),this.focusable=e(),i!==this&&(e.data(i,this.widgetFullName,this),this._on(!0,this.element,{remove:function(e){e.target===i&&this.destroy()}}),this.document=e(i.style?i.ownerDocument:i.document||i),this.window=e(this.document[0].defaultView||this.document[0].parentWindow)),this._create(),this._trigger("create",null,this._getCreateEventData()),this._init()},_getCreateOptions:e.noop,_getCreateEventData:e.noop,_create:e.noop,_init:e.noop,destroy:function(){this._destroy(),this.element.unbind(this.eventNamespace).removeData(this.widgetFullName).removeData(e.camelCase(this.widgetFullName)),this.widget().unbind(this.eventNamespace).removeAttr("aria-disabled").removeClass(this.widgetFullName+"-disabled "+"ui-state-disabled"),this.bindings.unbind(this.eventNamespace),this.hoverable.removeClass("ui-state-hover"),this.focusable.removeClass("ui-state-focus")},_destroy:e.noop,widget:function(){return this.element},option:function(t,i){var s,n,a,o=t;if(0===arguments.length)return e.widget.extend({},this.options);if("string"==typeof t)if(o={},s=t.split("."),t=s.shift(),s.length){for(n=o[t]=e.widget.extend({},this.options[t]),a=0;s.length-1>a;a++)n[s[a]]=n[s[a]]||{},n=n[s[a]];if(t=s.pop(),1===arguments.length)return void 0===n[t]?null:n[t];n[t]=i}else{if(1===arguments.length)return void 0===this.options[t]?null:this.options[t];o[t]=i}return this._setOptions(o),this},_setOptions:function(e){var t;for(t in e)this._setOption(t,e[t]);return this},_setOption:function(e,t){return this.options[e]=t,"disabled"===e&&(this.widget().toggleClass(this.widgetFullName+"-disabled",!!t),t&&(this.hoverable.removeClass("ui-state-hover"),this.focusable.removeClass("ui-state-focus"))),this},enable:function(){return this._setOptions({disabled:!1})},disable:function(){return this._setOptions({disabled:!0})},_on:function(t,i,s){var n,a=this;"boolean"!=typeof t&&(s=i,i=t,t=!1),s?(i=n=e(i),this.bindings=this.bindings.add(i)):(s=i,i=this.element,n=this.widget()),e.each(s,function(s,o){function r(){return t||a.options.disabled!==!0&&!e(this).hasClass("ui-state-disabled")?("string"==typeof o?a[o]:o).apply(a,arguments):void 0}"string"!=typeof o&&(r.guid=o.guid=o.guid||r.guid||e.guid++);var h=s.match(/^([\w:-]*)\s*(.*)$/),l=h[1]+a.eventNamespace,u=h[2];u?n.delegate(u,l,r):i.bind(l,r)})},_off:function(e,t){t=(t||"").split(" ").join(this.eventNamespace+" ")+this.eventNamespace,e.unbind(t).undelegate(t)},_delay:function(e,t){function i(){return("string"==typeof e?s[e]:e).apply(s,arguments)}var s=this;return setTimeout(i,t||0)},_hoverable:function(t){this.hoverable=this.hoverable.add(t),this._on(t,{mouseenter:function(t){e(t.currentTarget).addClass("ui-state-hover")},mouseleave:function(t){e(t.currentTarget).removeClass("ui-state-hover")}})},_focusable:function(t){this.focusable=this.focusable.add(t),this._on(t,{focusin:function(t){e(t.currentTarget).addClass("ui-state-focus")},focusout:function(t){e(t.currentTarget).removeClass("ui-state-focus")}})},_trigger:function(t,i,s){var n,a,o=this.options[t];if(s=s||{},i=e.Event(i),i.type=(t===this.widgetEventPrefix?t:this.widgetEventPrefix+t).toLowerCase(),i.target=this.element[0],a=i.originalEvent)for(n in a)n in i||(i[n]=a[n]);return this.element.trigger(i,s),!(e.isFunction(o)&&o.apply(this.element[0],[i].concat(s))===!1||i.isDefaultPrevented())}},e.each({show:"fadeIn",hide:"fadeOut"},function(t,i){e.Widget.prototype["_"+t]=function(s,n,a){"string"==typeof n&&(n={effect:n});var o,r=n?n===!0||"number"==typeof n?i:n.effect||i:t;n=n||{},"number"==typeof n&&(n={duration:n}),o=!e.isEmptyObject(n),n.complete=a,n.delay&&s.delay(n.delay),o&&e.effects&&e.effects.effect[r]?s[t](n):r!==t&&s[r]?s[r](n.duration,n.easing,a):s.queue(function(i){e(this)[t](),a&&a.call(s[0]),i()})}}),e.widget;var u=!1;e(document).mouseup(function(){u=!1}),e.widget("ui.mouse",{version:"1.11.0",options:{cancel:"input,textarea,button,select,option",distance:1,delay:0},_mouseInit:function(){var t=this;this.element.bind("mousedown."+this.widgetName,function(e){return t._mouseDown(e)}).bind("click."+this.widgetName,function(i){return!0===e.data(i.target,t.widgetName+".preventClickEvent")?(e.removeData(i.target,t.widgetName+".preventClickEvent"),i.stopImmediatePropagation(),!1):void 0}),this.started=!1},_mouseDestroy:function(){this.element.unbind("."+this.widgetName),this._mouseMoveDelegate&&this.document.unbind("mousemove."+this.widgetName,this._mouseMoveDelegate).unbind("mouseup."+this.widgetName,this._mouseUpDelegate)},_mouseDown:function(t){if(!u){this._mouseStarted&&this._mouseUp(t),this._mouseDownEvent=t;var i=this,s=1===t.which,n="string"==typeof this.options.cancel&&t.target.nodeName?e(t.target).closest(this.options.cancel).length:!1;return s&&!n&&this._mouseCapture(t)?(this.mouseDelayMet=!this.options.delay,this.mouseDelayMet||(this._mouseDelayTimer=setTimeout(function(){i.mouseDelayMet=!0},this.options.delay)),this._mouseDistanceMet(t)&&this._mouseDelayMet(t)&&(this._mouseStarted=this._mouseStart(t)!==!1,!this._mouseStarted)?(t.preventDefault(),!0):(!0===e.data(t.target,this.widgetName+".preventClickEvent")&&e.removeData(t.target,this.widgetName+".preventClickEvent"),this._mouseMoveDelegate=function(e){return i._mouseMove(e)},this._mouseUpDelegate=function(e){return i._mouseUp(e)},this.document.bind("mousemove."+this.widgetName,this._mouseMoveDelegate).bind("mouseup."+this.widgetName,this._mouseUpDelegate),t.preventDefault(),u=!0,!0)):!0}},_mouseMove:function(t){return e.ui.ie&&(!document.documentMode||9>document.documentMode)&&!t.button?this._mouseUp(t):t.which?this._mouseStarted?(this._mouseDrag(t),t.preventDefault()):(this._mouseDistanceMet(t)&&this._mouseDelayMet(t)&&(this._mouseStarted=this._mouseStart(this._mouseDownEvent,t)!==!1,this._mouseStarted?this._mouseDrag(t):this._mouseUp(t)),!this._mouseStarted):this._mouseUp(t)},_mouseUp:function(t){return this.document.unbind("mousemove."+this.widgetName,this._mouseMoveDelegate).unbind("mouseup."+this.widgetName,this._mouseUpDelegate),this._mouseStarted&&(this._mouseStarted=!1,t.target===this._mouseDownEvent.target&&e.data(t.target,this.widgetName+".preventClickEvent",!0),this._mouseStop(t)),u=!1,!1},_mouseDistanceMet:function(e){return Math.max(Math.abs(this._mouseDownEvent.pageX-e.pageX),Math.abs(this._mouseDownEvent.pageY-e.pageY))>=this.options.distance},_mouseDelayMet:function(){return this.mouseDelayMet},_mouseStart:function(){},_mouseDrag:function(){},_mouseStop:function(){},_mouseCapture:function(){return!0}}),function(){function t(e,t,i){return[parseFloat(e[0])*(p.test(e[0])?t/100:1),parseFloat(e[1])*(p.test(e[1])?i/100:1)]}function i(t,i){return parseInt(e.css(t,i),10)||0}function s(t){var i=t[0];return 9===i.nodeType?{width:t.width(),height:t.height(),offset:{top:0,left:0}}:e.isWindow(i)?{width:t.width(),height:t.height(),offset:{top:t.scrollTop(),left:t.scrollLeft()}}:i.preventDefault?{width:0,height:0,offset:{top:i.pageY,left:i.pageX}}:{width:t.outerWidth(),height:t.outerHeight(),offset:t.offset()}}e.ui=e.ui||{};var n,a,o=Math.max,r=Math.abs,h=Math.round,l=/left|center|right/,u=/top|center|bottom/,d=/[\+\-]\d+(\.[\d]+)?%?/,c=/^\w+/,p=/%$/,f=e.fn.position;e.position={scrollbarWidth:function(){if(void 0!==n)return n;var t,i,s=e("
"),a=s.children()[0];return e("body").append(s),t=a.offsetWidth,s.css("overflow","scroll"),i=a.offsetWidth,t===i&&(i=s[0].clientWidth),s.remove(),n=t-i},getScrollInfo:function(t){var i=t.isWindow||t.isDocument?"":t.element.css("overflow-x"),s=t.isWindow||t.isDocument?"":t.element.css("overflow-y"),n="scroll"===i||"auto"===i&&t.widthi?"left":t>0?"right":"center",vertical:0>a?"top":s>0?"bottom":"middle"};d>m&&m>r(t+i)&&(h.horizontal="center"),c>g&&g>r(s+a)&&(h.vertical="middle"),h.important=o(r(t),r(i))>o(r(s),r(a))?"horizontal":"vertical",n.using.call(this,e,h)}),u.offset(e.extend(N,{using:l}))})},e.ui.position={fit:{left:function(e,t){var i,s=t.within,n=s.isWindow?s.scrollLeft:s.offset.left,a=s.width,r=e.left-t.collisionPosition.marginLeft,h=n-r,l=r+t.collisionWidth-a-n;t.collisionWidth>a?h>0&&0>=l?(i=e.left+h+t.collisionWidth-a-n,e.left+=h-i):e.left=l>0&&0>=h?n:h>l?n+a-t.collisionWidth:n:h>0?e.left+=h:l>0?e.left-=l:e.left=o(e.left-r,e.left)},top:function(e,t){var i,s=t.within,n=s.isWindow?s.scrollTop:s.offset.top,a=t.within.height,r=e.top-t.collisionPosition.marginTop,h=n-r,l=r+t.collisionHeight-a-n;t.collisionHeight>a?h>0&&0>=l?(i=e.top+h+t.collisionHeight-a-n,e.top+=h-i):e.top=l>0&&0>=h?n:h>l?n+a-t.collisionHeight:n:h>0?e.top+=h:l>0?e.top-=l:e.top=o(e.top-r,e.top)}},flip:{left:function(e,t){var i,s,n=t.within,a=n.offset.left+n.scrollLeft,o=n.width,h=n.isWindow?n.scrollLeft:n.offset.left,l=e.left-t.collisionPosition.marginLeft,u=l-h,d=l+t.collisionWidth-o-h,c="left"===t.my[0]?-t.elemWidth:"right"===t.my[0]?t.elemWidth:0,p="left"===t.at[0]?t.targetWidth:"right"===t.at[0]?-t.targetWidth:0,f=-2*t.offset[0];0>u?(i=e.left+c+p+f+t.collisionWidth-o-a,(0>i||r(u)>i)&&(e.left+=c+p+f)):d>0&&(s=e.left-t.collisionPosition.marginLeft+c+p+f-h,(s>0||d>r(s))&&(e.left+=c+p+f))},top:function(e,t){var i,s,n=t.within,a=n.offset.top+n.scrollTop,o=n.height,h=n.isWindow?n.scrollTop:n.offset.top,l=e.top-t.collisionPosition.marginTop,u=l-h,d=l+t.collisionHeight-o-h,c="top"===t.my[1],p=c?-t.elemHeight:"bottom"===t.my[1]?t.elemHeight:0,f="top"===t.at[1]?t.targetHeight:"bottom"===t.at[1]?-t.targetHeight:0,m=-2*t.offset[1];0>u?(s=e.top+p+f+m+t.collisionHeight-o-a,e.top+p+f+m>u&&(0>s||r(u)>s)&&(e.top+=p+f+m)):d>0&&(i=e.top-t.collisionPosition.marginTop+p+f+m-h,e.top+p+f+m>d&&(i>0||d>r(i))&&(e.top+=p+f+m))}},flipfit:{left:function(){e.ui.position.flip.left.apply(this,arguments),e.ui.position.fit.left.apply(this,arguments)},top:function(){e.ui.position.flip.top.apply(this,arguments),e.ui.position.fit.top.apply(this,arguments)}}},function(){var t,i,s,n,o,r=document.getElementsByTagName("body")[0],h=document.createElement("div");t=document.createElement(r?"div":"body"),s={visibility:"hidden",width:0,height:0,border:0,margin:0,background:"none"},r&&e.extend(s,{position:"absolute",left:"-1000px",top:"-1000px"});for(o in s)t.style[o]=s[o];t.appendChild(h),i=r||document.documentElement,i.insertBefore(t,i.firstChild),h.style.cssText="position: absolute; left: 10.7432222px;",n=e(h).offset().left,a=n>10&&11>n,t.innerHTML="",i.removeChild(t)}()}(),e.ui.position,e.widget("ui.draggable",e.ui.mouse,{version:"1.11.0",widgetEventPrefix:"drag",options:{addClasses:!0,appendTo:"parent",axis:!1,connectToSortable:!1,containment:!1,cursor:"auto",cursorAt:!1,grid:!1,handle:!1,helper:"original",iframeFix:!1,opacity:!1,refreshPositions:!1,revert:!1,revertDuration:500,scope:"default",scroll:!0,scrollSensitivity:20,scrollSpeed:20,snap:!1,snapMode:"both",snapTolerance:20,stack:!1,zIndex:!1,drag:null,start:null,stop:null},_create:function(){"original"!==this.options.helper||/^(?:r|a|f)/.test(this.element.css("position"))||(this.element[0].style.position="relative"),this.options.addClasses&&this.element.addClass("ui-draggable"),this.options.disabled&&this.element.addClass("ui-draggable-disabled"),this._setHandleClassName(),this._mouseInit()},_setOption:function(e,t){this._super(e,t),"handle"===e&&this._setHandleClassName()},_destroy:function(){return(this.helper||this.element).is(".ui-draggable-dragging")?(this.destroyOnClear=!0,void 0):(this.element.removeClass("ui-draggable ui-draggable-dragging ui-draggable-disabled"),this._removeHandleClassName(),this._mouseDestroy(),void 0)},_mouseCapture:function(t){var i=this.document[0],s=this.options;try{i.activeElement&&"body"!==i.activeElement.nodeName.toLowerCase()&&e(i.activeElement).blur()}catch(n){}return this.helper||s.disabled||e(t.target).closest(".ui-resizable-handle").length>0?!1:(this.handle=this._getHandle(t),this.handle?(e(s.iframeFix===!0?"iframe":s.iframeFix).each(function(){e("
").css({width:this.offsetWidth+"px",height:this.offsetHeight+"px",position:"absolute",opacity:"0.001",zIndex:1e3}).css(e(this).offset()).appendTo("body")}),!0):!1)},_mouseStart:function(t){var i=this.options;return this.helper=this._createHelper(t),this.helper.addClass("ui-draggable-dragging"),this._cacheHelperProportions(),e.ui.ddmanager&&(e.ui.ddmanager.current=this),this._cacheMargins(),this.cssPosition=this.helper.css("position"),this.scrollParent=this.helper.scrollParent(),this.offsetParent=this.helper.offsetParent(),this.offsetParentCssPosition=this.offsetParent.css("position"),this.offset=this.positionAbs=this.element.offset(),this.offset={top:this.offset.top-this.margins.top,left:this.offset.left-this.margins.left},this.offset.scroll=!1,e.extend(this.offset,{click:{left:t.pageX-this.offset.left,top:t.pageY-this.offset.top},parent:this._getParentOffset(),relative:this._getRelativeOffset()}),this.originalPosition=this.position=this._generatePosition(t,!1),this.originalPageX=t.pageX,this.originalPageY=t.pageY,i.cursorAt&&this._adjustOffsetFromHelper(i.cursorAt),this._setContainment(),this._trigger("start",t)===!1?(this._clear(),!1):(this._cacheHelperProportions(),e.ui.ddmanager&&!i.dropBehaviour&&e.ui.ddmanager.prepareOffsets(this,t),this._mouseDrag(t,!0),e.ui.ddmanager&&e.ui.ddmanager.dragStart(this,t),!0)},_mouseDrag:function(t,i){if("fixed"===this.offsetParentCssPosition&&(this.offset.parent=this._getParentOffset()),this.position=this._generatePosition(t,!0),this.positionAbs=this._convertPositionTo("absolute"),!i){var s=this._uiHash();if(this._trigger("drag",t,s)===!1)return this._mouseUp({}),!1;this.position=s.position}return this.helper[0].style.left=this.position.left+"px",this.helper[0].style.top=this.position.top+"px",e.ui.ddmanager&&e.ui.ddmanager.drag(this,t),!1},_mouseStop:function(t){var i=this,s=!1;return e.ui.ddmanager&&!this.options.dropBehaviour&&(s=e.ui.ddmanager.drop(this,t)),this.dropped&&(s=this.dropped,this.dropped=!1),"invalid"===this.options.revert&&!s||"valid"===this.options.revert&&s||this.options.revert===!0||e.isFunction(this.options.revert)&&this.options.revert.call(this.element,s)?e(this.helper).animate(this.originalPosition,parseInt(this.options.revertDuration,10),function(){i._trigger("stop",t)!==!1&&i._clear()}):this._trigger("stop",t)!==!1&&this._clear(),!1},_mouseUp:function(t){return e("div.ui-draggable-iframeFix").each(function(){this.parentNode.removeChild(this)}),e.ui.ddmanager&&e.ui.ddmanager.dragStop(this,t),this.element.focus(),e.ui.mouse.prototype._mouseUp.call(this,t)},cancel:function(){return this.helper.is(".ui-draggable-dragging")?this._mouseUp({}):this._clear(),this},_getHandle:function(t){return this.options.handle?!!e(t.target).closest(this.element.find(this.options.handle)).length:!0},_setHandleClassName:function(){this._removeHandleClassName(),e(this.options.handle||this.element).addClass("ui-draggable-handle")},_removeHandleClassName:function(){this.element.find(".ui-draggable-handle").addBack().removeClass("ui-draggable-handle")},_createHelper:function(t){var i=this.options,s=e.isFunction(i.helper)?e(i.helper.apply(this.element[0],[t])):"clone"===i.helper?this.element.clone().removeAttr("id"):this.element;return s.parents("body").length||s.appendTo("parent"===i.appendTo?this.element[0].parentNode:i.appendTo),s[0]===this.element[0]||/(fixed|absolute)/.test(s.css("position"))||s.css("position","absolute"),s},_adjustOffsetFromHelper:function(t){"string"==typeof t&&(t=t.split(" ")),e.isArray(t)&&(t={left:+t[0],top:+t[1]||0}),"left"in t&&(this.offset.click.left=t.left+this.margins.left),"right"in t&&(this.offset.click.left=this.helperProportions.width-t.right+this.margins.left),"top"in t&&(this.offset.click.top=t.top+this.margins.top),"bottom"in t&&(this.offset.click.top=this.helperProportions.height-t.bottom+this.margins.top)},_isRootNode:function(e){return/(html|body)/i.test(e.tagName)||e===this.document[0]},_getParentOffset:function(){var t=this.offsetParent.offset(),i=this.document[0];return"absolute"===this.cssPosition&&this.scrollParent[0]!==i&&e.contains(this.scrollParent[0],this.offsetParent[0])&&(t.left+=this.scrollParent.scrollLeft(),t.top+=this.scrollParent.scrollTop()),this._isRootNode(this.offsetParent[0])&&(t={top:0,left:0}),{top:t.top+(parseInt(this.offsetParent.css("borderTopWidth"),10)||0),left:t.left+(parseInt(this.offsetParent.css("borderLeftWidth"),10)||0)}},_getRelativeOffset:function(){if("relative"!==this.cssPosition)return{top:0,left:0};var e=this.element.position(),t=this._isRootNode(this.scrollParent[0]);return{top:e.top-(parseInt(this.helper.css("top"),10)||0)+(t?0:this.scrollParent.scrollTop()),left:e.left-(parseInt(this.helper.css("left"),10)||0)+(t?0:this.scrollParent.scrollLeft())}},_cacheMargins:function(){this.margins={left:parseInt(this.element.css("marginLeft"),10)||0,top:parseInt(this.element.css("marginTop"),10)||0,right:parseInt(this.element.css("marginRight"),10)||0,bottom:parseInt(this.element.css("marginBottom"),10)||0}},_cacheHelperProportions:function(){this.helperProportions={width:this.helper.outerWidth(),height:this.helper.outerHeight()}},_setContainment:function(){var t,i,s,n=this.options,a=this.document[0];return this.relative_container=null,n.containment?"window"===n.containment?(this.containment=[e(window).scrollLeft()-this.offset.relative.left-this.offset.parent.left,e(window).scrollTop()-this.offset.relative.top-this.offset.parent.top,e(window).scrollLeft()+e(window).width()-this.helperProportions.width-this.margins.left,e(window).scrollTop()+(e(window).height()||a.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top],void 0):"document"===n.containment?(this.containment=[0,0,e(a).width()-this.helperProportions.width-this.margins.left,(e(a).height()||a.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top],void 0):n.containment.constructor===Array?(this.containment=n.containment,void 0):("parent"===n.containment&&(n.containment=this.helper[0].parentNode),i=e(n.containment),s=i[0],s&&(t="hidden"!==i.css("overflow"),this.containment=[(parseInt(i.css("borderLeftWidth"),10)||0)+(parseInt(i.css("paddingLeft"),10)||0),(parseInt(i.css("borderTopWidth"),10)||0)+(parseInt(i.css("paddingTop"),10)||0),(t?Math.max(s.scrollWidth,s.offsetWidth):s.offsetWidth)-(parseInt(i.css("borderRightWidth"),10)||0)-(parseInt(i.css("paddingRight"),10)||0)-this.helperProportions.width-this.margins.left-this.margins.right,(t?Math.max(s.scrollHeight,s.offsetHeight):s.offsetHeight)-(parseInt(i.css("borderBottomWidth"),10)||0)-(parseInt(i.css("paddingBottom"),10)||0)-this.helperProportions.height-this.margins.top-this.margins.bottom],this.relative_container=i),void 0):(this.containment=null,void 0)},_convertPositionTo:function(e,t){t||(t=this.position);var i="absolute"===e?1:-1,s=this._isRootNode(this.scrollParent[0]);return{top:t.top+this.offset.relative.top*i+this.offset.parent.top*i-("fixed"===this.cssPosition?-this.offset.scroll.top:s?0:this.offset.scroll.top)*i,left:t.left+this.offset.relative.left*i+this.offset.parent.left*i-("fixed"===this.cssPosition?-this.offset.scroll.left:s?0:this.offset.scroll.left)*i}},_generatePosition:function(e,t){var i,s,n,a,o=this.options,r=this._isRootNode(this.scrollParent[0]),h=e.pageX,l=e.pageY;return r&&this.offset.scroll||(this.offset.scroll={top:this.scrollParent.scrollTop(),left:this.scrollParent.scrollLeft()}),t&&(this.containment&&(this.relative_container?(s=this.relative_container.offset(),i=[this.containment[0]+s.left,this.containment[1]+s.top,this.containment[2]+s.left,this.containment[3]+s.top]):i=this.containment,e.pageX-this.offset.click.lefti[2]&&(h=i[2]+this.offset.click.left),e.pageY-this.offset.click.top>i[3]&&(l=i[3]+this.offset.click.top)),o.grid&&(n=o.grid[1]?this.originalPageY+Math.round((l-this.originalPageY)/o.grid[1])*o.grid[1]:this.originalPageY,l=i?n-this.offset.click.top>=i[1]||n-this.offset.click.top>i[3]?n:n-this.offset.click.top>=i[1]?n-o.grid[1]:n+o.grid[1]:n,a=o.grid[0]?this.originalPageX+Math.round((h-this.originalPageX)/o.grid[0])*o.grid[0]:this.originalPageX,h=i?a-this.offset.click.left>=i[0]||a-this.offset.click.left>i[2]?a:a-this.offset.click.left>=i[0]?a-o.grid[0]:a+o.grid[0]:a),"y"===o.axis&&(h=this.originalPageX),"x"===o.axis&&(l=this.originalPageY)),{top:l-this.offset.click.top-this.offset.relative.top-this.offset.parent.top+("fixed"===this.cssPosition?-this.offset.scroll.top:r?0:this.offset.scroll.top),left:h-this.offset.click.left-this.offset.relative.left-this.offset.parent.left+("fixed"===this.cssPosition?-this.offset.scroll.left:r?0:this.offset.scroll.left)} +},_clear:function(){this.helper.removeClass("ui-draggable-dragging"),this.helper[0]===this.element[0]||this.cancelHelperRemoval||this.helper.remove(),this.helper=null,this.cancelHelperRemoval=!1,this.destroyOnClear&&this.destroy()},_trigger:function(t,i,s){return s=s||this._uiHash(),e.ui.plugin.call(this,t,[i,s,this],!0),"drag"===t&&(this.positionAbs=this._convertPositionTo("absolute")),e.Widget.prototype._trigger.call(this,t,i,s)},plugins:{},_uiHash:function(){return{helper:this.helper,position:this.position,originalPosition:this.originalPosition,offset:this.positionAbs}}}),e.ui.plugin.add("draggable","connectToSortable",{start:function(t,i,s){var n=s.options,a=e.extend({},i,{item:s.element});s.sortables=[],e(n.connectToSortable).each(function(){var i=e(this).sortable("instance");i&&!i.options.disabled&&(s.sortables.push({instance:i,shouldRevert:i.options.revert}),i.refreshPositions(),i._trigger("activate",t,a))})},stop:function(t,i,s){var n=e.extend({},i,{item:s.element});e.each(s.sortables,function(){this.instance.isOver?(this.instance.isOver=0,s.cancelHelperRemoval=!0,this.instance.cancelHelperRemoval=!1,this.shouldRevert&&(this.instance.options.revert=this.shouldRevert),this.instance._mouseStop(t),this.instance.options.helper=this.instance.options._helper,"original"===s.options.helper&&this.instance.currentItem.css({top:"auto",left:"auto"})):(this.instance.cancelHelperRemoval=!1,this.instance._trigger("deactivate",t,n))})},drag:function(t,i,s){var n=this;e.each(s.sortables,function(){var a=!1,o=this;this.instance.positionAbs=s.positionAbs,this.instance.helperProportions=s.helperProportions,this.instance.offset.click=s.offset.click,this.instance._intersectsWith(this.instance.containerCache)&&(a=!0,e.each(s.sortables,function(){return this.instance.positionAbs=s.positionAbs,this.instance.helperProportions=s.helperProportions,this.instance.offset.click=s.offset.click,this!==o&&this.instance._intersectsWith(this.instance.containerCache)&&e.contains(o.instance.element[0],this.instance.element[0])&&(a=!1),a})),a?(this.instance.isOver||(this.instance.isOver=1,this.instance.currentItem=e(n).clone().removeAttr("id").appendTo(this.instance.element).data("ui-sortable-item",!0),this.instance.options._helper=this.instance.options.helper,this.instance.options.helper=function(){return i.helper[0]},t.target=this.instance.currentItem[0],this.instance._mouseCapture(t,!0),this.instance._mouseStart(t,!0,!0),this.instance.offset.click.top=s.offset.click.top,this.instance.offset.click.left=s.offset.click.left,this.instance.offset.parent.left-=s.offset.parent.left-this.instance.offset.parent.left,this.instance.offset.parent.top-=s.offset.parent.top-this.instance.offset.parent.top,s._trigger("toSortable",t),s.dropped=this.instance.element,s.currentItem=s.element,this.instance.fromOutside=s),this.instance.currentItem&&this.instance._mouseDrag(t)):this.instance.isOver&&(this.instance.isOver=0,this.instance.cancelHelperRemoval=!0,this.instance.options.revert=!1,this.instance._trigger("out",t,this.instance._uiHash(this.instance)),this.instance._mouseStop(t,!0),this.instance.options.helper=this.instance.options._helper,this.instance.currentItem.remove(),this.instance.placeholder&&this.instance.placeholder.remove(),s._trigger("fromSortable",t),s.dropped=!1)})}}),e.ui.plugin.add("draggable","cursor",{start:function(t,i,s){var n=e("body"),a=s.options;n.css("cursor")&&(a._cursor=n.css("cursor")),n.css("cursor",a.cursor)},stop:function(t,i,s){var n=s.options;n._cursor&&e("body").css("cursor",n._cursor)}}),e.ui.plugin.add("draggable","opacity",{start:function(t,i,s){var n=e(i.helper),a=s.options;n.css("opacity")&&(a._opacity=n.css("opacity")),n.css("opacity",a.opacity)},stop:function(t,i,s){var n=s.options;n._opacity&&e(i.helper).css("opacity",n._opacity)}}),e.ui.plugin.add("draggable","scroll",{start:function(e,t,i){i.scrollParent[0]!==i.document[0]&&"HTML"!==i.scrollParent[0].tagName&&(i.overflowOffset=i.scrollParent.offset())},drag:function(t,i,s){var n=s.options,a=!1,o=s.document[0];s.scrollParent[0]!==o&&"HTML"!==s.scrollParent[0].tagName?(n.axis&&"x"===n.axis||(s.overflowOffset.top+s.scrollParent[0].offsetHeight-t.pageY=0;c--)h=s.snapElements[c].left,l=h+s.snapElements[c].width,u=s.snapElements[c].top,d=u+s.snapElements[c].height,h-m>v||g>l+m||u-m>b||y>d+m||!e.contains(s.snapElements[c].item.ownerDocument,s.snapElements[c].item)?(s.snapElements[c].snapping&&s.options.snap.release&&s.options.snap.release.call(s.element,t,e.extend(s._uiHash(),{snapItem:s.snapElements[c].item})),s.snapElements[c].snapping=!1):("inner"!==f.snapMode&&(n=m>=Math.abs(u-b),a=m>=Math.abs(d-y),o=m>=Math.abs(h-v),r=m>=Math.abs(l-g),n&&(i.position.top=s._convertPositionTo("relative",{top:u-s.helperProportions.height,left:0}).top-s.margins.top),a&&(i.position.top=s._convertPositionTo("relative",{top:d,left:0}).top-s.margins.top),o&&(i.position.left=s._convertPositionTo("relative",{top:0,left:h-s.helperProportions.width}).left-s.margins.left),r&&(i.position.left=s._convertPositionTo("relative",{top:0,left:l}).left-s.margins.left)),p=n||a||o||r,"outer"!==f.snapMode&&(n=m>=Math.abs(u-y),a=m>=Math.abs(d-b),o=m>=Math.abs(h-g),r=m>=Math.abs(l-v),n&&(i.position.top=s._convertPositionTo("relative",{top:u,left:0}).top-s.margins.top),a&&(i.position.top=s._convertPositionTo("relative",{top:d-s.helperProportions.height,left:0}).top-s.margins.top),o&&(i.position.left=s._convertPositionTo("relative",{top:0,left:h}).left-s.margins.left),r&&(i.position.left=s._convertPositionTo("relative",{top:0,left:l-s.helperProportions.width}).left-s.margins.left)),!s.snapElements[c].snapping&&(n||a||o||r||p)&&s.options.snap.snap&&s.options.snap.snap.call(s.element,t,e.extend(s._uiHash(),{snapItem:s.snapElements[c].item})),s.snapElements[c].snapping=n||a||o||r||p)}}),e.ui.plugin.add("draggable","stack",{start:function(t,i,s){var n,a=s.options,o=e.makeArray(e(a.stack)).sort(function(t,i){return(parseInt(e(t).css("zIndex"),10)||0)-(parseInt(e(i).css("zIndex"),10)||0)});o.length&&(n=parseInt(e(o[0]).css("zIndex"),10)||0,e(o).each(function(t){e(this).css("zIndex",n+t)}),this.css("zIndex",n+o.length))}}),e.ui.plugin.add("draggable","zIndex",{start:function(t,i,s){var n=e(i.helper),a=s.options;n.css("zIndex")&&(a._zIndex=n.css("zIndex")),n.css("zIndex",a.zIndex)},stop:function(t,i,s){var n=s.options;n._zIndex&&e(i.helper).css("zIndex",n._zIndex)}}),e.ui.draggable,e.widget("ui.droppable",{version:"1.11.0",widgetEventPrefix:"drop",options:{accept:"*",activeClass:!1,addClasses:!0,greedy:!1,hoverClass:!1,scope:"default",tolerance:"intersect",activate:null,deactivate:null,drop:null,out:null,over:null},_create:function(){var t,i=this.options,s=i.accept;this.isover=!1,this.isout=!0,this.accept=e.isFunction(s)?s:function(e){return e.is(s)},this.proportions=function(){return arguments.length?(t=arguments[0],void 0):t?t:t={width:this.element[0].offsetWidth,height:this.element[0].offsetHeight}},this._addToManager(i.scope),i.addClasses&&this.element.addClass("ui-droppable")},_addToManager:function(t){e.ui.ddmanager.droppables[t]=e.ui.ddmanager.droppables[t]||[],e.ui.ddmanager.droppables[t].push(this)},_splice:function(e){for(var t=0;e.length>t;t++)e[t]===this&&e.splice(t,1)},_destroy:function(){var t=e.ui.ddmanager.droppables[this.options.scope];this._splice(t),this.element.removeClass("ui-droppable ui-droppable-disabled")},_setOption:function(t,i){if("accept"===t)this.accept=e.isFunction(i)?i:function(e){return e.is(i)};else if("scope"===t){var s=e.ui.ddmanager.droppables[this.options.scope];this._splice(s),this._addToManager(i)}this._super(t,i)},_activate:function(t){var i=e.ui.ddmanager.current;this.options.activeClass&&this.element.addClass(this.options.activeClass),i&&this._trigger("activate",t,this.ui(i))},_deactivate:function(t){var i=e.ui.ddmanager.current;this.options.activeClass&&this.element.removeClass(this.options.activeClass),i&&this._trigger("deactivate",t,this.ui(i))},_over:function(t){var i=e.ui.ddmanager.current;i&&(i.currentItem||i.element)[0]!==this.element[0]&&this.accept.call(this.element[0],i.currentItem||i.element)&&(this.options.hoverClass&&this.element.addClass(this.options.hoverClass),this._trigger("over",t,this.ui(i)))},_out:function(t){var i=e.ui.ddmanager.current;i&&(i.currentItem||i.element)[0]!==this.element[0]&&this.accept.call(this.element[0],i.currentItem||i.element)&&(this.options.hoverClass&&this.element.removeClass(this.options.hoverClass),this._trigger("out",t,this.ui(i)))},_drop:function(t,i){var s=i||e.ui.ddmanager.current,n=!1;return s&&(s.currentItem||s.element)[0]!==this.element[0]?(this.element.find(":data(ui-droppable)").not(".ui-draggable-dragging").each(function(){var t=e(this).droppable("instance");return t.options.greedy&&!t.options.disabled&&t.options.scope===s.options.scope&&t.accept.call(t.element[0],s.currentItem||s.element)&&e.ui.intersect(s,e.extend(t,{offset:t.element.offset()}),t.options.tolerance)?(n=!0,!1):void 0}),n?!1:this.accept.call(this.element[0],s.currentItem||s.element)?(this.options.activeClass&&this.element.removeClass(this.options.activeClass),this.options.hoverClass&&this.element.removeClass(this.options.hoverClass),this._trigger("drop",t,this.ui(s)),this.element):!1):!1},ui:function(e){return{draggable:e.currentItem||e.element,helper:e.helper,position:e.position,offset:e.positionAbs}}}),e.ui.intersect=function(){function e(e,t,i){return e>=t&&t+i>e}return function(t,i,s){if(!i.offset)return!1;var n,a,o=(t.positionAbs||t.position.absolute).left,r=(t.positionAbs||t.position.absolute).top,h=o+t.helperProportions.width,l=r+t.helperProportions.height,u=i.offset.left,d=i.offset.top,c=u+i.proportions().width,p=d+i.proportions().height;switch(s){case"fit":return o>=u&&c>=h&&r>=d&&p>=l;case"intersect":return o+t.helperProportions.width/2>u&&c>h-t.helperProportions.width/2&&r+t.helperProportions.height/2>d&&p>l-t.helperProportions.height/2;case"pointer":return n=(t.positionAbs||t.position.absolute).left+(t.clickOffset||t.offset.click).left,a=(t.positionAbs||t.position.absolute).top+(t.clickOffset||t.offset.click).top,e(a,d,i.proportions().height)&&e(n,u,i.proportions().width);case"touch":return(r>=d&&p>=r||l>=d&&p>=l||d>r&&l>p)&&(o>=u&&c>=o||h>=u&&c>=h||u>o&&h>c);default:return!1}}}(),e.ui.ddmanager={current:null,droppables:{"default":[]},prepareOffsets:function(t,i){var s,n,a=e.ui.ddmanager.droppables[t.options.scope]||[],o=i?i.type:null,r=(t.currentItem||t.element).find(":data(ui-droppable)").addBack();e:for(s=0;a.length>s;s++)if(!(a[s].options.disabled||t&&!a[s].accept.call(a[s].element[0],t.currentItem||t.element))){for(n=0;r.length>n;n++)if(r[n]===a[s].element[0]){a[s].proportions().height=0;continue e}a[s].visible="none"!==a[s].element.css("display"),a[s].visible&&("mousedown"===o&&a[s]._activate.call(a[s],i),a[s].offset=a[s].element.offset(),a[s].proportions({width:a[s].element[0].offsetWidth,height:a[s].element[0].offsetHeight}))}},drop:function(t,i){var s=!1;return e.each((e.ui.ddmanager.droppables[t.options.scope]||[]).slice(),function(){this.options&&(!this.options.disabled&&this.visible&&e.ui.intersect(t,this,this.options.tolerance)&&(s=this._drop.call(this,i)||s),!this.options.disabled&&this.visible&&this.accept.call(this.element[0],t.currentItem||t.element)&&(this.isout=!0,this.isover=!1,this._deactivate.call(this,i)))}),s},dragStart:function(t,i){t.element.parentsUntil("body").bind("scroll.droppable",function(){t.options.refreshPositions||e.ui.ddmanager.prepareOffsets(t,i)})},drag:function(t,i){t.options.refreshPositions&&e.ui.ddmanager.prepareOffsets(t,i),e.each(e.ui.ddmanager.droppables[t.options.scope]||[],function(){if(!this.options.disabled&&!this.greedyChild&&this.visible){var s,n,a,o=e.ui.intersect(t,this,this.options.tolerance),r=!o&&this.isover?"isout":o&&!this.isover?"isover":null;r&&(this.options.greedy&&(n=this.options.scope,a=this.element.parents(":data(ui-droppable)").filter(function(){return e(this).droppable("instance").options.scope===n}),a.length&&(s=e(a[0]).droppable("instance"),s.greedyChild="isover"===r)),s&&"isover"===r&&(s.isover=!1,s.isout=!0,s._out.call(s,i)),this[r]=!0,this["isout"===r?"isover":"isout"]=!1,this["isover"===r?"_over":"_out"].call(this,i),s&&"isout"===r&&(s.isout=!1,s.isover=!0,s._over.call(s,i)))}})},dragStop:function(t,i){t.element.parentsUntil("body").unbind("scroll.droppable"),t.options.refreshPositions||e.ui.ddmanager.prepareOffsets(t,i)}},e.ui.droppable,e.widget("ui.resizable",e.ui.mouse,{version:"1.11.0",widgetEventPrefix:"resize",options:{alsoResize:!1,animate:!1,animateDuration:"slow",animateEasing:"swing",aspectRatio:!1,autoHide:!1,containment:!1,ghost:!1,grid:!1,handles:"e,s,se",helper:!1,maxHeight:null,maxWidth:null,minHeight:10,minWidth:10,zIndex:90,resize:null,start:null,stop:null},_num:function(e){return parseInt(e,10)||0},_isNumber:function(e){return!isNaN(parseInt(e,10))},_hasScroll:function(t,i){if("hidden"===e(t).css("overflow"))return!1;var s=i&&"left"===i?"scrollLeft":"scrollTop",n=!1;return t[s]>0?!0:(t[s]=1,n=t[s]>0,t[s]=0,n)},_create:function(){var t,i,s,n,a,o=this,r=this.options;if(this.element.addClass("ui-resizable"),e.extend(this,{_aspectRatio:!!r.aspectRatio,aspectRatio:r.aspectRatio,originalElement:this.element,_proportionallyResizeElements:[],_helper:r.helper||r.ghost||r.animate?r.helper||"ui-resizable-helper":null}),this.element[0].nodeName.match(/canvas|textarea|input|select|button|img/i)&&(this.element.wrap(e("
").css({position:this.element.css("position"),width:this.element.outerWidth(),height:this.element.outerHeight(),top:this.element.css("top"),left:this.element.css("left")})),this.element=this.element.parent().data("ui-resizable",this.element.resizable("instance")),this.elementIsWrapper=!0,this.element.css({marginLeft:this.originalElement.css("marginLeft"),marginTop:this.originalElement.css("marginTop"),marginRight:this.originalElement.css("marginRight"),marginBottom:this.originalElement.css("marginBottom")}),this.originalElement.css({marginLeft:0,marginTop:0,marginRight:0,marginBottom:0}),this.originalResizeStyle=this.originalElement.css("resize"),this.originalElement.css("resize","none"),this._proportionallyResizeElements.push(this.originalElement.css({position:"static",zoom:1,display:"block"})),this.originalElement.css({margin:this.originalElement.css("margin")}),this._proportionallyResize()),this.handles=r.handles||(e(".ui-resizable-handle",this.element).length?{n:".ui-resizable-n",e:".ui-resizable-e",s:".ui-resizable-s",w:".ui-resizable-w",se:".ui-resizable-se",sw:".ui-resizable-sw",ne:".ui-resizable-ne",nw:".ui-resizable-nw"}:"e,s,se"),this.handles.constructor===String)for("all"===this.handles&&(this.handles="n,e,s,w,se,sw,ne,nw"),t=this.handles.split(","),this.handles={},i=0;t.length>i;i++)s=e.trim(t[i]),a="ui-resizable-"+s,n=e("
"),n.css({zIndex:r.zIndex}),"se"===s&&n.addClass("ui-icon ui-icon-gripsmall-diagonal-se"),this.handles[s]=".ui-resizable-"+s,this.element.append(n);this._renderAxis=function(t){var i,s,n,a;t=t||this.element;for(i in this.handles)this.handles[i].constructor===String&&(this.handles[i]=this.element.children(this.handles[i]).first().show()),this.elementIsWrapper&&this.originalElement[0].nodeName.match(/textarea|input|select|button/i)&&(s=e(this.handles[i],this.element),a=/sw|ne|nw|se|n|s/.test(i)?s.outerHeight():s.outerWidth(),n=["padding",/ne|nw|n/.test(i)?"Top":/se|sw|s/.test(i)?"Bottom":/^e$/.test(i)?"Right":"Left"].join(""),t.css(n,a),this._proportionallyResize()),e(this.handles[i]).length},this._renderAxis(this.element),this._handles=e(".ui-resizable-handle",this.element).disableSelection(),this._handles.mouseover(function(){o.resizing||(this.className&&(n=this.className.match(/ui-resizable-(se|sw|ne|nw|n|e|s|w)/i)),o.axis=n&&n[1]?n[1]:"se")}),r.autoHide&&(this._handles.hide(),e(this.element).addClass("ui-resizable-autohide").mouseenter(function(){r.disabled||(e(this).removeClass("ui-resizable-autohide"),o._handles.show())}).mouseleave(function(){r.disabled||o.resizing||(e(this).addClass("ui-resizable-autohide"),o._handles.hide())})),this._mouseInit()},_destroy:function(){this._mouseDestroy();var t,i=function(t){e(t).removeClass("ui-resizable ui-resizable-disabled ui-resizable-resizing").removeData("resizable").removeData("ui-resizable").unbind(".resizable").find(".ui-resizable-handle").remove()};return this.elementIsWrapper&&(i(this.element),t=this.element,this.originalElement.css({position:t.css("position"),width:t.outerWidth(),height:t.outerHeight(),top:t.css("top"),left:t.css("left")}).insertAfter(t),t.remove()),this.originalElement.css("resize",this.originalResizeStyle),i(this.originalElement),this},_mouseCapture:function(t){var i,s,n=!1;for(i in this.handles)s=e(this.handles[i])[0],(s===t.target||e.contains(s,t.target))&&(n=!0);return!this.options.disabled&&n},_mouseStart:function(t){var i,s,n,a=this.options,o=this.element;return this.resizing=!0,this._renderProxy(),i=this._num(this.helper.css("left")),s=this._num(this.helper.css("top")),a.containment&&(i+=e(a.containment).scrollLeft()||0,s+=e(a.containment).scrollTop()||0),this.offset=this.helper.offset(),this.position={left:i,top:s},this.size=this._helper?{width:this.helper.width(),height:this.helper.height()}:{width:o.width(),height:o.height()},this.originalSize=this._helper?{width:o.outerWidth(),height:o.outerHeight()}:{width:o.width(),height:o.height()},this.originalPosition={left:i,top:s},this.sizeDiff={width:o.outerWidth()-o.width(),height:o.outerHeight()-o.height()},this.originalMousePosition={left:t.pageX,top:t.pageY},this.aspectRatio="number"==typeof a.aspectRatio?a.aspectRatio:this.originalSize.width/this.originalSize.height||1,n=e(".ui-resizable-"+this.axis).css("cursor"),e("body").css("cursor","auto"===n?this.axis+"-resize":n),o.addClass("ui-resizable-resizing"),this._propagate("start",t),!0},_mouseDrag:function(t){var i,s=this.helper,n={},a=this.originalMousePosition,o=this.axis,r=t.pageX-a.left||0,h=t.pageY-a.top||0,l=this._change[o];return this.prevPosition={top:this.position.top,left:this.position.left},this.prevSize={width:this.size.width,height:this.size.height},l?(i=l.apply(this,[t,r,h]),this._updateVirtualBoundaries(t.shiftKey),(this._aspectRatio||t.shiftKey)&&(i=this._updateRatio(i,t)),i=this._respectSize(i,t),this._updateCache(i),this._propagate("resize",t),this.position.top!==this.prevPosition.top&&(n.top=this.position.top+"px"),this.position.left!==this.prevPosition.left&&(n.left=this.position.left+"px"),this.size.width!==this.prevSize.width&&(n.width=this.size.width+"px"),this.size.height!==this.prevSize.height&&(n.height=this.size.height+"px"),s.css(n),!this._helper&&this._proportionallyResizeElements.length&&this._proportionallyResize(),e.isEmptyObject(n)||this._trigger("resize",t,this.ui()),!1):!1},_mouseStop:function(t){this.resizing=!1;var i,s,n,a,o,r,h,l=this.options,u=this;return this._helper&&(i=this._proportionallyResizeElements,s=i.length&&/textarea/i.test(i[0].nodeName),n=s&&this._hasScroll(i[0],"left")?0:u.sizeDiff.height,a=s?0:u.sizeDiff.width,o={width:u.helper.width()-a,height:u.helper.height()-n},r=parseInt(u.element.css("left"),10)+(u.position.left-u.originalPosition.left)||null,h=parseInt(u.element.css("top"),10)+(u.position.top-u.originalPosition.top)||null,l.animate||this.element.css(e.extend(o,{top:h,left:r})),u.helper.height(u.size.height),u.helper.width(u.size.width),this._helper&&!l.animate&&this._proportionallyResize()),e("body").css("cursor","auto"),this.element.removeClass("ui-resizable-resizing"),this._propagate("stop",t),this._helper&&this.helper.remove(),!1},_updateVirtualBoundaries:function(e){var t,i,s,n,a,o=this.options;a={minWidth:this._isNumber(o.minWidth)?o.minWidth:0,maxWidth:this._isNumber(o.maxWidth)?o.maxWidth:1/0,minHeight:this._isNumber(o.minHeight)?o.minHeight:0,maxHeight:this._isNumber(o.maxHeight)?o.maxHeight:1/0},(this._aspectRatio||e)&&(t=a.minHeight*this.aspectRatio,s=a.minWidth/this.aspectRatio,i=a.maxHeight*this.aspectRatio,n=a.maxWidth/this.aspectRatio,t>a.minWidth&&(a.minWidth=t),s>a.minHeight&&(a.minHeight=s),a.maxWidth>i&&(a.maxWidth=i),a.maxHeight>n&&(a.maxHeight=n)),this._vBoundaries=a},_updateCache:function(e){this.offset=this.helper.offset(),this._isNumber(e.left)&&(this.position.left=e.left),this._isNumber(e.top)&&(this.position.top=e.top),this._isNumber(e.height)&&(this.size.height=e.height),this._isNumber(e.width)&&(this.size.width=e.width)},_updateRatio:function(e){var t=this.position,i=this.size,s=this.axis;return this._isNumber(e.height)?e.width=e.height*this.aspectRatio:this._isNumber(e.width)&&(e.height=e.width/this.aspectRatio),"sw"===s&&(e.left=t.left+(i.width-e.width),e.top=null),"nw"===s&&(e.top=t.top+(i.height-e.height),e.left=t.left+(i.width-e.width)),e},_respectSize:function(e){var t=this._vBoundaries,i=this.axis,s=this._isNumber(e.width)&&t.maxWidth&&t.maxWidthe.width,o=this._isNumber(e.height)&&t.minHeight&&t.minHeight>e.height,r=this.originalPosition.left+this.originalSize.width,h=this.position.top+this.size.height,l=/sw|nw|w/.test(i),u=/nw|ne|n/.test(i);return a&&(e.width=t.minWidth),o&&(e.height=t.minHeight),s&&(e.width=t.maxWidth),n&&(e.height=t.maxHeight),a&&l&&(e.left=r-t.minWidth),s&&l&&(e.left=r-t.maxWidth),o&&u&&(e.top=h-t.minHeight),n&&u&&(e.top=h-t.maxHeight),e.width||e.height||e.left||!e.top?e.width||e.height||e.top||!e.left||(e.left=null):e.top=null,e},_proportionallyResize:function(){if(this._proportionallyResizeElements.length){var e,t,i,s,n,a=this.helper||this.element;for(e=0;this._proportionallyResizeElements.length>e;e++){if(n=this._proportionallyResizeElements[e],!this.borderDif)for(this.borderDif=[],i=[n.css("borderTopWidth"),n.css("borderRightWidth"),n.css("borderBottomWidth"),n.css("borderLeftWidth")],s=[n.css("paddingTop"),n.css("paddingRight"),n.css("paddingBottom"),n.css("paddingLeft")],t=0;i.length>t;t++)this.borderDif[t]=(parseInt(i[t],10)||0)+(parseInt(s[t],10)||0);n.css({height:a.height()-this.borderDif[0]-this.borderDif[2]||0,width:a.width()-this.borderDif[1]-this.borderDif[3]||0})}}},_renderProxy:function(){var t=this.element,i=this.options;this.elementOffset=t.offset(),this._helper?(this.helper=this.helper||e("
"),this.helper.addClass(this._helper).css({width:this.element.outerWidth()-1,height:this.element.outerHeight()-1,position:"absolute",left:this.elementOffset.left+"px",top:this.elementOffset.top+"px",zIndex:++i.zIndex}),this.helper.appendTo("body").disableSelection()):this.helper=this.element},_change:{e:function(e,t){return{width:this.originalSize.width+t}},w:function(e,t){var i=this.originalSize,s=this.originalPosition;return{left:s.left+t,width:i.width-t}},n:function(e,t,i){var s=this.originalSize,n=this.originalPosition;return{top:n.top+i,height:s.height-i}},s:function(e,t,i){return{height:this.originalSize.height+i}},se:function(t,i,s){return e.extend(this._change.s.apply(this,arguments),this._change.e.apply(this,[t,i,s]))},sw:function(t,i,s){return e.extend(this._change.s.apply(this,arguments),this._change.w.apply(this,[t,i,s]))},ne:function(t,i,s){return e.extend(this._change.n.apply(this,arguments),this._change.e.apply(this,[t,i,s]))},nw:function(t,i,s){return e.extend(this._change.n.apply(this,arguments),this._change.w.apply(this,[t,i,s]))}},_propagate:function(t,i){e.ui.plugin.call(this,t,[i,this.ui()]),"resize"!==t&&this._trigger(t,i,this.ui())},plugins:{},ui:function(){return{originalElement:this.originalElement,element:this.element,helper:this.helper,position:this.position,size:this.size,originalSize:this.originalSize,originalPosition:this.originalPosition,prevSize:this.prevSize,prevPosition:this.prevPosition}}}),e.ui.plugin.add("resizable","animate",{stop:function(t){var i=e(this).resizable("instance"),s=i.options,n=i._proportionallyResizeElements,a=n.length&&/textarea/i.test(n[0].nodeName),o=a&&i._hasScroll(n[0],"left")?0:i.sizeDiff.height,r=a?0:i.sizeDiff.width,h={width:i.size.width-r,height:i.size.height-o},l=parseInt(i.element.css("left"),10)+(i.position.left-i.originalPosition.left)||null,u=parseInt(i.element.css("top"),10)+(i.position.top-i.originalPosition.top)||null;i.element.animate(e.extend(h,u&&l?{top:u,left:l}:{}),{duration:s.animateDuration,easing:s.animateEasing,step:function(){var s={width:parseInt(i.element.css("width"),10),height:parseInt(i.element.css("height"),10),top:parseInt(i.element.css("top"),10),left:parseInt(i.element.css("left"),10)};n&&n.length&&e(n[0]).css({width:s.width,height:s.height}),i._updateCache(s),i._propagate("resize",t)}})}}),e.ui.plugin.add("resizable","containment",{start:function(){var t,i,s,n,a,o,r,h=e(this).resizable("instance"),l=h.options,u=h.element,d=l.containment,c=d instanceof e?d.get(0):/parent/.test(d)?u.parent().get(0):d;c&&(h.containerElement=e(c),/document/.test(d)||d===document?(h.containerOffset={left:0,top:0},h.containerPosition={left:0,top:0},h.parentData={element:e(document),left:0,top:0,width:e(document).width(),height:e(document).height()||document.body.parentNode.scrollHeight}):(t=e(c),i=[],e(["Top","Right","Left","Bottom"]).each(function(e,s){i[e]=h._num(t.css("padding"+s))}),h.containerOffset=t.offset(),h.containerPosition=t.position(),h.containerSize={height:t.innerHeight()-i[3],width:t.innerWidth()-i[1]},s=h.containerOffset,n=h.containerSize.height,a=h.containerSize.width,o=h._hasScroll(c,"left")?c.scrollWidth:a,r=h._hasScroll(c)?c.scrollHeight:n,h.parentData={element:c,left:s.left,top:s.top,width:o,height:r}))},resize:function(t,i){var s,n,a,o,r=e(this).resizable("instance"),h=r.options,l=r.containerOffset,u=r.position,d=r._aspectRatio||t.shiftKey,c={top:0,left:0},p=r.containerElement,f=!0;p[0]!==document&&/static/.test(p.css("position"))&&(c=l),u.left<(r._helper?l.left:0)&&(r.size.width=r.size.width+(r._helper?r.position.left-l.left:r.position.left-c.left),d&&(r.size.height=r.size.width/r.aspectRatio,f=!1),r.position.left=h.helper?l.left:0),u.top<(r._helper?l.top:0)&&(r.size.height=r.size.height+(r._helper?r.position.top-l.top:r.position.top),d&&(r.size.width=r.size.height*r.aspectRatio,f=!1),r.position.top=r._helper?l.top:0),r.offset.left=r.parentData.left+r.position.left,r.offset.top=r.parentData.top+r.position.top,s=Math.abs((r._helper?r.offset.left-c.left:r.offset.left-l.left)+r.sizeDiff.width),n=Math.abs((r._helper?r.offset.top-c.top:r.offset.top-l.top)+r.sizeDiff.height),a=r.containerElement.get(0)===r.element.parent().get(0),o=/relative|absolute/.test(r.containerElement.css("position")),a&&o&&(s-=Math.abs(r.parentData.left)),s+r.size.width>=r.parentData.width&&(r.size.width=r.parentData.width-s,d&&(r.size.height=r.size.width/r.aspectRatio,f=!1)),n+r.size.height>=r.parentData.height&&(r.size.height=r.parentData.height-n,d&&(r.size.width=r.size.height*r.aspectRatio,f=!1)),f||(r.position.left=i.prevPosition.left,r.position.top=i.prevPosition.top,r.size.width=i.prevSize.width,r.size.height=i.prevSize.height)},stop:function(){var t=e(this).resizable("instance"),i=t.options,s=t.containerOffset,n=t.containerPosition,a=t.containerElement,o=e(t.helper),r=o.offset(),h=o.outerWidth()-t.sizeDiff.width,l=o.outerHeight()-t.sizeDiff.height;t._helper&&!i.animate&&/relative/.test(a.css("position"))&&e(this).css({left:r.left-n.left-s.left,width:h,height:l}),t._helper&&!i.animate&&/static/.test(a.css("position"))&&e(this).css({left:r.left-n.left-s.left,width:h,height:l})}}),e.ui.plugin.add("resizable","alsoResize",{start:function(){var t=e(this).resizable("instance"),i=t.options,s=function(t){e(t).each(function(){var t=e(this);t.data("ui-resizable-alsoresize",{width:parseInt(t.width(),10),height:parseInt(t.height(),10),left:parseInt(t.css("left"),10),top:parseInt(t.css("top"),10)})})};"object"!=typeof i.alsoResize||i.alsoResize.parentNode?s(i.alsoResize):i.alsoResize.length?(i.alsoResize=i.alsoResize[0],s(i.alsoResize)):e.each(i.alsoResize,function(e){s(e)})},resize:function(t,i){var s=e(this).resizable("instance"),n=s.options,a=s.originalSize,o=s.originalPosition,r={height:s.size.height-a.height||0,width:s.size.width-a.width||0,top:s.position.top-o.top||0,left:s.position.left-o.left||0},h=function(t,s){e(t).each(function(){var t=e(this),n=e(this).data("ui-resizable-alsoresize"),a={},o=s&&s.length?s:t.parents(i.originalElement[0]).length?["width","height"]:["width","height","top","left"];e.each(o,function(e,t){var i=(n[t]||0)+(r[t]||0);i&&i>=0&&(a[t]=i||null)}),t.css(a)})};"object"!=typeof n.alsoResize||n.alsoResize.nodeType?h(n.alsoResize):e.each(n.alsoResize,function(e,t){h(e,t)})},stop:function(){e(this).removeData("resizable-alsoresize")}}),e.ui.plugin.add("resizable","ghost",{start:function(){var t=e(this).resizable("instance"),i=t.options,s=t.size;t.ghost=t.originalElement.clone(),t.ghost.css({opacity:.25,display:"block",position:"relative",height:s.height,width:s.width,margin:0,left:0,top:0}).addClass("ui-resizable-ghost").addClass("string"==typeof i.ghost?i.ghost:""),t.ghost.appendTo(t.helper)},resize:function(){var t=e(this).resizable("instance");t.ghost&&t.ghost.css({position:"relative",height:t.size.height,width:t.size.width})},stop:function(){var t=e(this).resizable("instance");t.ghost&&t.helper&&t.helper.get(0).removeChild(t.ghost.get(0))}}),e.ui.plugin.add("resizable","grid",{resize:function(){var t=e(this).resizable("instance"),i=t.options,s=t.size,n=t.originalSize,a=t.originalPosition,o=t.axis,r="number"==typeof i.grid?[i.grid,i.grid]:i.grid,h=r[0]||1,l=r[1]||1,u=Math.round((s.width-n.width)/h)*h,d=Math.round((s.height-n.height)/l)*l,c=n.width+u,p=n.height+d,f=i.maxWidth&&c>i.maxWidth,m=i.maxHeight&&p>i.maxHeight,g=i.minWidth&&i.minWidth>c,v=i.minHeight&&i.minHeight>p;i.grid=r,g&&(c+=h),v&&(p+=l),f&&(c-=h),m&&(p-=l),/^(se|s|e)$/.test(o)?(t.size.width=c,t.size.height=p):/^(ne)$/.test(o)?(t.size.width=c,t.size.height=p,t.position.top=a.top-d):/^(sw)$/.test(o)?(t.size.width=c,t.size.height=p,t.position.left=a.left-u):(p-l>0?(t.size.height=p,t.position.top=a.top-d):(t.size.height=l,t.position.top=a.top+n.height-l),c-h>0?(t.size.width=c,t.position.left=a.left-u):(t.size.width=h,t.position.left=a.left+n.width-h))}}),e.ui.resizable,e.widget("ui.selectable",e.ui.mouse,{version:"1.11.0",options:{appendTo:"body",autoRefresh:!0,distance:0,filter:"*",tolerance:"touch",selected:null,selecting:null,start:null,stop:null,unselected:null,unselecting:null},_create:function(){var t,i=this; +this.element.addClass("ui-selectable"),this.dragged=!1,this.refresh=function(){t=e(i.options.filter,i.element[0]),t.addClass("ui-selectee"),t.each(function(){var t=e(this),i=t.offset();e.data(this,"selectable-item",{element:this,$element:t,left:i.left,top:i.top,right:i.left+t.outerWidth(),bottom:i.top+t.outerHeight(),startselected:!1,selected:t.hasClass("ui-selected"),selecting:t.hasClass("ui-selecting"),unselecting:t.hasClass("ui-unselecting")})})},this.refresh(),this.selectees=t.addClass("ui-selectee"),this._mouseInit(),this.helper=e("
")},_destroy:function(){this.selectees.removeClass("ui-selectee").removeData("selectable-item"),this.element.removeClass("ui-selectable ui-selectable-disabled"),this._mouseDestroy()},_mouseStart:function(t){var i=this,s=this.options;this.opos=[t.pageX,t.pageY],this.options.disabled||(this.selectees=e(s.filter,this.element[0]),this._trigger("start",t),e(s.appendTo).append(this.helper),this.helper.css({left:t.pageX,top:t.pageY,width:0,height:0}),s.autoRefresh&&this.refresh(),this.selectees.filter(".ui-selected").each(function(){var s=e.data(this,"selectable-item");s.startselected=!0,t.metaKey||t.ctrlKey||(s.$element.removeClass("ui-selected"),s.selected=!1,s.$element.addClass("ui-unselecting"),s.unselecting=!0,i._trigger("unselecting",t,{unselecting:s.element}))}),e(t.target).parents().addBack().each(function(){var s,n=e.data(this,"selectable-item");return n?(s=!t.metaKey&&!t.ctrlKey||!n.$element.hasClass("ui-selected"),n.$element.removeClass(s?"ui-unselecting":"ui-selected").addClass(s?"ui-selecting":"ui-unselecting"),n.unselecting=!s,n.selecting=s,n.selected=s,s?i._trigger("selecting",t,{selecting:n.element}):i._trigger("unselecting",t,{unselecting:n.element}),!1):void 0}))},_mouseDrag:function(t){if(this.dragged=!0,!this.options.disabled){var i,s=this,n=this.options,a=this.opos[0],o=this.opos[1],r=t.pageX,h=t.pageY;return a>r&&(i=r,r=a,a=i),o>h&&(i=h,h=o,o=i),this.helper.css({left:a,top:o,width:r-a,height:h-o}),this.selectees.each(function(){var i=e.data(this,"selectable-item"),l=!1;i&&i.element!==s.element[0]&&("touch"===n.tolerance?l=!(i.left>r||a>i.right||i.top>h||o>i.bottom):"fit"===n.tolerance&&(l=i.left>a&&r>i.right&&i.top>o&&h>i.bottom),l?(i.selected&&(i.$element.removeClass("ui-selected"),i.selected=!1),i.unselecting&&(i.$element.removeClass("ui-unselecting"),i.unselecting=!1),i.selecting||(i.$element.addClass("ui-selecting"),i.selecting=!0,s._trigger("selecting",t,{selecting:i.element}))):(i.selecting&&((t.metaKey||t.ctrlKey)&&i.startselected?(i.$element.removeClass("ui-selecting"),i.selecting=!1,i.$element.addClass("ui-selected"),i.selected=!0):(i.$element.removeClass("ui-selecting"),i.selecting=!1,i.startselected&&(i.$element.addClass("ui-unselecting"),i.unselecting=!0),s._trigger("unselecting",t,{unselecting:i.element}))),i.selected&&(t.metaKey||t.ctrlKey||i.startselected||(i.$element.removeClass("ui-selected"),i.selected=!1,i.$element.addClass("ui-unselecting"),i.unselecting=!0,s._trigger("unselecting",t,{unselecting:i.element})))))}),!1}},_mouseStop:function(t){var i=this;return this.dragged=!1,e(".ui-unselecting",this.element[0]).each(function(){var s=e.data(this,"selectable-item");s.$element.removeClass("ui-unselecting"),s.unselecting=!1,s.startselected=!1,i._trigger("unselected",t,{unselected:s.element})}),e(".ui-selecting",this.element[0]).each(function(){var s=e.data(this,"selectable-item");s.$element.removeClass("ui-selecting").addClass("ui-selected"),s.selecting=!1,s.selected=!0,s.startselected=!0,i._trigger("selected",t,{selected:s.element})}),this._trigger("stop",t),this.helper.remove(),!1}}),e.widget("ui.sortable",e.ui.mouse,{version:"1.11.0",widgetEventPrefix:"sort",ready:!1,options:{appendTo:"parent",axis:!1,connectWith:!1,containment:!1,cursor:"auto",cursorAt:!1,dropOnEmpty:!0,forcePlaceholderSize:!1,forceHelperSize:!1,grid:!1,handle:!1,helper:"original",items:"> *",opacity:!1,placeholder:!1,revert:!1,scroll:!0,scrollSensitivity:20,scrollSpeed:20,scope:"default",tolerance:"intersect",zIndex:1e3,activate:null,beforeStop:null,change:null,deactivate:null,out:null,over:null,receive:null,remove:null,sort:null,start:null,stop:null,update:null},_isOverAxis:function(e,t,i){return e>=t&&t+i>e},_isFloating:function(e){return/left|right/.test(e.css("float"))||/inline|table-cell/.test(e.css("display"))},_create:function(){var e=this.options;this.containerCache={},this.element.addClass("ui-sortable"),this.refresh(),this.floating=this.items.length?"x"===e.axis||this._isFloating(this.items[0].item):!1,this.offset=this.element.offset(),this._mouseInit(),this._setHandleClassName(),this.ready=!0},_setOption:function(e,t){this._super(e,t),"handle"===e&&this._setHandleClassName()},_setHandleClassName:function(){this.element.find(".ui-sortable-handle").removeClass("ui-sortable-handle"),e.each(this.items,function(){(this.instance.options.handle?this.item.find(this.instance.options.handle):this.item).addClass("ui-sortable-handle")})},_destroy:function(){this.element.removeClass("ui-sortable ui-sortable-disabled").find(".ui-sortable-handle").removeClass("ui-sortable-handle"),this._mouseDestroy();for(var e=this.items.length-1;e>=0;e--)this.items[e].item.removeData(this.widgetName+"-item");return this},_mouseCapture:function(t,i){var s=null,n=!1,a=this;return this.reverting?!1:this.options.disabled||"static"===this.options.type?!1:(this._refreshItems(t),e(t.target).parents().each(function(){return e.data(this,a.widgetName+"-item")===a?(s=e(this),!1):void 0}),e.data(t.target,a.widgetName+"-item")===a&&(s=e(t.target)),s?!this.options.handle||i||(e(this.options.handle,s).find("*").addBack().each(function(){this===t.target&&(n=!0)}),n)?(this.currentItem=s,this._removeCurrentsFromItems(),!0):!1:!1)},_mouseStart:function(t,i,s){var n,a,o=this.options;if(this.currentContainer=this,this.refreshPositions(),this.helper=this._createHelper(t),this._cacheHelperProportions(),this._cacheMargins(),this.scrollParent=this.helper.scrollParent(),this.offset=this.currentItem.offset(),this.offset={top:this.offset.top-this.margins.top,left:this.offset.left-this.margins.left},e.extend(this.offset,{click:{left:t.pageX-this.offset.left,top:t.pageY-this.offset.top},parent:this._getParentOffset(),relative:this._getRelativeOffset()}),this.helper.css("position","absolute"),this.cssPosition=this.helper.css("position"),this.originalPosition=this._generatePosition(t),this.originalPageX=t.pageX,this.originalPageY=t.pageY,o.cursorAt&&this._adjustOffsetFromHelper(o.cursorAt),this.domPosition={prev:this.currentItem.prev()[0],parent:this.currentItem.parent()[0]},this.helper[0]!==this.currentItem[0]&&this.currentItem.hide(),this._createPlaceholder(),o.containment&&this._setContainment(),o.cursor&&"auto"!==o.cursor&&(a=this.document.find("body"),this.storedCursor=a.css("cursor"),a.css("cursor",o.cursor),this.storedStylesheet=e("").appendTo(a)),o.opacity&&(this.helper.css("opacity")&&(this._storedOpacity=this.helper.css("opacity")),this.helper.css("opacity",o.opacity)),o.zIndex&&(this.helper.css("zIndex")&&(this._storedZIndex=this.helper.css("zIndex")),this.helper.css("zIndex",o.zIndex)),this.scrollParent[0]!==document&&"HTML"!==this.scrollParent[0].tagName&&(this.overflowOffset=this.scrollParent.offset()),this._trigger("start",t,this._uiHash()),this._preserveHelperProportions||this._cacheHelperProportions(),!s)for(n=this.containers.length-1;n>=0;n--)this.containers[n]._trigger("activate",t,this._uiHash(this));return e.ui.ddmanager&&(e.ui.ddmanager.current=this),e.ui.ddmanager&&!o.dropBehaviour&&e.ui.ddmanager.prepareOffsets(this,t),this.dragging=!0,this.helper.addClass("ui-sortable-helper"),this._mouseDrag(t),!0},_mouseDrag:function(t){var i,s,n,a,o=this.options,r=!1;for(this.position=this._generatePosition(t),this.positionAbs=this._convertPositionTo("absolute"),this.lastPositionAbs||(this.lastPositionAbs=this.positionAbs),this.options.scroll&&(this.scrollParent[0]!==document&&"HTML"!==this.scrollParent[0].tagName?(this.overflowOffset.top+this.scrollParent[0].offsetHeight-t.pageY=0;i--)if(s=this.items[i],n=s.item[0],a=this._intersectsWithPointer(s),a&&s.instance===this.currentContainer&&n!==this.currentItem[0]&&this.placeholder[1===a?"next":"prev"]()[0]!==n&&!e.contains(this.placeholder[0],n)&&("semi-dynamic"===this.options.type?!e.contains(this.element[0],n):!0)){if(this.direction=1===a?"down":"up","pointer"!==this.options.tolerance&&!this._intersectsWithSides(s))break;this._rearrange(t,s),this._trigger("change",t,this._uiHash());break}return this._contactContainers(t),e.ui.ddmanager&&e.ui.ddmanager.drag(this,t),this._trigger("sort",t,this._uiHash()),this.lastPositionAbs=this.positionAbs,!1},_mouseStop:function(t,i){if(t){if(e.ui.ddmanager&&!this.options.dropBehaviour&&e.ui.ddmanager.drop(this,t),this.options.revert){var s=this,n=this.placeholder.offset(),a=this.options.axis,o={};a&&"x"!==a||(o.left=n.left-this.offset.parent.left-this.margins.left+(this.offsetParent[0]===document.body?0:this.offsetParent[0].scrollLeft)),a&&"y"!==a||(o.top=n.top-this.offset.parent.top-this.margins.top+(this.offsetParent[0]===document.body?0:this.offsetParent[0].scrollTop)),this.reverting=!0,e(this.helper).animate(o,parseInt(this.options.revert,10)||500,function(){s._clear(t)})}else this._clear(t,i);return!1}},cancel:function(){if(this.dragging){this._mouseUp({target:null}),"original"===this.options.helper?this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper"):this.currentItem.show();for(var t=this.containers.length-1;t>=0;t--)this.containers[t]._trigger("deactivate",null,this._uiHash(this)),this.containers[t].containerCache.over&&(this.containers[t]._trigger("out",null,this._uiHash(this)),this.containers[t].containerCache.over=0)}return this.placeholder&&(this.placeholder[0].parentNode&&this.placeholder[0].parentNode.removeChild(this.placeholder[0]),"original"!==this.options.helper&&this.helper&&this.helper[0].parentNode&&this.helper.remove(),e.extend(this,{helper:null,dragging:!1,reverting:!1,_noFinalSort:null}),this.domPosition.prev?e(this.domPosition.prev).after(this.currentItem):e(this.domPosition.parent).prepend(this.currentItem)),this},serialize:function(t){var i=this._getItemsAsjQuery(t&&t.connected),s=[];return t=t||{},e(i).each(function(){var i=(e(t.item||this).attr(t.attribute||"id")||"").match(t.expression||/(.+)[\-=_](.+)/);i&&s.push((t.key||i[1]+"[]")+"="+(t.key&&t.expression?i[1]:i[2]))}),!s.length&&t.key&&s.push(t.key+"="),s.join("&")},toArray:function(t){var i=this._getItemsAsjQuery(t&&t.connected),s=[];return t=t||{},i.each(function(){s.push(e(t.item||this).attr(t.attribute||"id")||"")}),s},_intersectsWith:function(e){var t=this.positionAbs.left,i=t+this.helperProportions.width,s=this.positionAbs.top,n=s+this.helperProportions.height,a=e.left,o=a+e.width,r=e.top,h=r+e.height,l=this.offset.click.top,u=this.offset.click.left,d="x"===this.options.axis||s+l>r&&h>s+l,c="y"===this.options.axis||t+u>a&&o>t+u,p=d&&c;return"pointer"===this.options.tolerance||this.options.forcePointerForContainers||"pointer"!==this.options.tolerance&&this.helperProportions[this.floating?"width":"height"]>e[this.floating?"width":"height"]?p:t+this.helperProportions.width/2>a&&o>i-this.helperProportions.width/2&&s+this.helperProportions.height/2>r&&h>n-this.helperProportions.height/2},_intersectsWithPointer:function(e){var t="x"===this.options.axis||this._isOverAxis(this.positionAbs.top+this.offset.click.top,e.top,e.height),i="y"===this.options.axis||this._isOverAxis(this.positionAbs.left+this.offset.click.left,e.left,e.width),s=t&&i,n=this._getDragVerticalDirection(),a=this._getDragHorizontalDirection();return s?this.floating?a&&"right"===a||"down"===n?2:1:n&&("down"===n?2:1):!1},_intersectsWithSides:function(e){var t=this._isOverAxis(this.positionAbs.top+this.offset.click.top,e.top+e.height/2,e.height),i=this._isOverAxis(this.positionAbs.left+this.offset.click.left,e.left+e.width/2,e.width),s=this._getDragVerticalDirection(),n=this._getDragHorizontalDirection();return this.floating&&n?"right"===n&&i||"left"===n&&!i:s&&("down"===s&&t||"up"===s&&!t)},_getDragVerticalDirection:function(){var e=this.positionAbs.top-this.lastPositionAbs.top;return 0!==e&&(e>0?"down":"up")},_getDragHorizontalDirection:function(){var e=this.positionAbs.left-this.lastPositionAbs.left;return 0!==e&&(e>0?"right":"left")},refresh:function(e){return this._refreshItems(e),this._setHandleClassName(),this.refreshPositions(),this},_connectWith:function(){var e=this.options;return e.connectWith.constructor===String?[e.connectWith]:e.connectWith},_getItemsAsjQuery:function(t){function i(){r.push(this)}var s,n,a,o,r=[],h=[],l=this._connectWith();if(l&&t)for(s=l.length-1;s>=0;s--)for(a=e(l[s]),n=a.length-1;n>=0;n--)o=e.data(a[n],this.widgetFullName),o&&o!==this&&!o.options.disabled&&h.push([e.isFunction(o.options.items)?o.options.items.call(o.element):e(o.options.items,o.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),o]);for(h.push([e.isFunction(this.options.items)?this.options.items.call(this.element,null,{options:this.options,item:this.currentItem}):e(this.options.items,this.element).not(".ui-sortable-helper").not(".ui-sortable-placeholder"),this]),s=h.length-1;s>=0;s--)h[s][0].each(i);return e(r)},_removeCurrentsFromItems:function(){var t=this.currentItem.find(":data("+this.widgetName+"-item)");this.items=e.grep(this.items,function(e){for(var i=0;t.length>i;i++)if(t[i]===e.item[0])return!1;return!0})},_refreshItems:function(t){this.items=[],this.containers=[this];var i,s,n,a,o,r,h,l,u=this.items,d=[[e.isFunction(this.options.items)?this.options.items.call(this.element[0],t,{item:this.currentItem}):e(this.options.items,this.element),this]],c=this._connectWith();if(c&&this.ready)for(i=c.length-1;i>=0;i--)for(n=e(c[i]),s=n.length-1;s>=0;s--)a=e.data(n[s],this.widgetFullName),a&&a!==this&&!a.options.disabled&&(d.push([e.isFunction(a.options.items)?a.options.items.call(a.element[0],t,{item:this.currentItem}):e(a.options.items,a.element),a]),this.containers.push(a));for(i=d.length-1;i>=0;i--)for(o=d[i][1],r=d[i][0],s=0,l=r.length;l>s;s++)h=e(r[s]),h.data(this.widgetName+"-item",o),u.push({item:h,instance:o,width:0,height:0,left:0,top:0})},refreshPositions:function(t){this.offsetParent&&this.helper&&(this.offset.parent=this._getParentOffset());var i,s,n,a;for(i=this.items.length-1;i>=0;i--)s=this.items[i],s.instance!==this.currentContainer&&this.currentContainer&&s.item[0]!==this.currentItem[0]||(n=this.options.toleranceElement?e(this.options.toleranceElement,s.item):s.item,t||(s.width=n.outerWidth(),s.height=n.outerHeight()),a=n.offset(),s.left=a.left,s.top=a.top);if(this.options.custom&&this.options.custom.refreshContainers)this.options.custom.refreshContainers.call(this);else for(i=this.containers.length-1;i>=0;i--)a=this.containers[i].element.offset(),this.containers[i].containerCache.left=a.left,this.containers[i].containerCache.top=a.top,this.containers[i].containerCache.width=this.containers[i].element.outerWidth(),this.containers[i].containerCache.height=this.containers[i].element.outerHeight();return this},_createPlaceholder:function(t){t=t||this;var i,s=t.options;s.placeholder&&s.placeholder.constructor!==String||(i=s.placeholder,s.placeholder={element:function(){var s=t.currentItem[0].nodeName.toLowerCase(),n=e("<"+s+">",t.document[0]).addClass(i||t.currentItem[0].className+" ui-sortable-placeholder").removeClass("ui-sortable-helper");return"tr"===s?t.currentItem.children().each(function(){e(" ",t.document[0]).attr("colspan",e(this).attr("colspan")||1).appendTo(n)}):"img"===s&&n.attr("src",t.currentItem.attr("src")),i||n.css("visibility","hidden"),n},update:function(e,n){(!i||s.forcePlaceholderSize)&&(n.height()||n.height(t.currentItem.innerHeight()-parseInt(t.currentItem.css("paddingTop")||0,10)-parseInt(t.currentItem.css("paddingBottom")||0,10)),n.width()||n.width(t.currentItem.innerWidth()-parseInt(t.currentItem.css("paddingLeft")||0,10)-parseInt(t.currentItem.css("paddingRight")||0,10)))}}),t.placeholder=e(s.placeholder.element.call(t.element,t.currentItem)),t.currentItem.after(t.placeholder),s.placeholder.update(t,t.placeholder)},_contactContainers:function(t){var i,s,n,a,o,r,h,l,u,d,c=null,p=null;for(i=this.containers.length-1;i>=0;i--)if(!e.contains(this.currentItem[0],this.containers[i].element[0]))if(this._intersectsWith(this.containers[i].containerCache)){if(c&&e.contains(this.containers[i].element[0],c.element[0]))continue;c=this.containers[i],p=i}else this.containers[i].containerCache.over&&(this.containers[i]._trigger("out",t,this._uiHash(this)),this.containers[i].containerCache.over=0);if(c)if(1===this.containers.length)this.containers[p].containerCache.over||(this.containers[p]._trigger("over",t,this._uiHash(this)),this.containers[p].containerCache.over=1);else{for(n=1e4,a=null,u=c.floating||this._isFloating(this.currentItem),o=u?"left":"top",r=u?"width":"height",d=u?"clientX":"clientY",s=this.items.length-1;s>=0;s--)e.contains(this.containers[p].element[0],this.items[s].item[0])&&this.items[s].item[0]!==this.currentItem[0]&&(h=this.items[s].item.offset()[o],l=!1,t[d]-h>this.items[s][r]/2&&(l=!0),n>Math.abs(t[d]-h)&&(n=Math.abs(t[d]-h),a=this.items[s],this.direction=l?"up":"down"));if(!a&&!this.options.dropOnEmpty)return;if(this.currentContainer===this.containers[p])return;a?this._rearrange(t,a,null,!0):this._rearrange(t,null,this.containers[p].element,!0),this._trigger("change",t,this._uiHash()),this.containers[p]._trigger("change",t,this._uiHash(this)),this.currentContainer=this.containers[p],this.options.placeholder.update(this.currentContainer,this.placeholder),this.containers[p]._trigger("over",t,this._uiHash(this)),this.containers[p].containerCache.over=1}},_createHelper:function(t){var i=this.options,s=e.isFunction(i.helper)?e(i.helper.apply(this.element[0],[t,this.currentItem])):"clone"===i.helper?this.currentItem.clone():this.currentItem;return s.parents("body").length||e("parent"!==i.appendTo?i.appendTo:this.currentItem[0].parentNode)[0].appendChild(s[0]),s[0]===this.currentItem[0]&&(this._storedCSS={width:this.currentItem[0].style.width,height:this.currentItem[0].style.height,position:this.currentItem.css("position"),top:this.currentItem.css("top"),left:this.currentItem.css("left")}),(!s[0].style.width||i.forceHelperSize)&&s.width(this.currentItem.width()),(!s[0].style.height||i.forceHelperSize)&&s.height(this.currentItem.height()),s},_adjustOffsetFromHelper:function(t){"string"==typeof t&&(t=t.split(" ")),e.isArray(t)&&(t={left:+t[0],top:+t[1]||0}),"left"in t&&(this.offset.click.left=t.left+this.margins.left),"right"in t&&(this.offset.click.left=this.helperProportions.width-t.right+this.margins.left),"top"in t&&(this.offset.click.top=t.top+this.margins.top),"bottom"in t&&(this.offset.click.top=this.helperProportions.height-t.bottom+this.margins.top)},_getParentOffset:function(){this.offsetParent=this.helper.offsetParent();var t=this.offsetParent.offset();return"absolute"===this.cssPosition&&this.scrollParent[0]!==document&&e.contains(this.scrollParent[0],this.offsetParent[0])&&(t.left+=this.scrollParent.scrollLeft(),t.top+=this.scrollParent.scrollTop()),(this.offsetParent[0]===document.body||this.offsetParent[0].tagName&&"html"===this.offsetParent[0].tagName.toLowerCase()&&e.ui.ie)&&(t={top:0,left:0}),{top:t.top+(parseInt(this.offsetParent.css("borderTopWidth"),10)||0),left:t.left+(parseInt(this.offsetParent.css("borderLeftWidth"),10)||0)}},_getRelativeOffset:function(){if("relative"===this.cssPosition){var e=this.currentItem.position();return{top:e.top-(parseInt(this.helper.css("top"),10)||0)+this.scrollParent.scrollTop(),left:e.left-(parseInt(this.helper.css("left"),10)||0)+this.scrollParent.scrollLeft()}}return{top:0,left:0}},_cacheMargins:function(){this.margins={left:parseInt(this.currentItem.css("marginLeft"),10)||0,top:parseInt(this.currentItem.css("marginTop"),10)||0}},_cacheHelperProportions:function(){this.helperProportions={width:this.helper.outerWidth(),height:this.helper.outerHeight()}},_setContainment:function(){var t,i,s,n=this.options;"parent"===n.containment&&(n.containment=this.helper[0].parentNode),("document"===n.containment||"window"===n.containment)&&(this.containment=[0-this.offset.relative.left-this.offset.parent.left,0-this.offset.relative.top-this.offset.parent.top,e("document"===n.containment?document:window).width()-this.helperProportions.width-this.margins.left,(e("document"===n.containment?document:window).height()||document.body.parentNode.scrollHeight)-this.helperProportions.height-this.margins.top]),/^(document|window|parent)$/.test(n.containment)||(t=e(n.containment)[0],i=e(n.containment).offset(),s="hidden"!==e(t).css("overflow"),this.containment=[i.left+(parseInt(e(t).css("borderLeftWidth"),10)||0)+(parseInt(e(t).css("paddingLeft"),10)||0)-this.margins.left,i.top+(parseInt(e(t).css("borderTopWidth"),10)||0)+(parseInt(e(t).css("paddingTop"),10)||0)-this.margins.top,i.left+(s?Math.max(t.scrollWidth,t.offsetWidth):t.offsetWidth)-(parseInt(e(t).css("borderLeftWidth"),10)||0)-(parseInt(e(t).css("paddingRight"),10)||0)-this.helperProportions.width-this.margins.left,i.top+(s?Math.max(t.scrollHeight,t.offsetHeight):t.offsetHeight)-(parseInt(e(t).css("borderTopWidth"),10)||0)-(parseInt(e(t).css("paddingBottom"),10)||0)-this.helperProportions.height-this.margins.top])},_convertPositionTo:function(t,i){i||(i=this.position);var s="absolute"===t?1:-1,n="absolute"!==this.cssPosition||this.scrollParent[0]!==document&&e.contains(this.scrollParent[0],this.offsetParent[0])?this.scrollParent:this.offsetParent,a=/(html|body)/i.test(n[0].tagName);return{top:i.top+this.offset.relative.top*s+this.offset.parent.top*s-("fixed"===this.cssPosition?-this.scrollParent.scrollTop():a?0:n.scrollTop())*s,left:i.left+this.offset.relative.left*s+this.offset.parent.left*s-("fixed"===this.cssPosition?-this.scrollParent.scrollLeft():a?0:n.scrollLeft())*s}},_generatePosition:function(t){var i,s,n=this.options,a=t.pageX,o=t.pageY,r="absolute"!==this.cssPosition||this.scrollParent[0]!==document&&e.contains(this.scrollParent[0],this.offsetParent[0])?this.scrollParent:this.offsetParent,h=/(html|body)/i.test(r[0].tagName);return"relative"!==this.cssPosition||this.scrollParent[0]!==document&&this.scrollParent[0]!==this.offsetParent[0]||(this.offset.relative=this._getRelativeOffset()),this.originalPosition&&(this.containment&&(t.pageX-this.offset.click.leftthis.containment[2]&&(a=this.containment[2]+this.offset.click.left),t.pageY-this.offset.click.top>this.containment[3]&&(o=this.containment[3]+this.offset.click.top)),n.grid&&(i=this.originalPageY+Math.round((o-this.originalPageY)/n.grid[1])*n.grid[1],o=this.containment?i-this.offset.click.top>=this.containment[1]&&i-this.offset.click.top<=this.containment[3]?i:i-this.offset.click.top>=this.containment[1]?i-n.grid[1]:i+n.grid[1]:i,s=this.originalPageX+Math.round((a-this.originalPageX)/n.grid[0])*n.grid[0],a=this.containment?s-this.offset.click.left>=this.containment[0]&&s-this.offset.click.left<=this.containment[2]?s:s-this.offset.click.left>=this.containment[0]?s-n.grid[0]:s+n.grid[0]:s)),{top:o-this.offset.click.top-this.offset.relative.top-this.offset.parent.top+("fixed"===this.cssPosition?-this.scrollParent.scrollTop():h?0:r.scrollTop()),left:a-this.offset.click.left-this.offset.relative.left-this.offset.parent.left+("fixed"===this.cssPosition?-this.scrollParent.scrollLeft():h?0:r.scrollLeft())}},_rearrange:function(e,t,i,s){i?i[0].appendChild(this.placeholder[0]):t.item[0].parentNode.insertBefore(this.placeholder[0],"down"===this.direction?t.item[0]:t.item[0].nextSibling),this.counter=this.counter?++this.counter:1;var n=this.counter;this._delay(function(){n===this.counter&&this.refreshPositions(!s)})},_clear:function(e,t){function i(e,t,i){return function(s){i._trigger(e,s,t._uiHash(t))}}this.reverting=!1;var s,n=[];if(!this._noFinalSort&&this.currentItem.parent().length&&this.placeholder.before(this.currentItem),this._noFinalSort=null,this.helper[0]===this.currentItem[0]){for(s in this._storedCSS)("auto"===this._storedCSS[s]||"static"===this._storedCSS[s])&&(this._storedCSS[s]="");this.currentItem.css(this._storedCSS).removeClass("ui-sortable-helper")}else this.currentItem.show();for(this.fromOutside&&!t&&n.push(function(e){this._trigger("receive",e,this._uiHash(this.fromOutside))}),!this.fromOutside&&this.domPosition.prev===this.currentItem.prev().not(".ui-sortable-helper")[0]&&this.domPosition.parent===this.currentItem.parent()[0]||t||n.push(function(e){this._trigger("update",e,this._uiHash())}),this!==this.currentContainer&&(t||(n.push(function(e){this._trigger("remove",e,this._uiHash())}),n.push(function(e){return function(t){e._trigger("receive",t,this._uiHash(this))}}.call(this,this.currentContainer)),n.push(function(e){return function(t){e._trigger("update",t,this._uiHash(this))}}.call(this,this.currentContainer)))),s=this.containers.length-1;s>=0;s--)t||n.push(i("deactivate",this,this.containers[s])),this.containers[s].containerCache.over&&(n.push(i("out",this,this.containers[s])),this.containers[s].containerCache.over=0);if(this.storedCursor&&(this.document.find("body").css("cursor",this.storedCursor),this.storedStylesheet.remove()),this._storedOpacity&&this.helper.css("opacity",this._storedOpacity),this._storedZIndex&&this.helper.css("zIndex","auto"===this._storedZIndex?"":this._storedZIndex),this.dragging=!1,this.cancelHelperRemoval){if(!t){for(this._trigger("beforeStop",e,this._uiHash()),s=0;n.length>s;s++)n[s].call(this,e);this._trigger("stop",e,this._uiHash())}return this.fromOutside=!1,!1}if(t||this._trigger("beforeStop",e,this._uiHash()),this.placeholder[0].parentNode.removeChild(this.placeholder[0]),this.helper[0]!==this.currentItem[0]&&this.helper.remove(),this.helper=null,!t){for(s=0;n.length>s;s++)n[s].call(this,e);this._trigger("stop",e,this._uiHash())}return this.fromOutside=!1,!0},_trigger:function(){e.Widget.prototype._trigger.apply(this,arguments)===!1&&this.cancel()},_uiHash:function(t){var i=t||this;return{helper:i.helper,placeholder:i.placeholder||e([]),position:i.position,originalPosition:i.originalPosition,offset:i.positionAbs,item:i.currentItem,sender:t?t.element:null}}}),e.widget("ui.accordion",{version:"1.11.0",options:{active:0,animate:{},collapsible:!1,event:"click",header:"> li > :first-child,> :not(li):even",heightStyle:"auto",icons:{activeHeader:"ui-icon-triangle-1-s",header:"ui-icon-triangle-1-e"},activate:null,beforeActivate:null},hideProps:{borderTopWidth:"hide",borderBottomWidth:"hide",paddingTop:"hide",paddingBottom:"hide",height:"hide"},showProps:{borderTopWidth:"show",borderBottomWidth:"show",paddingTop:"show",paddingBottom:"show",height:"show"},_create:function(){var t=this.options;this.prevShow=this.prevHide=e(),this.element.addClass("ui-accordion ui-widget ui-helper-reset").attr("role","tablist"),t.collapsible||t.active!==!1&&null!=t.active||(t.active=0),this._processPanels(),0>t.active&&(t.active+=this.headers.length),this._refresh()},_getCreateEventData:function(){return{header:this.active,panel:this.active.length?this.active.next():e()}},_createIcons:function(){var t=this.options.icons;t&&(e("").addClass("ui-accordion-header-icon ui-icon "+t.header).prependTo(this.headers),this.active.children(".ui-accordion-header-icon").removeClass(t.header).addClass(t.activeHeader),this.headers.addClass("ui-accordion-icons"))},_destroyIcons:function(){this.headers.removeClass("ui-accordion-icons").children(".ui-accordion-header-icon").remove()},_destroy:function(){var e;this.element.removeClass("ui-accordion ui-widget ui-helper-reset").removeAttr("role"),this.headers.removeClass("ui-accordion-header ui-accordion-header-active ui-state-default ui-corner-all ui-state-active ui-state-disabled ui-corner-top").removeAttr("role").removeAttr("aria-expanded").removeAttr("aria-selected").removeAttr("aria-controls").removeAttr("tabIndex").removeUniqueId(),this._destroyIcons(),e=this.headers.next().removeClass("ui-helper-reset ui-widget-content ui-corner-bottom ui-accordion-content ui-accordion-content-active ui-state-disabled").css("display","").removeAttr("role").removeAttr("aria-hidden").removeAttr("aria-labelledby").removeUniqueId(),"content"!==this.options.heightStyle&&e.css("height","")},_setOption:function(e,t){return"active"===e?(this._activate(t),void 0):("event"===e&&(this.options.event&&this._off(this.headers,this.options.event),this._setupEvents(t)),this._super(e,t),"collapsible"!==e||t||this.options.active!==!1||this._activate(0),"icons"===e&&(this._destroyIcons(),t&&this._createIcons()),"disabled"===e&&(this.element.toggleClass("ui-state-disabled",!!t).attr("aria-disabled",t),this.headers.add(this.headers.next()).toggleClass("ui-state-disabled",!!t)),void 0)},_keydown:function(t){if(!t.altKey&&!t.ctrlKey){var i=e.ui.keyCode,s=this.headers.length,n=this.headers.index(t.target),a=!1;switch(t.keyCode){case i.RIGHT:case i.DOWN:a=this.headers[(n+1)%s];break;case i.LEFT:case i.UP:a=this.headers[(n-1+s)%s];break;case i.SPACE:case i.ENTER:this._eventHandler(t);break;case i.HOME:a=this.headers[0];break;case i.END:a=this.headers[s-1]}a&&(e(t.target).attr("tabIndex",-1),e(a).attr("tabIndex",0),a.focus(),t.preventDefault())}},_panelKeyDown:function(t){t.keyCode===e.ui.keyCode.UP&&t.ctrlKey&&e(t.currentTarget).prev().focus()},refresh:function(){var t=this.options;this._processPanels(),t.active===!1&&t.collapsible===!0||!this.headers.length?(t.active=!1,this.active=e()):t.active===!1?this._activate(0):this.active.length&&!e.contains(this.element[0],this.active[0])?this.headers.length===this.headers.find(".ui-state-disabled").length?(t.active=!1,this.active=e()):this._activate(Math.max(0,t.active-1)):t.active=this.headers.index(this.active),this._destroyIcons(),this._refresh()},_processPanels:function(){this.headers=this.element.find(this.options.header).addClass("ui-accordion-header ui-state-default ui-corner-all"),this.headers.next().addClass("ui-accordion-content ui-helper-reset ui-widget-content ui-corner-bottom").filter(":not(.ui-accordion-content-active)").hide()},_refresh:function(){var t,i=this.options,s=i.heightStyle,n=this.element.parent();this.active=this._findActive(i.active).addClass("ui-accordion-header-active ui-state-active ui-corner-top").removeClass("ui-corner-all"),this.active.next().addClass("ui-accordion-content-active").show(),this.headers.attr("role","tab").each(function(){var t=e(this),i=t.uniqueId().attr("id"),s=t.next(),n=s.uniqueId().attr("id"); +t.attr("aria-controls",n),s.attr("aria-labelledby",i)}).next().attr("role","tabpanel"),this.headers.not(this.active).attr({"aria-selected":"false","aria-expanded":"false",tabIndex:-1}).next().attr({"aria-hidden":"true"}).hide(),this.active.length?this.active.attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0}).next().attr({"aria-hidden":"false"}):this.headers.eq(0).attr("tabIndex",0),this._createIcons(),this._setupEvents(i.event),"fill"===s?(t=n.height(),this.element.siblings(":visible").each(function(){var i=e(this),s=i.css("position");"absolute"!==s&&"fixed"!==s&&(t-=i.outerHeight(!0))}),this.headers.each(function(){t-=e(this).outerHeight(!0)}),this.headers.next().each(function(){e(this).height(Math.max(0,t-e(this).innerHeight()+e(this).height()))}).css("overflow","auto")):"auto"===s&&(t=0,this.headers.next().each(function(){t=Math.max(t,e(this).css("height","").height())}).height(t))},_activate:function(t){var i=this._findActive(t)[0];i!==this.active[0]&&(i=i||this.active[0],this._eventHandler({target:i,currentTarget:i,preventDefault:e.noop}))},_findActive:function(t){return"number"==typeof t?this.headers.eq(t):e()},_setupEvents:function(t){var i={keydown:"_keydown"};t&&e.each(t.split(" "),function(e,t){i[t]="_eventHandler"}),this._off(this.headers.add(this.headers.next())),this._on(this.headers,i),this._on(this.headers.next(),{keydown:"_panelKeyDown"}),this._hoverable(this.headers),this._focusable(this.headers)},_eventHandler:function(t){var i=this.options,s=this.active,n=e(t.currentTarget),a=n[0]===s[0],o=a&&i.collapsible,r=o?e():n.next(),h=s.next(),l={oldHeader:s,oldPanel:h,newHeader:o?e():n,newPanel:r};t.preventDefault(),a&&!i.collapsible||this._trigger("beforeActivate",t,l)===!1||(i.active=o?!1:this.headers.index(n),this.active=a?e():n,this._toggle(l),s.removeClass("ui-accordion-header-active ui-state-active"),i.icons&&s.children(".ui-accordion-header-icon").removeClass(i.icons.activeHeader).addClass(i.icons.header),a||(n.removeClass("ui-corner-all").addClass("ui-accordion-header-active ui-state-active ui-corner-top"),i.icons&&n.children(".ui-accordion-header-icon").removeClass(i.icons.header).addClass(i.icons.activeHeader),n.next().addClass("ui-accordion-content-active")))},_toggle:function(t){var i=t.newPanel,s=this.prevShow.length?this.prevShow:t.oldPanel;this.prevShow.add(this.prevHide).stop(!0,!0),this.prevShow=i,this.prevHide=s,this.options.animate?this._animate(i,s,t):(s.hide(),i.show(),this._toggleComplete(t)),s.attr({"aria-hidden":"true"}),s.prev().attr("aria-selected","false"),i.length&&s.length?s.prev().attr({tabIndex:-1,"aria-expanded":"false"}):i.length&&this.headers.filter(function(){return 0===e(this).attr("tabIndex")}).attr("tabIndex",-1),i.attr("aria-hidden","false").prev().attr({"aria-selected":"true",tabIndex:0,"aria-expanded":"true"})},_animate:function(e,t,i){var s,n,a,o=this,r=0,h=e.length&&(!t.length||e.index()",delay:300,options:{icons:{submenu:"ui-icon-carat-1-e"},items:"> *",menus:"ul",position:{my:"left-1 top",at:"right top"},role:"menu",blur:null,focus:null,select:null},_create:function(){this.activeMenu=this.element,this.mouseHandled=!1,this.element.uniqueId().addClass("ui-menu ui-widget ui-widget-content").toggleClass("ui-menu-icons",!!this.element.find(".ui-icon").length).attr({role:this.options.role,tabIndex:0}),this.options.disabled&&this.element.addClass("ui-state-disabled").attr("aria-disabled","true"),this._on({"mousedown .ui-menu-item":function(e){e.preventDefault()},"click .ui-menu-item":function(t){var i=e(t.target);!this.mouseHandled&&i.not(".ui-state-disabled").length&&(this.select(t),t.isPropagationStopped()||(this.mouseHandled=!0),i.has(".ui-menu").length?this.expand(t):!this.element.is(":focus")&&e(this.document[0].activeElement).closest(".ui-menu").length&&(this.element.trigger("focus",[!0]),this.active&&1===this.active.parents(".ui-menu").length&&clearTimeout(this.timer)))},"mouseenter .ui-menu-item":function(t){var i=e(t.currentTarget);i.siblings(".ui-state-active").removeClass("ui-state-active"),this.focus(t,i)},mouseleave:"collapseAll","mouseleave .ui-menu":"collapseAll",focus:function(e,t){var i=this.active||this.element.find(this.options.items).eq(0);t||this.focus(e,i)},blur:function(t){this._delay(function(){e.contains(this.element[0],this.document[0].activeElement)||this.collapseAll(t)})},keydown:"_keydown"}),this.refresh(),this._on(this.document,{click:function(e){this._closeOnDocumentClick(e)&&this.collapseAll(e),this.mouseHandled=!1}})},_destroy:function(){this.element.removeAttr("aria-activedescendant").find(".ui-menu").addBack().removeClass("ui-menu ui-widget ui-widget-content ui-menu-icons ui-front").removeAttr("role").removeAttr("tabIndex").removeAttr("aria-labelledby").removeAttr("aria-expanded").removeAttr("aria-hidden").removeAttr("aria-disabled").removeUniqueId().show(),this.element.find(".ui-menu-item").removeClass("ui-menu-item").removeAttr("role").removeAttr("aria-disabled").removeUniqueId().removeClass("ui-state-hover").removeAttr("tabIndex").removeAttr("role").removeAttr("aria-haspopup").children().each(function(){var t=e(this);t.data("ui-menu-submenu-carat")&&t.remove()}),this.element.find(".ui-menu-divider").removeClass("ui-menu-divider ui-widget-content")},_keydown:function(t){function i(e){return e.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}var s,n,a,o,r,h=!0;switch(t.keyCode){case e.ui.keyCode.PAGE_UP:this.previousPage(t);break;case e.ui.keyCode.PAGE_DOWN:this.nextPage(t);break;case e.ui.keyCode.HOME:this._move("first","first",t);break;case e.ui.keyCode.END:this._move("last","last",t);break;case e.ui.keyCode.UP:this.previous(t);break;case e.ui.keyCode.DOWN:this.next(t);break;case e.ui.keyCode.LEFT:this.collapse(t);break;case e.ui.keyCode.RIGHT:this.active&&!this.active.is(".ui-state-disabled")&&this.expand(t);break;case e.ui.keyCode.ENTER:case e.ui.keyCode.SPACE:this._activate(t);break;case e.ui.keyCode.ESCAPE:this.collapse(t);break;default:h=!1,n=this.previousFilter||"",a=String.fromCharCode(t.keyCode),o=!1,clearTimeout(this.filterTimer),a===n?o=!0:a=n+a,r=RegExp("^"+i(a),"i"),s=this.activeMenu.find(this.options.items).filter(function(){return r.test(e(this).text())}),s=o&&-1!==s.index(this.active.next())?this.active.nextAll(".ui-menu-item"):s,s.length||(a=String.fromCharCode(t.keyCode),r=RegExp("^"+i(a),"i"),s=this.activeMenu.find(this.options.items).filter(function(){return r.test(e(this).text())})),s.length?(this.focus(t,s),s.length>1?(this.previousFilter=a,this.filterTimer=this._delay(function(){delete this.previousFilter},1e3)):delete this.previousFilter):delete this.previousFilter}h&&t.preventDefault()},_activate:function(e){this.active.is(".ui-state-disabled")||(this.active.is("[aria-haspopup='true']")?this.expand(e):this.select(e))},refresh:function(){var t,i,s=this,n=this.options.icons.submenu,a=this.element.find(this.options.menus);this.element.toggleClass("ui-menu-icons",!!this.element.find(".ui-icon").length),a.filter(":not(.ui-menu)").addClass("ui-menu ui-widget ui-widget-content ui-front").hide().attr({role:this.options.role,"aria-hidden":"true","aria-expanded":"false"}).each(function(){var t=e(this),i=t.parent(),s=e("").addClass("ui-menu-icon ui-icon "+n).data("ui-menu-submenu-carat",!0);i.attr("aria-haspopup","true").prepend(s),t.attr("aria-labelledby",i.attr("id"))}),t=a.add(this.element),i=t.find(this.options.items),i.not(".ui-menu-item").each(function(){var t=e(this);s._isDivider(t)&&t.addClass("ui-widget-content ui-menu-divider")}),i.not(".ui-menu-item, .ui-menu-divider").addClass("ui-menu-item").uniqueId().attr({tabIndex:-1,role:this._itemRole()}),i.filter(".ui-state-disabled").attr("aria-disabled","true"),this.active&&!e.contains(this.element[0],this.active[0])&&this.blur()},_itemRole:function(){return{menu:"menuitem",listbox:"option"}[this.options.role]},_setOption:function(e,t){"icons"===e&&this.element.find(".ui-menu-icon").removeClass(this.options.icons.submenu).addClass(t.submenu),"disabled"===e&&this.element.toggleClass("ui-state-disabled",!!t).attr("aria-disabled",t),this._super(e,t)},focus:function(e,t){var i,s;this.blur(e,e&&"focus"===e.type),this._scrollIntoView(t),this.active=t.first(),s=this.active.addClass("ui-state-focus").removeClass("ui-state-active"),this.options.role&&this.element.attr("aria-activedescendant",s.attr("id")),this.active.parent().closest(".ui-menu-item").addClass("ui-state-active"),e&&"keydown"===e.type?this._close():this.timer=this._delay(function(){this._close()},this.delay),i=t.children(".ui-menu"),i.length&&e&&/^mouse/.test(e.type)&&this._startOpening(i),this.activeMenu=t.parent(),this._trigger("focus",e,{item:t})},_scrollIntoView:function(t){var i,s,n,a,o,r;this._hasScroll()&&(i=parseFloat(e.css(this.activeMenu[0],"borderTopWidth"))||0,s=parseFloat(e.css(this.activeMenu[0],"paddingTop"))||0,n=t.offset().top-this.activeMenu.offset().top-i-s,a=this.activeMenu.scrollTop(),o=this.activeMenu.height(),r=t.outerHeight(),0>n?this.activeMenu.scrollTop(a+n):n+r>o&&this.activeMenu.scrollTop(a+n-o+r))},blur:function(e,t){t||clearTimeout(this.timer),this.active&&(this.active.removeClass("ui-state-focus"),this.active=null,this._trigger("blur",e,{item:this.active}))},_startOpening:function(e){clearTimeout(this.timer),"true"===e.attr("aria-hidden")&&(this.timer=this._delay(function(){this._close(),this._open(e)},this.delay))},_open:function(t){var i=e.extend({of:this.active},this.options.position);clearTimeout(this.timer),this.element.find(".ui-menu").not(t.parents(".ui-menu")).hide().attr("aria-hidden","true"),t.show().removeAttr("aria-hidden").attr("aria-expanded","true").position(i)},collapseAll:function(t,i){clearTimeout(this.timer),this.timer=this._delay(function(){var s=i?this.element:e(t&&t.target).closest(this.element.find(".ui-menu"));s.length||(s=this.element),this._close(s),this.blur(t),this.activeMenu=s},this.delay)},_close:function(e){e||(e=this.active?this.active.parent():this.element),e.find(".ui-menu").hide().attr("aria-hidden","true").attr("aria-expanded","false").end().find(".ui-state-active").not(".ui-state-focus").removeClass("ui-state-active")},_closeOnDocumentClick:function(t){return!e(t.target).closest(".ui-menu").length},_isDivider:function(e){return!/[^\-\u2014\u2013\s]/.test(e.text())},collapse:function(e){var t=this.active&&this.active.parent().closest(".ui-menu-item",this.element);t&&t.length&&(this._close(),this.focus(e,t))},expand:function(e){var t=this.active&&this.active.children(".ui-menu ").find(this.options.items).first();t&&t.length&&(this._open(t.parent()),this._delay(function(){this.focus(e,t)}))},next:function(e){this._move("next","first",e)},previous:function(e){this._move("prev","last",e)},isFirstItem:function(){return this.active&&!this.active.prevAll(".ui-menu-item").length},isLastItem:function(){return this.active&&!this.active.nextAll(".ui-menu-item").length},_move:function(e,t,i){var s;this.active&&(s="first"===e||"last"===e?this.active["first"===e?"prevAll":"nextAll"](".ui-menu-item").eq(-1):this.active[e+"All"](".ui-menu-item").eq(0)),s&&s.length&&this.active||(s=this.activeMenu.find(this.options.items)[t]()),this.focus(i,s)},nextPage:function(t){var i,s,n;return this.active?(this.isLastItem()||(this._hasScroll()?(s=this.active.offset().top,n=this.element.height(),this.active.nextAll(".ui-menu-item").each(function(){return i=e(this),0>i.offset().top-s-n}),this.focus(t,i)):this.focus(t,this.activeMenu.find(this.options.items)[this.active?"last":"first"]())),void 0):(this.next(t),void 0)},previousPage:function(t){var i,s,n;return this.active?(this.isFirstItem()||(this._hasScroll()?(s=this.active.offset().top,n=this.element.height(),this.active.prevAll(".ui-menu-item").each(function(){return i=e(this),i.offset().top-s+n>0}),this.focus(t,i)):this.focus(t,this.activeMenu.find(this.options.items).first())),void 0):(this.next(t),void 0)},_hasScroll:function(){return this.element.outerHeight()",options:{appendTo:null,autoFocus:!1,delay:300,minLength:1,position:{my:"left top",at:"left bottom",collision:"none"},source:null,change:null,close:null,focus:null,open:null,response:null,search:null,select:null},requestIndex:0,pending:0,_create:function(){var t,i,s,n=this.element[0].nodeName.toLowerCase(),a="textarea"===n,o="input"===n;this.isMultiLine=a?!0:o?!1:this.element.prop("isContentEditable"),this.valueMethod=this.element[a||o?"val":"text"],this.isNewMenu=!0,this.element.addClass("ui-autocomplete-input").attr("autocomplete","off"),this._on(this.element,{keydown:function(n){if(this.element.prop("readOnly"))return t=!0,s=!0,i=!0,void 0;t=!1,s=!1,i=!1;var a=e.ui.keyCode;switch(n.keyCode){case a.PAGE_UP:t=!0,this._move("previousPage",n);break;case a.PAGE_DOWN:t=!0,this._move("nextPage",n);break;case a.UP:t=!0,this._keyEvent("previous",n);break;case a.DOWN:t=!0,this._keyEvent("next",n);break;case a.ENTER:this.menu.active&&(t=!0,n.preventDefault(),this.menu.select(n));break;case a.TAB:this.menu.active&&this.menu.select(n);break;case a.ESCAPE:this.menu.element.is(":visible")&&(this._value(this.term),this.close(n),n.preventDefault());break;default:i=!0,this._searchTimeout(n)}},keypress:function(s){if(t)return t=!1,(!this.isMultiLine||this.menu.element.is(":visible"))&&s.preventDefault(),void 0;if(!i){var n=e.ui.keyCode;switch(s.keyCode){case n.PAGE_UP:this._move("previousPage",s);break;case n.PAGE_DOWN:this._move("nextPage",s);break;case n.UP:this._keyEvent("previous",s);break;case n.DOWN:this._keyEvent("next",s)}}},input:function(e){return s?(s=!1,e.preventDefault(),void 0):(this._searchTimeout(e),void 0)},focus:function(){this.selectedItem=null,this.previous=this._value()},blur:function(e){return this.cancelBlur?(delete this.cancelBlur,void 0):(clearTimeout(this.searching),this.close(e),this._change(e),void 0)}}),this._initSource(),this.menu=e("
    ").addClass("ui-autocomplete ui-front").appendTo(this._appendTo()).menu({role:null}).hide().menu("instance"),this._on(this.menu.element,{mousedown:function(t){t.preventDefault(),this.cancelBlur=!0,this._delay(function(){delete this.cancelBlur});var i=this.menu.element[0];e(t.target).closest(".ui-menu-item").length||this._delay(function(){var t=this;this.document.one("mousedown",function(s){s.target===t.element[0]||s.target===i||e.contains(i,s.target)||t.close()})})},menufocus:function(t,i){var s,n;return this.isNewMenu&&(this.isNewMenu=!1,t.originalEvent&&/^mouse/.test(t.originalEvent.type))?(this.menu.blur(),this.document.one("mousemove",function(){e(t.target).trigger(t.originalEvent)}),void 0):(n=i.item.data("ui-autocomplete-item"),!1!==this._trigger("focus",t,{item:n})&&t.originalEvent&&/^key/.test(t.originalEvent.type)&&this._value(n.value),s=i.item.attr("aria-label")||n.value,s&&jQuery.trim(s).length&&(this.liveRegion.children().hide(),e("
    ").text(s).appendTo(this.liveRegion)),void 0)},menuselect:function(e,t){var i=t.item.data("ui-autocomplete-item"),s=this.previous;this.element[0]!==this.document[0].activeElement&&(this.element.focus(),this.previous=s,this._delay(function(){this.previous=s,this.selectedItem=i})),!1!==this._trigger("select",e,{item:i})&&this._value(i.value),this.term=this._value(),this.close(e),this.selectedItem=i}}),this.liveRegion=e("",{role:"status","aria-live":"assertive","aria-relevant":"additions"}).addClass("ui-helper-hidden-accessible").appendTo(this.document[0].body),this._on(this.window,{beforeunload:function(){this.element.removeAttr("autocomplete")}})},_destroy:function(){clearTimeout(this.searching),this.element.removeClass("ui-autocomplete-input").removeAttr("autocomplete"),this.menu.element.remove(),this.liveRegion.remove()},_setOption:function(e,t){this._super(e,t),"source"===e&&this._initSource(),"appendTo"===e&&this.menu.element.appendTo(this._appendTo()),"disabled"===e&&t&&this.xhr&&this.xhr.abort()},_appendTo:function(){var t=this.options.appendTo;return t&&(t=t.jquery||t.nodeType?e(t):this.document.find(t).eq(0)),t&&t[0]||(t=this.element.closest(".ui-front")),t.length||(t=this.document[0].body),t},_initSource:function(){var t,i,s=this;e.isArray(this.options.source)?(t=this.options.source,this.source=function(i,s){s(e.ui.autocomplete.filter(t,i.term))}):"string"==typeof this.options.source?(i=this.options.source,this.source=function(t,n){s.xhr&&s.xhr.abort(),s.xhr=e.ajax({url:i,data:t,dataType:"json",success:function(e){n(e)},error:function(){n([])}})}):this.source=this.options.source},_searchTimeout:function(e){clearTimeout(this.searching),this.searching=this._delay(function(){var t=this.term===this._value(),i=this.menu.element.is(":visible"),s=e.altKey||e.ctrlKey||e.metaKey||e.shiftKey;(!t||t&&!i&&!s)&&(this.selectedItem=null,this.search(null,e))},this.options.delay)},search:function(e,t){return e=null!=e?e:this._value(),this.term=this._value(),e.length").text(i.label).appendTo(t)},_move:function(e,t){return this.menu.element.is(":visible")?this.menu.isFirstItem()&&/^previous/.test(e)||this.menu.isLastItem()&&/^next/.test(e)?(this.isMultiLine||this._value(this.term),this.menu.blur(),void 0):(this.menu[e](t),void 0):(this.search(null,t),void 0)},widget:function(){return this.menu.element},_value:function(){return this.valueMethod.apply(this.element,arguments)},_keyEvent:function(e,t){(!this.isMultiLine||this.menu.element.is(":visible"))&&(this._move(e,t),t.preventDefault())}}),e.extend(e.ui.autocomplete,{escapeRegex:function(e){return e.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")},filter:function(t,i){var s=RegExp(e.ui.autocomplete.escapeRegex(i),"i");return e.grep(t,function(e){return s.test(e.label||e.value||e)})}}),e.widget("ui.autocomplete",e.ui.autocomplete,{options:{messages:{noResults:"No search results.",results:function(e){return e+(e>1?" results are":" result is")+" available, use up and down arrow keys to navigate."}}},__response:function(t){var i;this._superApply(arguments),this.options.disabled||this.cancelSearch||(i=t&&t.length?this.options.messages.results(t.length):this.options.messages.noResults,this.liveRegion.children().hide(),e("
    ").text(i).appendTo(this.liveRegion))}}),e.ui.autocomplete;var d,c="ui-button ui-widget ui-state-default ui-corner-all",p="ui-button-icons-only ui-button-icon-only ui-button-text-icons ui-button-text-icon-primary ui-button-text-icon-secondary ui-button-text-only",f=function(){var t=e(this);setTimeout(function(){t.find(":ui-button").button("refresh")},1)},m=function(t){var i=t.name,s=t.form,n=e([]);return i&&(i=i.replace(/'/g,"\\'"),n=s?e(s).find("[name='"+i+"'][type=radio]"):e("[name='"+i+"'][type=radio]",t.ownerDocument).filter(function(){return!this.form})),n};e.widget("ui.button",{version:"1.11.0",defaultElement:"").addClass(this._triggerClass).html(a?e("").attr({src:a,alt:n,title:n}):n)),t[r?"before":"after"](i.trigger),i.trigger.click(function(){return e.datepicker._datepickerShowing&&e.datepicker._lastInput===t[0]?e.datepicker._hideDatepicker():e.datepicker._datepickerShowing&&e.datepicker._lastInput!==t[0]?(e.datepicker._hideDatepicker(),e.datepicker._showDatepicker(t[0])):e.datepicker._showDatepicker(t[0]),!1}))},_autoSize:function(e){if(this._get(e,"autoSize")&&!e.inline){var t,i,s,n,a=new Date(2009,11,20),o=this._get(e,"dateFormat");o.match(/[DM]/)&&(t=function(e){for(i=0,s=0,n=0;e.length>n;n++)e[n].length>i&&(i=e[n].length,s=n);return s},a.setMonth(t(this._get(e,o.match(/MM/)?"monthNames":"monthNamesShort"))),a.setDate(t(this._get(e,o.match(/DD/)?"dayNames":"dayNamesShort"))+20-a.getDay())),e.input.attr("size",this._formatDate(e,a).length)}},_inlineDatepicker:function(t,i){var s=e(t);s.hasClass(this.markerClassName)||(s.addClass(this.markerClassName).append(i.dpDiv),e.data(t,"datepicker",i),this._setDate(i,this._getDefaultDate(i),!0),this._updateDatepicker(i),this._updateAlternate(i),i.settings.disabled&&this._disableDatepicker(t),i.dpDiv.css("display","block"))},_dialogDatepicker:function(t,i,s,n,a){var r,h,l,u,d,c=this._dialogInst;return c||(this.uuid+=1,r="dp"+this.uuid,this._dialogInput=e(""),this._dialogInput.keydown(this._doKeyDown),e("body").append(this._dialogInput),c=this._dialogInst=this._newInst(this._dialogInput,!1),c.settings={},e.data(this._dialogInput[0],"datepicker",c)),o(c.settings,n||{}),i=i&&i.constructor===Date?this._formatDate(c,i):i,this._dialogInput.val(i),this._pos=a?a.length?a:[a.pageX,a.pageY]:null,this._pos||(h=document.documentElement.clientWidth,l=document.documentElement.clientHeight,u=document.documentElement.scrollLeft||document.body.scrollLeft,d=document.documentElement.scrollTop||document.body.scrollTop,this._pos=[h/2-100+u,l/2-150+d]),this._dialogInput.css("left",this._pos[0]+20+"px").css("top",this._pos[1]+"px"),c.settings.onSelect=s,this._inDialog=!0,this.dpDiv.addClass(this._dialogClass),this._showDatepicker(this._dialogInput[0]),e.blockUI&&e.blockUI(this.dpDiv),e.data(this._dialogInput[0],"datepicker",c),this},_destroyDatepicker:function(t){var i,s=e(t),n=e.data(t,"datepicker");s.hasClass(this.markerClassName)&&(i=t.nodeName.toLowerCase(),e.removeData(t,"datepicker"),"input"===i?(n.append.remove(),n.trigger.remove(),s.removeClass(this.markerClassName).unbind("focus",this._showDatepicker).unbind("keydown",this._doKeyDown).unbind("keypress",this._doKeyPress).unbind("keyup",this._doKeyUp)):("div"===i||"span"===i)&&s.removeClass(this.markerClassName).empty()) +},_enableDatepicker:function(t){var i,s,n=e(t),a=e.data(t,"datepicker");n.hasClass(this.markerClassName)&&(i=t.nodeName.toLowerCase(),"input"===i?(t.disabled=!1,a.trigger.filter("button").each(function(){this.disabled=!1}).end().filter("img").css({opacity:"1.0",cursor:""})):("div"===i||"span"===i)&&(s=n.children("."+this._inlineClass),s.children().removeClass("ui-state-disabled"),s.find("select.ui-datepicker-month, select.ui-datepicker-year").prop("disabled",!1)),this._disabledInputs=e.map(this._disabledInputs,function(e){return e===t?null:e}))},_disableDatepicker:function(t){var i,s,n=e(t),a=e.data(t,"datepicker");n.hasClass(this.markerClassName)&&(i=t.nodeName.toLowerCase(),"input"===i?(t.disabled=!0,a.trigger.filter("button").each(function(){this.disabled=!0}).end().filter("img").css({opacity:"0.5",cursor:"default"})):("div"===i||"span"===i)&&(s=n.children("."+this._inlineClass),s.children().addClass("ui-state-disabled"),s.find("select.ui-datepicker-month, select.ui-datepicker-year").prop("disabled",!0)),this._disabledInputs=e.map(this._disabledInputs,function(e){return e===t?null:e}),this._disabledInputs[this._disabledInputs.length]=t)},_isDisabledDatepicker:function(e){if(!e)return!1;for(var t=0;this._disabledInputs.length>t;t++)if(this._disabledInputs[t]===e)return!0;return!1},_getInst:function(t){try{return e.data(t,"datepicker")}catch(i){throw"Missing instance data for this datepicker"}},_optionDatepicker:function(t,i,s){var n,a,r,h,l=this._getInst(t);return 2===arguments.length&&"string"==typeof i?"defaults"===i?e.extend({},e.datepicker._defaults):l?"all"===i?e.extend({},l.settings):this._get(l,i):null:(n=i||{},"string"==typeof i&&(n={},n[i]=s),l&&(this._curInst===l&&this._hideDatepicker(),a=this._getDateDatepicker(t,!0),r=this._getMinMaxDate(l,"min"),h=this._getMinMaxDate(l,"max"),o(l.settings,n),null!==r&&void 0!==n.dateFormat&&void 0===n.minDate&&(l.settings.minDate=this._formatDate(l,r)),null!==h&&void 0!==n.dateFormat&&void 0===n.maxDate&&(l.settings.maxDate=this._formatDate(l,h)),"disabled"in n&&(n.disabled?this._disableDatepicker(t):this._enableDatepicker(t)),this._attachments(e(t),l),this._autoSize(l),this._setDate(l,a),this._updateAlternate(l),this._updateDatepicker(l)),void 0)},_changeDatepicker:function(e,t,i){this._optionDatepicker(e,t,i)},_refreshDatepicker:function(e){var t=this._getInst(e);t&&this._updateDatepicker(t)},_setDateDatepicker:function(e,t){var i=this._getInst(e);i&&(this._setDate(i,t),this._updateDatepicker(i),this._updateAlternate(i))},_getDateDatepicker:function(e,t){var i=this._getInst(e);return i&&!i.inline&&this._setDateFromField(i,t),i?this._getDate(i):null},_doKeyDown:function(t){var i,s,n,a=e.datepicker._getInst(t.target),o=!0,r=a.dpDiv.is(".ui-datepicker-rtl");if(a._keyEvent=!0,e.datepicker._datepickerShowing)switch(t.keyCode){case 9:e.datepicker._hideDatepicker(),o=!1;break;case 13:return n=e("td."+e.datepicker._dayOverClass+":not(."+e.datepicker._currentClass+")",a.dpDiv),n[0]&&e.datepicker._selectDay(t.target,a.selectedMonth,a.selectedYear,n[0]),i=e.datepicker._get(a,"onSelect"),i?(s=e.datepicker._formatDate(a),i.apply(a.input?a.input[0]:null,[s,a])):e.datepicker._hideDatepicker(),!1;case 27:e.datepicker._hideDatepicker();break;case 33:e.datepicker._adjustDate(t.target,t.ctrlKey?-e.datepicker._get(a,"stepBigMonths"):-e.datepicker._get(a,"stepMonths"),"M");break;case 34:e.datepicker._adjustDate(t.target,t.ctrlKey?+e.datepicker._get(a,"stepBigMonths"):+e.datepicker._get(a,"stepMonths"),"M");break;case 35:(t.ctrlKey||t.metaKey)&&e.datepicker._clearDate(t.target),o=t.ctrlKey||t.metaKey;break;case 36:(t.ctrlKey||t.metaKey)&&e.datepicker._gotoToday(t.target),o=t.ctrlKey||t.metaKey;break;case 37:(t.ctrlKey||t.metaKey)&&e.datepicker._adjustDate(t.target,r?1:-1,"D"),o=t.ctrlKey||t.metaKey,t.originalEvent.altKey&&e.datepicker._adjustDate(t.target,t.ctrlKey?-e.datepicker._get(a,"stepBigMonths"):-e.datepicker._get(a,"stepMonths"),"M");break;case 38:(t.ctrlKey||t.metaKey)&&e.datepicker._adjustDate(t.target,-7,"D"),o=t.ctrlKey||t.metaKey;break;case 39:(t.ctrlKey||t.metaKey)&&e.datepicker._adjustDate(t.target,r?-1:1,"D"),o=t.ctrlKey||t.metaKey,t.originalEvent.altKey&&e.datepicker._adjustDate(t.target,t.ctrlKey?+e.datepicker._get(a,"stepBigMonths"):+e.datepicker._get(a,"stepMonths"),"M");break;case 40:(t.ctrlKey||t.metaKey)&&e.datepicker._adjustDate(t.target,7,"D"),o=t.ctrlKey||t.metaKey;break;default:o=!1}else 36===t.keyCode&&t.ctrlKey?e.datepicker._showDatepicker(this):o=!1;o&&(t.preventDefault(),t.stopPropagation())},_doKeyPress:function(t){var i,s,n=e.datepicker._getInst(t.target);return e.datepicker._get(n,"constrainInput")?(i=e.datepicker._possibleChars(e.datepicker._get(n,"dateFormat")),s=String.fromCharCode(null==t.charCode?t.keyCode:t.charCode),t.ctrlKey||t.metaKey||" ">s||!i||i.indexOf(s)>-1):void 0},_doKeyUp:function(t){var i,s=e.datepicker._getInst(t.target);if(s.input.val()!==s.lastVal)try{i=e.datepicker.parseDate(e.datepicker._get(s,"dateFormat"),s.input?s.input.val():null,e.datepicker._getFormatConfig(s)),i&&(e.datepicker._setDateFromField(s),e.datepicker._updateAlternate(s),e.datepicker._updateDatepicker(s))}catch(n){}return!0},_showDatepicker:function(t){if(t=t.target||t,"input"!==t.nodeName.toLowerCase()&&(t=e("input",t.parentNode)[0]),!e.datepicker._isDisabledDatepicker(t)&&e.datepicker._lastInput!==t){var i,n,a,r,h,l,u;i=e.datepicker._getInst(t),e.datepicker._curInst&&e.datepicker._curInst!==i&&(e.datepicker._curInst.dpDiv.stop(!0,!0),i&&e.datepicker._datepickerShowing&&e.datepicker._hideDatepicker(e.datepicker._curInst.input[0])),n=e.datepicker._get(i,"beforeShow"),a=n?n.apply(t,[t,i]):{},a!==!1&&(o(i.settings,a),i.lastVal=null,e.datepicker._lastInput=t,e.datepicker._setDateFromField(i),e.datepicker._inDialog&&(t.value=""),e.datepicker._pos||(e.datepicker._pos=e.datepicker._findPos(t),e.datepicker._pos[1]+=t.offsetHeight),r=!1,e(t).parents().each(function(){return r|="fixed"===e(this).css("position"),!r}),h={left:e.datepicker._pos[0],top:e.datepicker._pos[1]},e.datepicker._pos=null,i.dpDiv.empty(),i.dpDiv.css({position:"absolute",display:"block",top:"-1000px"}),e.datepicker._updateDatepicker(i),h=e.datepicker._checkOffset(i,h,r),i.dpDiv.css({position:e.datepicker._inDialog&&e.blockUI?"static":r?"fixed":"absolute",display:"none",left:h.left+"px",top:h.top+"px"}),i.inline||(l=e.datepicker._get(i,"showAnim"),u=e.datepicker._get(i,"duration"),i.dpDiv.css("z-index",s(e(t))+1),e.datepicker._datepickerShowing=!0,e.effects&&e.effects.effect[l]?i.dpDiv.show(l,e.datepicker._get(i,"showOptions"),u):i.dpDiv[l||"show"](l?u:null),e.datepicker._shouldFocusInput(i)&&i.input.focus(),e.datepicker._curInst=i))}},_updateDatepicker:function(t){this.maxRows=4,g=t,t.dpDiv.empty().append(this._generateHTML(t)),this._attachHandlers(t),t.dpDiv.find("."+this._dayOverClass+" a");var i,s=this._getNumberOfMonths(t),n=s[1],a=17;t.dpDiv.removeClass("ui-datepicker-multi-2 ui-datepicker-multi-3 ui-datepicker-multi-4").width(""),n>1&&t.dpDiv.addClass("ui-datepicker-multi-"+n).css("width",a*n+"em"),t.dpDiv[(1!==s[0]||1!==s[1]?"add":"remove")+"Class"]("ui-datepicker-multi"),t.dpDiv[(this._get(t,"isRTL")?"add":"remove")+"Class"]("ui-datepicker-rtl"),t===e.datepicker._curInst&&e.datepicker._datepickerShowing&&e.datepicker._shouldFocusInput(t)&&t.input.focus(),t.yearshtml&&(i=t.yearshtml,setTimeout(function(){i===t.yearshtml&&t.yearshtml&&t.dpDiv.find("select.ui-datepicker-year:first").replaceWith(t.yearshtml),i=t.yearshtml=null},0))},_shouldFocusInput:function(e){return e.input&&e.input.is(":visible")&&!e.input.is(":disabled")&&!e.input.is(":focus")},_checkOffset:function(t,i,s){var n=t.dpDiv.outerWidth(),a=t.dpDiv.outerHeight(),o=t.input?t.input.outerWidth():0,r=t.input?t.input.outerHeight():0,h=document.documentElement.clientWidth+(s?0:e(document).scrollLeft()),l=document.documentElement.clientHeight+(s?0:e(document).scrollTop());return i.left-=this._get(t,"isRTL")?n-o:0,i.left-=s&&i.left===t.input.offset().left?e(document).scrollLeft():0,i.top-=s&&i.top===t.input.offset().top+r?e(document).scrollTop():0,i.left-=Math.min(i.left,i.left+n>h&&h>n?Math.abs(i.left+n-h):0),i.top-=Math.min(i.top,i.top+a>l&&l>a?Math.abs(a+r):0),i},_findPos:function(t){for(var i,s=this._getInst(t),n=this._get(s,"isRTL");t&&("hidden"===t.type||1!==t.nodeType||e.expr.filters.hidden(t));)t=t[n?"previousSibling":"nextSibling"];return i=e(t).offset(),[i.left,i.top]},_hideDatepicker:function(t){var i,s,n,a,o=this._curInst;!o||t&&o!==e.data(t,"datepicker")||this._datepickerShowing&&(i=this._get(o,"showAnim"),s=this._get(o,"duration"),n=function(){e.datepicker._tidyDialog(o)},e.effects&&(e.effects.effect[i]||e.effects[i])?o.dpDiv.hide(i,e.datepicker._get(o,"showOptions"),s,n):o.dpDiv["slideDown"===i?"slideUp":"fadeIn"===i?"fadeOut":"hide"](i?s:null,n),i||n(),this._datepickerShowing=!1,a=this._get(o,"onClose"),a&&a.apply(o.input?o.input[0]:null,[o.input?o.input.val():"",o]),this._lastInput=null,this._inDialog&&(this._dialogInput.css({position:"absolute",left:"0",top:"-100px"}),e.blockUI&&(e.unblockUI(),e("body").append(this.dpDiv))),this._inDialog=!1)},_tidyDialog:function(e){e.dpDiv.removeClass(this._dialogClass).unbind(".ui-datepicker-calendar")},_checkExternalClick:function(t){if(e.datepicker._curInst){var i=e(t.target),s=e.datepicker._getInst(i[0]);(i[0].id!==e.datepicker._mainDivId&&0===i.parents("#"+e.datepicker._mainDivId).length&&!i.hasClass(e.datepicker.markerClassName)&&!i.closest("."+e.datepicker._triggerClass).length&&e.datepicker._datepickerShowing&&(!e.datepicker._inDialog||!e.blockUI)||i.hasClass(e.datepicker.markerClassName)&&e.datepicker._curInst!==s)&&e.datepicker._hideDatepicker()}},_adjustDate:function(t,i,s){var n=e(t),a=this._getInst(n[0]);this._isDisabledDatepicker(n[0])||(this._adjustInstDate(a,i+("M"===s?this._get(a,"showCurrentAtPos"):0),s),this._updateDatepicker(a))},_gotoToday:function(t){var i,s=e(t),n=this._getInst(s[0]);this._get(n,"gotoCurrent")&&n.currentDay?(n.selectedDay=n.currentDay,n.drawMonth=n.selectedMonth=n.currentMonth,n.drawYear=n.selectedYear=n.currentYear):(i=new Date,n.selectedDay=i.getDate(),n.drawMonth=n.selectedMonth=i.getMonth(),n.drawYear=n.selectedYear=i.getFullYear()),this._notifyChange(n),this._adjustDate(s)},_selectMonthYear:function(t,i,s){var n=e(t),a=this._getInst(n[0]);a["selected"+("M"===s?"Month":"Year")]=a["draw"+("M"===s?"Month":"Year")]=parseInt(i.options[i.selectedIndex].value,10),this._notifyChange(a),this._adjustDate(n)},_selectDay:function(t,i,s,n){var a,o=e(t);e(n).hasClass(this._unselectableClass)||this._isDisabledDatepicker(o[0])||(a=this._getInst(o[0]),a.selectedDay=a.currentDay=e("a",n).html(),a.selectedMonth=a.currentMonth=i,a.selectedYear=a.currentYear=s,this._selectDate(t,this._formatDate(a,a.currentDay,a.currentMonth,a.currentYear)))},_clearDate:function(t){var i=e(t);this._selectDate(i,"")},_selectDate:function(t,i){var s,n=e(t),a=this._getInst(n[0]);i=null!=i?i:this._formatDate(a),a.input&&a.input.val(i),this._updateAlternate(a),s=this._get(a,"onSelect"),s?s.apply(a.input?a.input[0]:null,[i,a]):a.input&&a.input.trigger("change"),a.inline?this._updateDatepicker(a):(this._hideDatepicker(),this._lastInput=a.input[0],"object"!=typeof a.input[0]&&a.input.focus(),this._lastInput=null)},_updateAlternate:function(t){var i,s,n,a=this._get(t,"altField");a&&(i=this._get(t,"altFormat")||this._get(t,"dateFormat"),s=this._getDate(t),n=this.formatDate(i,s,this._getFormatConfig(t)),e(a).each(function(){e(this).val(n)}))},noWeekends:function(e){var t=e.getDay();return[t>0&&6>t,""]},iso8601Week:function(e){var t,i=new Date(e.getTime());return i.setDate(i.getDate()+4-(i.getDay()||7)),t=i.getTime(),i.setMonth(0),i.setDate(1),Math.floor(Math.round((t-i)/864e5)/7)+1},parseDate:function(t,i,s){if(null==t||null==i)throw"Invalid arguments";if(i="object"==typeof i?""+i:i+"",""===i)return null;var n,a,o,r,h=0,l=(s?s.shortYearCutoff:null)||this._defaults.shortYearCutoff,u="string"!=typeof l?l:(new Date).getFullYear()%100+parseInt(l,10),d=(s?s.dayNamesShort:null)||this._defaults.dayNamesShort,c=(s?s.dayNames:null)||this._defaults.dayNames,p=(s?s.monthNamesShort:null)||this._defaults.monthNamesShort,f=(s?s.monthNames:null)||this._defaults.monthNames,m=-1,g=-1,v=-1,y=-1,b=!1,_=function(e){var i=t.length>n+1&&t.charAt(n+1)===e;return i&&n++,i},x=function(e){var t=_(e),s="@"===e?14:"!"===e?20:"y"===e&&t?4:"o"===e?3:2,n=RegExp("^\\d{1,"+s+"}"),a=i.substring(h).match(n);if(!a)throw"Missing number at position "+h;return h+=a[0].length,parseInt(a[0],10)},w=function(t,s,n){var a=-1,o=e.map(_(t)?n:s,function(e,t){return[[t,e]]}).sort(function(e,t){return-(e[1].length-t[1].length)});if(e.each(o,function(e,t){var s=t[1];return i.substr(h,s.length).toLowerCase()===s.toLowerCase()?(a=t[0],h+=s.length,!1):void 0}),-1!==a)return a+1;throw"Unknown name at position "+h},k=function(){if(i.charAt(h)!==t.charAt(n))throw"Unexpected literal at position "+h;h++};for(n=0;t.length>n;n++)if(b)"'"!==t.charAt(n)||_("'")?k():b=!1;else switch(t.charAt(n)){case"d":v=x("d");break;case"D":w("D",d,c);break;case"o":y=x("o");break;case"m":g=x("m");break;case"M":g=w("M",p,f);break;case"y":m=x("y");break;case"@":r=new Date(x("@")),m=r.getFullYear(),g=r.getMonth()+1,v=r.getDate();break;case"!":r=new Date((x("!")-this._ticksTo1970)/1e4),m=r.getFullYear(),g=r.getMonth()+1,v=r.getDate();break;case"'":_("'")?k():b=!0;break;default:k()}if(i.length>h&&(o=i.substr(h),!/^\s+/.test(o)))throw"Extra/unparsed characters found in date: "+o;if(-1===m?m=(new Date).getFullYear():100>m&&(m+=(new Date).getFullYear()-(new Date).getFullYear()%100+(u>=m?0:-100)),y>-1)for(g=1,v=y;;){if(a=this._getDaysInMonth(m,g-1),a>=v)break;g++,v-=a}if(r=this._daylightSavingAdjust(new Date(m,g-1,v)),r.getFullYear()!==m||r.getMonth()+1!==g||r.getDate()!==v)throw"Invalid date";return r},ATOM:"yy-mm-dd",COOKIE:"D, dd M yy",ISO_8601:"yy-mm-dd",RFC_822:"D, d M y",RFC_850:"DD, dd-M-y",RFC_1036:"D, d M y",RFC_1123:"D, d M yy",RFC_2822:"D, d M yy",RSS:"D, d M y",TICKS:"!",TIMESTAMP:"@",W3C:"yy-mm-dd",_ticksTo1970:1e7*60*60*24*(718685+Math.floor(492.5)-Math.floor(19.7)+Math.floor(4.925)),formatDate:function(e,t,i){if(!t)return"";var s,n=(i?i.dayNamesShort:null)||this._defaults.dayNamesShort,a=(i?i.dayNames:null)||this._defaults.dayNames,o=(i?i.monthNamesShort:null)||this._defaults.monthNamesShort,r=(i?i.monthNames:null)||this._defaults.monthNames,h=function(t){var i=e.length>s+1&&e.charAt(s+1)===t;return i&&s++,i},l=function(e,t,i){var s=""+t;if(h(e))for(;i>s.length;)s="0"+s;return s},u=function(e,t,i,s){return h(e)?s[t]:i[t]},d="",c=!1;if(t)for(s=0;e.length>s;s++)if(c)"'"!==e.charAt(s)||h("'")?d+=e.charAt(s):c=!1;else switch(e.charAt(s)){case"d":d+=l("d",t.getDate(),2);break;case"D":d+=u("D",t.getDay(),n,a);break;case"o":d+=l("o",Math.round((new Date(t.getFullYear(),t.getMonth(),t.getDate()).getTime()-new Date(t.getFullYear(),0,0).getTime())/864e5),3);break;case"m":d+=l("m",t.getMonth()+1,2);break;case"M":d+=u("M",t.getMonth(),o,r);break;case"y":d+=h("y")?t.getFullYear():(10>t.getYear()%100?"0":"")+t.getYear()%100;break;case"@":d+=t.getTime();break;case"!":d+=1e4*t.getTime()+this._ticksTo1970;break;case"'":h("'")?d+="'":c=!0;break;default:d+=e.charAt(s)}return d},_possibleChars:function(e){var t,i="",s=!1,n=function(i){var s=e.length>t+1&&e.charAt(t+1)===i;return s&&t++,s};for(t=0;e.length>t;t++)if(s)"'"!==e.charAt(t)||n("'")?i+=e.charAt(t):s=!1;else switch(e.charAt(t)){case"d":case"m":case"y":case"@":i+="0123456789";break;case"D":case"M":return null;case"'":n("'")?i+="'":s=!0;break;default:i+=e.charAt(t)}return i},_get:function(e,t){return void 0!==e.settings[t]?e.settings[t]:this._defaults[t]},_setDateFromField:function(e,t){if(e.input.val()!==e.lastVal){var i=this._get(e,"dateFormat"),s=e.lastVal=e.input?e.input.val():null,n=this._getDefaultDate(e),a=n,o=this._getFormatConfig(e);try{a=this.parseDate(i,s,o)||n}catch(r){s=t?"":s}e.selectedDay=a.getDate(),e.drawMonth=e.selectedMonth=a.getMonth(),e.drawYear=e.selectedYear=a.getFullYear(),e.currentDay=s?a.getDate():0,e.currentMonth=s?a.getMonth():0,e.currentYear=s?a.getFullYear():0,this._adjustInstDate(e)}},_getDefaultDate:function(e){return this._restrictMinMax(e,this._determineDate(e,this._get(e,"defaultDate"),new Date))},_determineDate:function(t,i,s){var n=function(e){var t=new Date;return t.setDate(t.getDate()+e),t},a=function(i){try{return e.datepicker.parseDate(e.datepicker._get(t,"dateFormat"),i,e.datepicker._getFormatConfig(t))}catch(s){}for(var n=(i.toLowerCase().match(/^c/)?e.datepicker._getDate(t):null)||new Date,a=n.getFullYear(),o=n.getMonth(),r=n.getDate(),h=/([+\-]?[0-9]+)\s*(d|D|w|W|m|M|y|Y)?/g,l=h.exec(i);l;){switch(l[2]||"d"){case"d":case"D":r+=parseInt(l[1],10);break;case"w":case"W":r+=7*parseInt(l[1],10);break;case"m":case"M":o+=parseInt(l[1],10),r=Math.min(r,e.datepicker._getDaysInMonth(a,o));break;case"y":case"Y":a+=parseInt(l[1],10),r=Math.min(r,e.datepicker._getDaysInMonth(a,o))}l=h.exec(i)}return new Date(a,o,r)},o=null==i||""===i?s:"string"==typeof i?a(i):"number"==typeof i?isNaN(i)?s:n(i):new Date(i.getTime());return o=o&&"Invalid Date"==""+o?s:o,o&&(o.setHours(0),o.setMinutes(0),o.setSeconds(0),o.setMilliseconds(0)),this._daylightSavingAdjust(o)},_daylightSavingAdjust:function(e){return e?(e.setHours(e.getHours()>12?e.getHours()+2:0),e):null},_setDate:function(e,t,i){var s=!t,n=e.selectedMonth,a=e.selectedYear,o=this._restrictMinMax(e,this._determineDate(e,t,new Date));e.selectedDay=e.currentDay=o.getDate(),e.drawMonth=e.selectedMonth=e.currentMonth=o.getMonth(),e.drawYear=e.selectedYear=e.currentYear=o.getFullYear(),n===e.selectedMonth&&a===e.selectedYear||i||this._notifyChange(e),this._adjustInstDate(e),e.input&&e.input.val(s?"":this._formatDate(e))},_getDate:function(e){var t=!e.currentYear||e.input&&""===e.input.val()?null:this._daylightSavingAdjust(new Date(e.currentYear,e.currentMonth,e.currentDay));return t},_attachHandlers:function(t){var i=this._get(t,"stepMonths"),s="#"+t.id.replace(/\\\\/g,"\\");t.dpDiv.find("[data-handler]").map(function(){var t={prev:function(){e.datepicker._adjustDate(s,-i,"M")},next:function(){e.datepicker._adjustDate(s,+i,"M")},hide:function(){e.datepicker._hideDatepicker()},today:function(){e.datepicker._gotoToday(s)},selectDay:function(){return e.datepicker._selectDay(s,+this.getAttribute("data-month"),+this.getAttribute("data-year"),this),!1},selectMonth:function(){return e.datepicker._selectMonthYear(s,this,"M"),!1},selectYear:function(){return e.datepicker._selectMonthYear(s,this,"Y"),!1}};e(this).bind(this.getAttribute("data-event"),t[this.getAttribute("data-handler")])})},_generateHTML:function(e){var t,i,s,n,a,o,r,h,l,u,d,c,p,f,m,g,v,y,b,_,x,w,k,T,D,S,N,M,C,A,P,I,z,H,F,E,W,L,O,j=new Date,R=this._daylightSavingAdjust(new Date(j.getFullYear(),j.getMonth(),j.getDate())),Y=this._get(e,"isRTL"),J=this._get(e,"showButtonPanel"),B=this._get(e,"hideIfNoPrevNext"),K=this._get(e,"navigationAsDateFormat"),V=this._getNumberOfMonths(e),U=this._get(e,"showCurrentAtPos"),q=this._get(e,"stepMonths"),G=1!==V[0]||1!==V[1],X=this._daylightSavingAdjust(e.currentDay?new Date(e.currentYear,e.currentMonth,e.currentDay):new Date(9999,9,9)),Q=this._getMinMaxDate(e,"min"),$=this._getMinMaxDate(e,"max"),Z=e.drawMonth-U,et=e.drawYear;if(0>Z&&(Z+=12,et--),$)for(t=this._daylightSavingAdjust(new Date($.getFullYear(),$.getMonth()-V[0]*V[1]+1,$.getDate())),t=Q&&Q>t?Q:t;this._daylightSavingAdjust(new Date(et,Z,1))>t;)Z--,0>Z&&(Z=11,et--);for(e.drawMonth=Z,e.drawYear=et,i=this._get(e,"prevText"),i=K?this.formatDate(i,this._daylightSavingAdjust(new Date(et,Z-q,1)),this._getFormatConfig(e)):i,s=this._canAdjustMonth(e,-1,et,Z)?""+i+"":B?"":""+i+"",n=this._get(e,"nextText"),n=K?this.formatDate(n,this._daylightSavingAdjust(new Date(et,Z+q,1)),this._getFormatConfig(e)):n,a=this._canAdjustMonth(e,1,et,Z)?""+n+"":B?"":""+n+"",o=this._get(e,"currentText"),r=this._get(e,"gotoCurrent")&&e.currentDay?X:R,o=K?this.formatDate(o,r,this._getFormatConfig(e)):o,h=e.inline?"":"",l=J?"
    "+(Y?h:"")+(this._isInRange(e,r)?"":"")+(Y?"":h)+"
    ":"",u=parseInt(this._get(e,"firstDay"),10),u=isNaN(u)?0:u,d=this._get(e,"showWeek"),c=this._get(e,"dayNames"),p=this._get(e,"dayNamesMin"),f=this._get(e,"monthNames"),m=this._get(e,"monthNamesShort"),g=this._get(e,"beforeShowDay"),v=this._get(e,"showOtherMonths"),y=this._get(e,"selectOtherMonths"),b=this._getDefaultDate(e),_="",w=0;V[0]>w;w++){for(k="",this.maxRows=4,T=0;V[1]>T;T++){if(D=this._daylightSavingAdjust(new Date(et,Z,e.selectedDay)),S=" ui-corner-all",N="",G){if(N+="
    "}for(N+="
    "+(/all|left/.test(S)&&0===w?Y?a:s:"")+(/all|right/.test(S)&&0===w?Y?s:a:"")+this._generateMonthYearHeader(e,Z,et,Q,$,w>0||T>0,f,m)+"
    "+"",M=d?"":"",x=0;7>x;x++)C=(x+u)%7,M+="";for(N+=M+"",A=this._getDaysInMonth(et,Z),et===e.selectedYear&&Z===e.selectedMonth&&(e.selectedDay=Math.min(e.selectedDay,A)),P=(this._getFirstDayOfMonth(et,Z)-u+7)%7,I=Math.ceil((P+A)/7),z=G?this.maxRows>I?this.maxRows:I:I,this.maxRows=z,H=this._daylightSavingAdjust(new Date(et,Z,1-P)),F=0;z>F;F++){for(N+="",E=d?"":"",x=0;7>x;x++)W=g?g.apply(e.input?e.input[0]:null,[H]):[!0,""],L=H.getMonth()!==Z,O=L&&!y||!W[0]||Q&&Q>H||$&&H>$,E+="",H.setDate(H.getDate()+1),H=this._daylightSavingAdjust(H);N+=E+""}Z++,Z>11&&(Z=0,et++),N+="
    "+this._get(e,"weekHeader")+"=5?" class='ui-datepicker-week-end'":"")+">"+""+p[C]+"
    "+this._get(e,"calculateWeek")(H)+""+(L&&!v?" ":O?""+H.getDate()+"":""+H.getDate()+"")+"
    "+(G?"
    "+(V[0]>0&&T===V[1]-1?"
    ":""):""),k+=N}_+=k}return _+=l,e._keyEvent=!1,_},_generateMonthYearHeader:function(e,t,i,s,n,a,o,r){var h,l,u,d,c,p,f,m,g=this._get(e,"changeMonth"),v=this._get(e,"changeYear"),y=this._get(e,"showMonthAfterYear"),b="
    ",_="";if(a||!g)_+=""+o[t]+"";else{for(h=s&&s.getFullYear()===i,l=n&&n.getFullYear()===i,_+=""}if(y||(b+=_+(!a&&g&&v?"":" ")),!e.yearshtml)if(e.yearshtml="",a||!v)b+=""+i+"";else{for(d=this._get(e,"yearRange").split(":"),c=(new Date).getFullYear(),p=function(e){var t=e.match(/c[+\-].*/)?i+parseInt(e.substring(1),10):e.match(/[+\-].*/)?c+parseInt(e,10):parseInt(e,10);return isNaN(t)?c:t},f=p(d[0]),m=Math.max(f,p(d[1]||"")),f=s?Math.max(f,s.getFullYear()):f,m=n?Math.min(m,n.getFullYear()):m,e.yearshtml+="",b+=e.yearshtml,e.yearshtml=null}return b+=this._get(e,"yearSuffix"),y&&(b+=(!a&&g&&v?"":" ")+_),b+="
    "},_adjustInstDate:function(e,t,i){var s=e.drawYear+("Y"===i?t:0),n=e.drawMonth+("M"===i?t:0),a=Math.min(e.selectedDay,this._getDaysInMonth(s,n))+("D"===i?t:0),o=this._restrictMinMax(e,this._daylightSavingAdjust(new Date(s,n,a)));e.selectedDay=o.getDate(),e.drawMonth=e.selectedMonth=o.getMonth(),e.drawYear=e.selectedYear=o.getFullYear(),("M"===i||"Y"===i)&&this._notifyChange(e)},_restrictMinMax:function(e,t){var i=this._getMinMaxDate(e,"min"),s=this._getMinMaxDate(e,"max"),n=i&&i>t?i:t;return s&&n>s?s:n},_notifyChange:function(e){var t=this._get(e,"onChangeMonthYear");t&&t.apply(e.input?e.input[0]:null,[e.selectedYear,e.selectedMonth+1,e])},_getNumberOfMonths:function(e){var t=this._get(e,"numberOfMonths");return null==t?[1,1]:"number"==typeof t?[1,t]:t},_getMinMaxDate:function(e,t){return this._determineDate(e,this._get(e,t+"Date"),null)},_getDaysInMonth:function(e,t){return 32-this._daylightSavingAdjust(new Date(e,t,32)).getDate()},_getFirstDayOfMonth:function(e,t){return new Date(e,t,1).getDay()},_canAdjustMonth:function(e,t,i,s){var n=this._getNumberOfMonths(e),a=this._daylightSavingAdjust(new Date(i,s+(0>t?t:n[0]*n[1]),1));return 0>t&&a.setDate(this._getDaysInMonth(a.getFullYear(),a.getMonth())),this._isInRange(e,a)},_isInRange:function(e,t){var i,s,n=this._getMinMaxDate(e,"min"),a=this._getMinMaxDate(e,"max"),o=null,r=null,h=this._get(e,"yearRange");return h&&(i=h.split(":"),s=(new Date).getFullYear(),o=parseInt(i[0],10),r=parseInt(i[1],10),i[0].match(/[+\-].*/)&&(o+=s),i[1].match(/[+\-].*/)&&(r+=s)),(!n||t.getTime()>=n.getTime())&&(!a||t.getTime()<=a.getTime())&&(!o||t.getFullYear()>=o)&&(!r||r>=t.getFullYear())},_getFormatConfig:function(e){var t=this._get(e,"shortYearCutoff");return t="string"!=typeof t?t:(new Date).getFullYear()%100+parseInt(t,10),{shortYearCutoff:t,dayNamesShort:this._get(e,"dayNamesShort"),dayNames:this._get(e,"dayNames"),monthNamesShort:this._get(e,"monthNamesShort"),monthNames:this._get(e,"monthNames")}},_formatDate:function(e,t,i,s){t||(e.currentDay=e.selectedDay,e.currentMonth=e.selectedMonth,e.currentYear=e.selectedYear);var n=t?"object"==typeof t?t:this._daylightSavingAdjust(new Date(s,i,t)):this._daylightSavingAdjust(new Date(e.currentYear,e.currentMonth,e.currentDay));return this.formatDate(this._get(e,"dateFormat"),n,this._getFormatConfig(e))}}),e.fn.datepicker=function(t){if(!this.length)return this;e.datepicker.initialized||(e(document).mousedown(e.datepicker._checkExternalClick),e.datepicker.initialized=!0),0===e("#"+e.datepicker._mainDivId).length&&e("body").append(e.datepicker.dpDiv);var i=Array.prototype.slice.call(arguments,1);return"string"!=typeof t||"isDisabled"!==t&&"getDate"!==t&&"widget"!==t?"option"===t&&2===arguments.length&&"string"==typeof arguments[1]?e.datepicker["_"+t+"Datepicker"].apply(e.datepicker,[this[0]].concat(i)):this.each(function(){"string"==typeof t?e.datepicker["_"+t+"Datepicker"].apply(e.datepicker,[this].concat(i)):e.datepicker._attachDatepicker(this,t)}):e.datepicker["_"+t+"Datepicker"].apply(e.datepicker,[this[0]].concat(i))},e.datepicker=new n,e.datepicker.initialized=!1,e.datepicker.uuid=(new Date).getTime(),e.datepicker.version="1.11.0",e.datepicker,e.widget("ui.dialog",{version:"1.11.0",options:{appendTo:"body",autoOpen:!0,buttons:[],closeOnEscape:!0,closeText:"Close",dialogClass:"",draggable:!0,hide:null,height:"auto",maxHeight:null,maxWidth:null,minHeight:150,minWidth:150,modal:!1,position:{my:"center",at:"center",of:window,collision:"fit",using:function(t){var i=e(this).css(t).offset().top;0>i&&e(this).css("top",t.top-i)}},resizable:!0,show:null,title:null,width:300,beforeClose:null,close:null,drag:null,dragStart:null,dragStop:null,focus:null,open:null,resize:null,resizeStart:null,resizeStop:null},sizeRelatedOptions:{buttons:!0,height:!0,maxHeight:!0,maxWidth:!0,minHeight:!0,minWidth:!0,width:!0},resizableRelatedOptions:{maxHeight:!0,maxWidth:!0,minHeight:!0,minWidth:!0},_create:function(){this.originalCss={display:this.element[0].style.display,width:this.element[0].style.width,minHeight:this.element[0].style.minHeight,maxHeight:this.element[0].style.maxHeight,height:this.element[0].style.height},this.originalPosition={parent:this.element.parent(),index:this.element.parent().children().index(this.element)},this.originalTitle=this.element.attr("title"),this.options.title=this.options.title||this.originalTitle,this._createWrapper(),this.element.show().removeAttr("title").addClass("ui-dialog-content ui-widget-content").appendTo(this.uiDialog),this._createTitlebar(),this._createButtonPane(),this.options.draggable&&e.fn.draggable&&this._makeDraggable(),this.options.resizable&&e.fn.resizable&&this._makeResizable(),this._isOpen=!1,this._trackFocus()},_init:function(){this.options.autoOpen&&this.open()},_appendTo:function(){var t=this.options.appendTo;return t&&(t.jquery||t.nodeType)?e(t):this.document.find(t||"body").eq(0)},_destroy:function(){var e,t=this.originalPosition;this._destroyOverlay(),this.element.removeUniqueId().removeClass("ui-dialog-content ui-widget-content").css(this.originalCss).detach(),this.uiDialog.stop(!0,!0).remove(),this.originalTitle&&this.element.attr("title",this.originalTitle),e=t.parent.children().eq(t.index),e.length&&e[0]!==this.element[0]?e.before(this.element):t.parent.append(this.element)},widget:function(){return this.uiDialog},disable:e.noop,enable:e.noop,close:function(t){var i,s=this;if(this._isOpen&&this._trigger("beforeClose",t)!==!1){if(this._isOpen=!1,this._focusedElement=null,this._destroyOverlay(),this._untrackInstance(),!this.opener.filter(":focusable").focus().length)try{i=this.document[0].activeElement,i&&"body"!==i.nodeName.toLowerCase()&&e(i).blur()}catch(n){}this._hide(this.uiDialog,this.options.hide,function(){s._trigger("close",t)})}},isOpen:function(){return this._isOpen},moveToTop:function(){this._moveToTop()},_moveToTop:function(t,i){var s=!1,n=this.uiDialog.siblings(".ui-front:visible").map(function(){return+e(this).css("z-index")}).get(),a=Math.max.apply(null,n);return a>=+this.uiDialog.css("z-index")&&(this.uiDialog.css("z-index",a+1),s=!0),s&&!i&&this._trigger("focus",t),s},open:function(){var t=this;return this._isOpen?(this._moveToTop()&&this._focusTabbable(),void 0):(this._isOpen=!0,this.opener=e(this.document[0].activeElement),this._size(),this._position(),this._createOverlay(),this._moveToTop(null,!0),this._show(this.uiDialog,this.options.show,function(){t._focusTabbable(),t._trigger("focus")}),this._trigger("open"),void 0)},_focusTabbable:function(){var e=this._focusedElement;e||(e=this.element.find("[autofocus]")),e.length||(e=this.element.find(":tabbable")),e.length||(e=this.uiDialogButtonPane.find(":tabbable")),e.length||(e=this.uiDialogTitlebarClose.filter(":tabbable")),e.length||(e=this.uiDialog),e.eq(0).focus() +},_keepFocus:function(t){function i(){var t=this.document[0].activeElement,i=this.uiDialog[0]===t||e.contains(this.uiDialog[0],t);i||this._focusTabbable()}t.preventDefault(),i.call(this),this._delay(i)},_createWrapper:function(){this.uiDialog=e("
    ").addClass("ui-dialog ui-widget ui-widget-content ui-corner-all ui-front "+this.options.dialogClass).hide().attr({tabIndex:-1,role:"dialog"}).appendTo(this._appendTo()),this._on(this.uiDialog,{keydown:function(t){if(this.options.closeOnEscape&&!t.isDefaultPrevented()&&t.keyCode&&t.keyCode===e.ui.keyCode.ESCAPE)return t.preventDefault(),this.close(t),void 0;if(t.keyCode===e.ui.keyCode.TAB&&!t.isDefaultPrevented()){var i=this.uiDialog.find(":tabbable"),s=i.filter(":first"),n=i.filter(":last");t.target!==n[0]&&t.target!==this.uiDialog[0]||t.shiftKey?t.target!==s[0]&&t.target!==this.uiDialog[0]||!t.shiftKey||(this._delay(function(){n.focus()}),t.preventDefault()):(this._delay(function(){s.focus()}),t.preventDefault())}},mousedown:function(e){this._moveToTop(e)&&this._focusTabbable()}}),this.element.find("[aria-describedby]").length||this.uiDialog.attr({"aria-describedby":this.element.uniqueId().attr("id")})},_createTitlebar:function(){var t;this.uiDialogTitlebar=e("
    ").addClass("ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix").prependTo(this.uiDialog),this._on(this.uiDialogTitlebar,{mousedown:function(t){e(t.target).closest(".ui-dialog-titlebar-close")||this.uiDialog.focus()}}),this.uiDialogTitlebarClose=e("").button({label:this.options.closeText,icons:{primary:"ui-icon-closethick"},text:!1}).addClass("ui-dialog-titlebar-close").appendTo(this.uiDialogTitlebar),this._on(this.uiDialogTitlebarClose,{click:function(e){e.preventDefault(),this.close(e)}}),t=e("").uniqueId().addClass("ui-dialog-title").prependTo(this.uiDialogTitlebar),this._title(t),this.uiDialog.attr({"aria-labelledby":t.attr("id")})},_title:function(e){this.options.title||e.html(" "),e.text(this.options.title)},_createButtonPane:function(){this.uiDialogButtonPane=e("
    ").addClass("ui-dialog-buttonpane ui-widget-content ui-helper-clearfix"),this.uiButtonSet=e("
    ").addClass("ui-dialog-buttonset").appendTo(this.uiDialogButtonPane),this._createButtons()},_createButtons:function(){var t=this,i=this.options.buttons;return this.uiDialogButtonPane.remove(),this.uiButtonSet.empty(),e.isEmptyObject(i)||e.isArray(i)&&!i.length?(this.uiDialog.removeClass("ui-dialog-buttons"),void 0):(e.each(i,function(i,s){var n,a;s=e.isFunction(s)?{click:s,text:i}:s,s=e.extend({type:"button"},s),n=s.click,s.click=function(){n.apply(t.element[0],arguments)},a={icons:s.icons,text:s.showText},delete s.icons,delete s.showText,e("",s).button(a).appendTo(t.uiButtonSet)}),this.uiDialog.addClass("ui-dialog-buttons"),this.uiDialogButtonPane.appendTo(this.uiDialog),void 0)},_makeDraggable:function(){function t(e){return{position:e.position,offset:e.offset}}var i=this,s=this.options;this.uiDialog.draggable({cancel:".ui-dialog-content, .ui-dialog-titlebar-close",handle:".ui-dialog-titlebar",containment:"document",start:function(s,n){e(this).addClass("ui-dialog-dragging"),i._blockFrames(),i._trigger("dragStart",s,t(n))},drag:function(e,s){i._trigger("drag",e,t(s))},stop:function(n,a){var o=a.offset.left-i.document.scrollLeft(),r=a.offset.top-i.document.scrollTop();s.position={my:"left top",at:"left"+(o>=0?"+":"")+o+" "+"top"+(r>=0?"+":"")+r,of:i.window},e(this).removeClass("ui-dialog-dragging"),i._unblockFrames(),i._trigger("dragStop",n,t(a))}})},_makeResizable:function(){function t(e){return{originalPosition:e.originalPosition,originalSize:e.originalSize,position:e.position,size:e.size}}var i=this,s=this.options,n=s.resizable,a=this.uiDialog.css("position"),o="string"==typeof n?n:"n,e,s,w,se,sw,ne,nw";this.uiDialog.resizable({cancel:".ui-dialog-content",containment:"document",alsoResize:this.element,maxWidth:s.maxWidth,maxHeight:s.maxHeight,minWidth:s.minWidth,minHeight:this._minHeight(),handles:o,start:function(s,n){e(this).addClass("ui-dialog-resizing"),i._blockFrames(),i._trigger("resizeStart",s,t(n))},resize:function(e,s){i._trigger("resize",e,t(s))},stop:function(n,a){var o=i.uiDialog.offset(),r=o.left-i.document.scrollLeft(),h=o.top-i.document.scrollTop();s.height=i.uiDialog.height(),s.width=i.uiDialog.width(),s.position={my:"left top",at:"left"+(r>=0?"+":"")+r+" "+"top"+(h>=0?"+":"")+h,of:i.window},e(this).removeClass("ui-dialog-resizing"),i._unblockFrames(),i._trigger("resizeStop",n,t(a))}}).css("position",a)},_trackFocus:function(){this._on(this.widget(),{focusin:function(t){this._untrackInstance(),this._trackingInstances().unshift(this),this._focusedElement=e(t.target)}})},_untrackInstance:function(){var t=this._trackingInstances(),i=e.inArray(this,t);-1!==i&&t.splice(i,1)},_trackingInstances:function(){var e=this.document.data("ui-dialog-instances");return e||(e=[],this.document.data("ui-dialog-instances",e)),e},_minHeight:function(){var e=this.options;return"auto"===e.height?e.minHeight:Math.min(e.minHeight,e.height)},_position:function(){var e=this.uiDialog.is(":visible");e||this.uiDialog.show(),this.uiDialog.position(this.options.position),e||this.uiDialog.hide()},_setOptions:function(t){var i=this,s=!1,n={};e.each(t,function(e,t){i._setOption(e,t),e in i.sizeRelatedOptions&&(s=!0),e in i.resizableRelatedOptions&&(n[e]=t)}),s&&(this._size(),this._position()),this.uiDialog.is(":data(ui-resizable)")&&this.uiDialog.resizable("option",n)},_setOption:function(e,t){var i,s,n=this.uiDialog;"dialogClass"===e&&n.removeClass(this.options.dialogClass).addClass(t),"disabled"!==e&&(this._super(e,t),"appendTo"===e&&this.uiDialog.appendTo(this._appendTo()),"buttons"===e&&this._createButtons(),"closeText"===e&&this.uiDialogTitlebarClose.button({label:""+t}),"draggable"===e&&(i=n.is(":data(ui-draggable)"),i&&!t&&n.draggable("destroy"),!i&&t&&this._makeDraggable()),"position"===e&&this._position(),"resizable"===e&&(s=n.is(":data(ui-resizable)"),s&&!t&&n.resizable("destroy"),s&&"string"==typeof t&&n.resizable("option","handles",t),s||t===!1||this._makeResizable()),"title"===e&&this._title(this.uiDialogTitlebar.find(".ui-dialog-title")))},_size:function(){var e,t,i,s=this.options;this.element.show().css({width:"auto",minHeight:0,maxHeight:"none",height:0}),s.minWidth>s.width&&(s.width=s.minWidth),e=this.uiDialog.css({height:"auto",width:s.width}).outerHeight(),t=Math.max(0,s.minHeight-e),i="number"==typeof s.maxHeight?Math.max(0,s.maxHeight-e):"none","auto"===s.height?this.element.css({minHeight:t,maxHeight:i,height:"auto"}):this.element.height(Math.max(0,s.height-e)),this.uiDialog.is(":data(ui-resizable)")&&this.uiDialog.resizable("option","minHeight",this._minHeight())},_blockFrames:function(){this.iframeBlocks=this.document.find("iframe").map(function(){var t=e(this);return e("
    ").css({position:"absolute",width:t.outerWidth(),height:t.outerHeight()}).appendTo(t.parent()).offset(t.offset())[0]})},_unblockFrames:function(){this.iframeBlocks&&(this.iframeBlocks.remove(),delete this.iframeBlocks)},_allowInteraction:function(t){return e(t.target).closest(".ui-dialog").length?!0:!!e(t.target).closest(".ui-datepicker").length},_createOverlay:function(){if(this.options.modal){var t=!0;this._delay(function(){t=!1}),this.document.data("ui-dialog-overlays")||this._on(this.document,{focusin:function(e){t||this._allowInteraction(e)||(e.preventDefault(),this._trackingInstances()[0]._focusTabbable())}}),this.overlay=e("
    ").addClass("ui-widget-overlay ui-front").appendTo(this._appendTo()),this._on(this.overlay,{mousedown:"_keepFocus"}),this.document.data("ui-dialog-overlays",(this.document.data("ui-dialog-overlays")||0)+1)}},_destroyOverlay:function(){if(this.options.modal&&this.overlay){var e=this.document.data("ui-dialog-overlays")-1;e?this.document.data("ui-dialog-overlays",e):this.document.unbind("focusin").removeData("ui-dialog-overlays"),this.overlay.remove(),this.overlay=null}}}),e.widget("ui.progressbar",{version:"1.11.0",options:{max:100,value:0,change:null,complete:null},min:0,_create:function(){this.oldValue=this.options.value=this._constrainedValue(),this.element.addClass("ui-progressbar ui-widget ui-widget-content ui-corner-all").attr({role:"progressbar","aria-valuemin":this.min}),this.valueDiv=e("
    ").appendTo(this.element),this._refreshValue()},_destroy:function(){this.element.removeClass("ui-progressbar ui-widget ui-widget-content ui-corner-all").removeAttr("role").removeAttr("aria-valuemin").removeAttr("aria-valuemax").removeAttr("aria-valuenow"),this.valueDiv.remove()},value:function(e){return void 0===e?this.options.value:(this.options.value=this._constrainedValue(e),this._refreshValue(),void 0)},_constrainedValue:function(e){return void 0===e&&(e=this.options.value),this.indeterminate=e===!1,"number"!=typeof e&&(e=0),this.indeterminate?!1:Math.min(this.options.max,Math.max(this.min,e))},_setOptions:function(e){var t=e.value;delete e.value,this._super(e),this.options.value=this._constrainedValue(t),this._refreshValue()},_setOption:function(e,t){"max"===e&&(t=Math.max(this.min,t)),"disabled"===e&&this.element.toggleClass("ui-state-disabled",!!t).attr("aria-disabled",t),this._super(e,t)},_percentage:function(){return this.indeterminate?100:100*(this.options.value-this.min)/(this.options.max-this.min)},_refreshValue:function(){var t=this.options.value,i=this._percentage();this.valueDiv.toggle(this.indeterminate||t>this.min).toggleClass("ui-corner-right",t===this.options.max).width(i.toFixed(0)+"%"),this.element.toggleClass("ui-progressbar-indeterminate",this.indeterminate),this.indeterminate?(this.element.removeAttr("aria-valuenow"),this.overlayDiv||(this.overlayDiv=e("
    ").appendTo(this.valueDiv))):(this.element.attr({"aria-valuemax":this.options.max,"aria-valuenow":t}),this.overlayDiv&&(this.overlayDiv.remove(),this.overlayDiv=null)),this.oldValue!==t&&(this.oldValue=t,this._trigger("change")),t===this.options.max&&this._trigger("complete")}}),e.widget("ui.selectmenu",{version:"1.11.0",defaultElement:"",widgetEventPrefix:"spin",options:{culture:null,icons:{down:"ui-icon-triangle-1-s",up:"ui-icon-triangle-1-n"},incremental:!0,max:null,min:null,numberFormat:null,page:10,step:1,change:null,spin:null,start:null,stop:null},_create:function(){this._setOption("max",this.options.max),this._setOption("min",this.options.min),this._setOption("step",this.options.step),""!==this.value()&&this._value(this.element.val(),!0),this._draw(),this._on(this._events),this._refresh(),this._on(this.window,{beforeunload:function(){this.element.removeAttr("autocomplete")}})},_getCreateOptions:function(){var t={},i=this.element;return e.each(["min","max","step"],function(e,s){var n=i.attr(s);void 0!==n&&n.length&&(t[s]=n)}),t},_events:{keydown:function(e){this._start(e)&&this._keydown(e)&&e.preventDefault()},keyup:"_stop",focus:function(){this.previous=this.element.val()},blur:function(e){return this.cancelBlur?(delete this.cancelBlur,void 0):(this._stop(),this._refresh(),this.previous!==this.element.val()&&this._trigger("change",e),void 0)},mousewheel:function(e,t){if(t){if(!this.spinning&&!this._start(e))return!1;this._spin((t>0?1:-1)*this.options.step,e),clearTimeout(this.mousewheelTimer),this.mousewheelTimer=this._delay(function(){this.spinning&&this._stop(e)},100),e.preventDefault()}},"mousedown .ui-spinner-button":function(t){function i(){var e=this.element[0]===this.document[0].activeElement;e||(this.element.focus(),this.previous=s,this._delay(function(){this.previous=s}))}var s;s=this.element[0]===this.document[0].activeElement?this.previous:this.element.val(),t.preventDefault(),i.call(this),this.cancelBlur=!0,this._delay(function(){delete this.cancelBlur,i.call(this)}),this._start(t)!==!1&&this._repeat(null,e(t.currentTarget).hasClass("ui-spinner-up")?1:-1,t)},"mouseup .ui-spinner-button":"_stop","mouseenter .ui-spinner-button":function(t){return e(t.currentTarget).hasClass("ui-state-active")?this._start(t)===!1?!1:(this._repeat(null,e(t.currentTarget).hasClass("ui-spinner-up")?1:-1,t),void 0):void 0},"mouseleave .ui-spinner-button":"_stop"},_draw:function(){var e=this.uiSpinner=this.element.addClass("ui-spinner-input").attr("autocomplete","off").wrap(this._uiSpinnerHtml()).parent().append(this._buttonHtml());this.element.attr("role","spinbutton"),this.buttons=e.find(".ui-spinner-button").attr("tabIndex",-1).button().removeClass("ui-corner-all"),this.buttons.height()>Math.ceil(.5*e.height())&&e.height()>0&&e.height(e.height()),this.options.disabled&&this.disable()},_keydown:function(t){var i=this.options,s=e.ui.keyCode;switch(t.keyCode){case s.UP:return this._repeat(null,1,t),!0;case s.DOWN:return this._repeat(null,-1,t),!0;case s.PAGE_UP:return this._repeat(null,i.page,t),!0;case s.PAGE_DOWN:return this._repeat(null,-i.page,t),!0}return!1},_uiSpinnerHtml:function(){return""},_buttonHtml:function(){return""+""+""+""+""},_start:function(e){return this.spinning||this._trigger("start",e)!==!1?(this.counter||(this.counter=1),this.spinning=!0,!0):!1},_repeat:function(e,t,i){e=e||500,clearTimeout(this.timer),this.timer=this._delay(function(){this._repeat(40,t,i)},e),this._spin(t*this.options.step,i)},_spin:function(e,t){var i=this.value()||0;this.counter||(this.counter=1),i=this._adjustValue(i+e*this._increment(this.counter)),this.spinning&&this._trigger("spin",t,{value:i})===!1||(this._value(i),this.counter++)},_increment:function(t){var i=this.options.incremental;return i?e.isFunction(i)?i(t):Math.floor(t*t*t/5e4-t*t/500+17*t/200+1):1},_precision:function(){var e=this._precisionOf(this.options.step);return null!==this.options.min&&(e=Math.max(e,this._precisionOf(this.options.min))),e},_precisionOf:function(e){var t=""+e,i=t.indexOf(".");return-1===i?0:t.length-i-1},_adjustValue:function(e){var t,i,s=this.options;return t=null!==s.min?s.min:0,i=e-t,i=Math.round(i/s.step)*s.step,e=t+i,e=parseFloat(e.toFixed(this._precision())),null!==s.max&&e>s.max?s.max:null!==s.min&&s.min>e?s.min:e +},_stop:function(e){this.spinning&&(clearTimeout(this.timer),clearTimeout(this.mousewheelTimer),this.counter=0,this.spinning=!1,this._trigger("stop",e))},_setOption:function(e,t){if("culture"===e||"numberFormat"===e){var i=this._parse(this.element.val());return this.options[e]=t,this.element.val(this._format(i)),void 0}("max"===e||"min"===e||"step"===e)&&"string"==typeof t&&(t=this._parse(t)),"icons"===e&&(this.buttons.first().find(".ui-icon").removeClass(this.options.icons.up).addClass(t.up),this.buttons.last().find(".ui-icon").removeClass(this.options.icons.down).addClass(t.down)),this._super(e,t),"disabled"===e&&(this.widget().toggleClass("ui-state-disabled",!!t),this.element.prop("disabled",!!t),this.buttons.button(t?"disable":"enable"))},_setOptions:r(function(e){this._super(e)}),_parse:function(e){return"string"==typeof e&&""!==e&&(e=window.Globalize&&this.options.numberFormat?Globalize.parseFloat(e,10,this.options.culture):+e),""===e||isNaN(e)?null:e},_format:function(e){return""===e?"":window.Globalize&&this.options.numberFormat?Globalize.format(e,this.options.numberFormat,this.options.culture):e},_refresh:function(){this.element.attr({"aria-valuemin":this.options.min,"aria-valuemax":this.options.max,"aria-valuenow":this._parse(this.element.val())})},isValid:function(){var e=this.value();return null===e?!1:e===this._adjustValue(e)},_value:function(e,t){var i;""!==e&&(i=this._parse(e),null!==i&&(t||(i=this._adjustValue(i)),e=this._format(i))),this.element.val(e),this._refresh()},_destroy:function(){this.element.removeClass("ui-spinner-input").prop("disabled",!1).removeAttr("autocomplete").removeAttr("role").removeAttr("aria-valuemin").removeAttr("aria-valuemax").removeAttr("aria-valuenow"),this.uiSpinner.replaceWith(this.element)},stepUp:r(function(e){this._stepUp(e)}),_stepUp:function(e){this._start()&&(this._spin((e||1)*this.options.step),this._stop())},stepDown:r(function(e){this._stepDown(e)}),_stepDown:function(e){this._start()&&(this._spin((e||1)*-this.options.step),this._stop())},pageUp:r(function(e){this._stepUp((e||1)*this.options.page)}),pageDown:r(function(e){this._stepDown((e||1)*this.options.page)}),value:function(e){return arguments.length?(r(this._value).call(this,e),void 0):this._parse(this.element.val())},widget:function(){return this.uiSpinner}}),e.widget("ui.tabs",{version:"1.11.0",delay:300,options:{active:null,collapsible:!1,event:"click",heightStyle:"content",hide:null,show:null,activate:null,beforeActivate:null,beforeLoad:null,load:null},_isLocal:function(){var e=/#.*$/;return function(t){var i,s;t=t.cloneNode(!1),i=t.href.replace(e,""),s=location.href.replace(e,"");try{i=decodeURIComponent(i)}catch(n){}try{s=decodeURIComponent(s)}catch(n){}return t.hash.length>1&&i===s}}(),_create:function(){var t=this,i=this.options;this.running=!1,this.element.addClass("ui-tabs ui-widget ui-widget-content ui-corner-all").toggleClass("ui-tabs-collapsible",i.collapsible).delegate(".ui-tabs-nav > li","mousedown"+this.eventNamespace,function(t){e(this).is(".ui-state-disabled")&&t.preventDefault()}).delegate(".ui-tabs-anchor","focus"+this.eventNamespace,function(){e(this).closest("li").is(".ui-state-disabled")&&this.blur()}),this._processTabs(),i.active=this._initialActive(),e.isArray(i.disabled)&&(i.disabled=e.unique(i.disabled.concat(e.map(this.tabs.filter(".ui-state-disabled"),function(e){return t.tabs.index(e)}))).sort()),this.active=this.options.active!==!1&&this.anchors.length?this._findActive(i.active):e(),this._refresh(),this.active.length&&this.load(i.active)},_initialActive:function(){var t=this.options.active,i=this.options.collapsible,s=location.hash.substring(1);return null===t&&(s&&this.tabs.each(function(i,n){return e(n).attr("aria-controls")===s?(t=i,!1):void 0}),null===t&&(t=this.tabs.index(this.tabs.filter(".ui-tabs-active"))),(null===t||-1===t)&&(t=this.tabs.length?0:!1)),t!==!1&&(t=this.tabs.index(this.tabs.eq(t)),-1===t&&(t=i?!1:0)),!i&&t===!1&&this.anchors.length&&(t=0),t},_getCreateEventData:function(){return{tab:this.active,panel:this.active.length?this._getPanelForTab(this.active):e()}},_tabKeydown:function(t){var i=e(this.document[0].activeElement).closest("li"),s=this.tabs.index(i),n=!0;if(!this._handlePageNav(t)){switch(t.keyCode){case e.ui.keyCode.RIGHT:case e.ui.keyCode.DOWN:s++;break;case e.ui.keyCode.UP:case e.ui.keyCode.LEFT:n=!1,s--;break;case e.ui.keyCode.END:s=this.anchors.length-1;break;case e.ui.keyCode.HOME:s=0;break;case e.ui.keyCode.SPACE:return t.preventDefault(),clearTimeout(this.activating),this._activate(s),void 0;case e.ui.keyCode.ENTER:return t.preventDefault(),clearTimeout(this.activating),this._activate(s===this.options.active?!1:s),void 0;default:return}t.preventDefault(),clearTimeout(this.activating),s=this._focusNextTab(s,n),t.ctrlKey||(i.attr("aria-selected","false"),this.tabs.eq(s).attr("aria-selected","true"),this.activating=this._delay(function(){this.option("active",s)},this.delay))}},_panelKeydown:function(t){this._handlePageNav(t)||t.ctrlKey&&t.keyCode===e.ui.keyCode.UP&&(t.preventDefault(),this.active.focus())},_handlePageNav:function(t){return t.altKey&&t.keyCode===e.ui.keyCode.PAGE_UP?(this._activate(this._focusNextTab(this.options.active-1,!1)),!0):t.altKey&&t.keyCode===e.ui.keyCode.PAGE_DOWN?(this._activate(this._focusNextTab(this.options.active+1,!0)),!0):void 0},_findNextTab:function(t,i){function s(){return t>n&&(t=0),0>t&&(t=n),t}for(var n=this.tabs.length-1;-1!==e.inArray(s(),this.options.disabled);)t=i?t+1:t-1;return t},_focusNextTab:function(e,t){return e=this._findNextTab(e,t),this.tabs.eq(e).focus(),e},_setOption:function(e,t){return"active"===e?(this._activate(t),void 0):"disabled"===e?(this._setupDisabled(t),void 0):(this._super(e,t),"collapsible"===e&&(this.element.toggleClass("ui-tabs-collapsible",t),t||this.options.active!==!1||this._activate(0)),"event"===e&&this._setupEvents(t),"heightStyle"===e&&this._setupHeightStyle(t),void 0)},_sanitizeSelector:function(e){return e?e.replace(/[!"$%&'()*+,.\/:;<=>?@\[\]\^`{|}~]/g,"\\$&"):""},refresh:function(){var t=this.options,i=this.tablist.children(":has(a[href])");t.disabled=e.map(i.filter(".ui-state-disabled"),function(e){return i.index(e)}),this._processTabs(),t.active!==!1&&this.anchors.length?this.active.length&&!e.contains(this.tablist[0],this.active[0])?this.tabs.length===t.disabled.length?(t.active=!1,this.active=e()):this._activate(this._findNextTab(Math.max(0,t.active-1),!1)):t.active=this.tabs.index(this.active):(t.active=!1,this.active=e()),this._refresh()},_refresh:function(){this._setupDisabled(this.options.disabled),this._setupEvents(this.options.event),this._setupHeightStyle(this.options.heightStyle),this.tabs.not(this.active).attr({"aria-selected":"false","aria-expanded":"false",tabIndex:-1}),this.panels.not(this._getPanelForTab(this.active)).hide().attr({"aria-hidden":"true"}),this.active.length?(this.active.addClass("ui-tabs-active ui-state-active").attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0}),this._getPanelForTab(this.active).show().attr({"aria-hidden":"false"})):this.tabs.eq(0).attr("tabIndex",0)},_processTabs:function(){var t=this;this.tablist=this._getList().addClass("ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-corner-all").attr("role","tablist"),this.tabs=this.tablist.find("> li:has(a[href])").addClass("ui-state-default ui-corner-top").attr({role:"tab",tabIndex:-1}),this.anchors=this.tabs.map(function(){return e("a",this)[0]}).addClass("ui-tabs-anchor").attr({role:"presentation",tabIndex:-1}),this.panels=e(),this.anchors.each(function(i,s){var n,a,o,r=e(s).uniqueId().attr("id"),h=e(s).closest("li"),l=h.attr("aria-controls");t._isLocal(s)?(n=s.hash,o=n.substring(1),a=t.element.find(t._sanitizeSelector(n))):(o=h.attr("aria-controls")||e({}).uniqueId()[0].id,n="#"+o,a=t.element.find(n),a.length||(a=t._createPanel(o),a.insertAfter(t.panels[i-1]||t.tablist)),a.attr("aria-live","polite")),a.length&&(t.panels=t.panels.add(a)),l&&h.data("ui-tabs-aria-controls",l),h.attr({"aria-controls":o,"aria-labelledby":r}),a.attr("aria-labelledby",r)}),this.panels.addClass("ui-tabs-panel ui-widget-content ui-corner-bottom").attr("role","tabpanel")},_getList:function(){return this.tablist||this.element.find("ol,ul").eq(0)},_createPanel:function(t){return e("
    ").attr("id",t).addClass("ui-tabs-panel ui-widget-content ui-corner-bottom").data("ui-tabs-destroy",!0)},_setupDisabled:function(t){e.isArray(t)&&(t.length?t.length===this.anchors.length&&(t=!0):t=!1);for(var i,s=0;i=this.tabs[s];s++)t===!0||-1!==e.inArray(s,t)?e(i).addClass("ui-state-disabled").attr("aria-disabled","true"):e(i).removeClass("ui-state-disabled").removeAttr("aria-disabled");this.options.disabled=t},_setupEvents:function(t){var i={};t&&e.each(t.split(" "),function(e,t){i[t]="_eventHandler"}),this._off(this.anchors.add(this.tabs).add(this.panels)),this._on(!0,this.anchors,{click:function(e){e.preventDefault()}}),this._on(this.anchors,i),this._on(this.tabs,{keydown:"_tabKeydown"}),this._on(this.panels,{keydown:"_panelKeydown"}),this._focusable(this.tabs),this._hoverable(this.tabs)},_setupHeightStyle:function(t){var i,s=this.element.parent();"fill"===t?(i=s.height(),i-=this.element.outerHeight()-this.element.height(),this.element.siblings(":visible").each(function(){var t=e(this),s=t.css("position");"absolute"!==s&&"fixed"!==s&&(i-=t.outerHeight(!0))}),this.element.children().not(this.panels).each(function(){i-=e(this).outerHeight(!0)}),this.panels.each(function(){e(this).height(Math.max(0,i-e(this).innerHeight()+e(this).height()))}).css("overflow","auto")):"auto"===t&&(i=0,this.panels.each(function(){i=Math.max(i,e(this).height("").height())}).height(i))},_eventHandler:function(t){var i=this.options,s=this.active,n=e(t.currentTarget),a=n.closest("li"),o=a[0]===s[0],r=o&&i.collapsible,h=r?e():this._getPanelForTab(a),l=s.length?this._getPanelForTab(s):e(),u={oldTab:s,oldPanel:l,newTab:r?e():a,newPanel:h};t.preventDefault(),a.hasClass("ui-state-disabled")||a.hasClass("ui-tabs-loading")||this.running||o&&!i.collapsible||this._trigger("beforeActivate",t,u)===!1||(i.active=r?!1:this.tabs.index(a),this.active=o?e():a,this.xhr&&this.xhr.abort(),l.length||h.length||e.error("jQuery UI Tabs: Mismatching fragment identifier."),h.length&&this.load(this.tabs.index(a),t),this._toggle(t,u))},_toggle:function(t,i){function s(){a.running=!1,a._trigger("activate",t,i)}function n(){i.newTab.closest("li").addClass("ui-tabs-active ui-state-active"),o.length&&a.options.show?a._show(o,a.options.show,s):(o.show(),s())}var a=this,o=i.newPanel,r=i.oldPanel;this.running=!0,r.length&&this.options.hide?this._hide(r,this.options.hide,function(){i.oldTab.closest("li").removeClass("ui-tabs-active ui-state-active"),n()}):(i.oldTab.closest("li").removeClass("ui-tabs-active ui-state-active"),r.hide(),n()),r.attr("aria-hidden","true"),i.oldTab.attr({"aria-selected":"false","aria-expanded":"false"}),o.length&&r.length?i.oldTab.attr("tabIndex",-1):o.length&&this.tabs.filter(function(){return 0===e(this).attr("tabIndex")}).attr("tabIndex",-1),o.attr("aria-hidden","false"),i.newTab.attr({"aria-selected":"true","aria-expanded":"true",tabIndex:0})},_activate:function(t){var i,s=this._findActive(t);s[0]!==this.active[0]&&(s.length||(s=this.active),i=s.find(".ui-tabs-anchor")[0],this._eventHandler({target:i,currentTarget:i,preventDefault:e.noop}))},_findActive:function(t){return t===!1?e():this.tabs.eq(t)},_getIndex:function(e){return"string"==typeof e&&(e=this.anchors.index(this.anchors.filter("[href$='"+e+"']"))),e},_destroy:function(){this.xhr&&this.xhr.abort(),this.element.removeClass("ui-tabs ui-widget ui-widget-content ui-corner-all ui-tabs-collapsible"),this.tablist.removeClass("ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-corner-all").removeAttr("role"),this.anchors.removeClass("ui-tabs-anchor").removeAttr("role").removeAttr("tabIndex").removeUniqueId(),this.tabs.add(this.panels).each(function(){e.data(this,"ui-tabs-destroy")?e(this).remove():e(this).removeClass("ui-state-default ui-state-active ui-state-disabled ui-corner-top ui-corner-bottom ui-widget-content ui-tabs-active ui-tabs-panel").removeAttr("tabIndex").removeAttr("aria-live").removeAttr("aria-busy").removeAttr("aria-selected").removeAttr("aria-labelledby").removeAttr("aria-hidden").removeAttr("aria-expanded").removeAttr("role")}),this.tabs.each(function(){var t=e(this),i=t.data("ui-tabs-aria-controls");i?t.attr("aria-controls",i).removeData("ui-tabs-aria-controls"):t.removeAttr("aria-controls")}),this.panels.show(),"content"!==this.options.heightStyle&&this.panels.css("height","")},enable:function(t){var i=this.options.disabled;i!==!1&&(void 0===t?i=!1:(t=this._getIndex(t),i=e.isArray(i)?e.map(i,function(e){return e!==t?e:null}):e.map(this.tabs,function(e,i){return i!==t?i:null})),this._setupDisabled(i))},disable:function(t){var i=this.options.disabled;if(i!==!0){if(void 0===t)i=!0;else{if(t=this._getIndex(t),-1!==e.inArray(t,i))return;i=e.isArray(i)?e.merge([t],i).sort():[t]}this._setupDisabled(i)}},load:function(t,i){t=this._getIndex(t);var s=this,n=this.tabs.eq(t),a=n.find(".ui-tabs-anchor"),o=this._getPanelForTab(n),r={tab:n,panel:o};this._isLocal(a[0])||(this.xhr=e.ajax(this._ajaxSettings(a,i,r)),this.xhr&&"canceled"!==this.xhr.statusText&&(n.addClass("ui-tabs-loading"),o.attr("aria-busy","true"),this.xhr.success(function(e){setTimeout(function(){o.html(e),s._trigger("load",i,r)},1)}).complete(function(e,t){setTimeout(function(){"abort"===t&&s.panels.stop(!1,!0),n.removeClass("ui-tabs-loading"),o.removeAttr("aria-busy"),e===s.xhr&&delete s.xhr},1)})))},_ajaxSettings:function(t,i,s){var n=this;return{url:t.attr("href"),beforeSend:function(t,a){return n._trigger("beforeLoad",i,e.extend({jqXHR:t,ajaxSettings:a},s))}}},_getPanelForTab:function(t){var i=e(t).attr("aria-controls");return this.element.find(this._sanitizeSelector("#"+i))}}),e.widget("ui.tooltip",{version:"1.11.0",options:{content:function(){var t=e(this).attr("title")||"";return e("").text(t).html()},hide:!0,items:"[title]:not([disabled])",position:{my:"left top+15",at:"left bottom",collision:"flipfit flip"},show:!0,tooltipClass:null,track:!1,close:null,open:null},_addDescribedBy:function(t,i){var s=(t.attr("aria-describedby")||"").split(/\s+/);s.push(i),t.data("ui-tooltip-id",i).attr("aria-describedby",e.trim(s.join(" ")))},_removeDescribedBy:function(t){var i=t.data("ui-tooltip-id"),s=(t.attr("aria-describedby")||"").split(/\s+/),n=e.inArray(i,s);-1!==n&&s.splice(n,1),t.removeData("ui-tooltip-id"),s=e.trim(s.join(" ")),s?t.attr("aria-describedby",s):t.removeAttr("aria-describedby")},_create:function(){this._on({mouseover:"open",focusin:"open"}),this.tooltips={},this.parents={},this.options.disabled&&this._disable(),this.liveRegion=e("
    ").attr({role:"log","aria-live":"assertive","aria-relevant":"additions"}).addClass("ui-helper-hidden-accessible").appendTo(this.document[0].body)},_setOption:function(t,i){var s=this;return"disabled"===t?(this[i?"_disable":"_enable"](),this.options[t]=i,void 0):(this._super(t,i),"content"===t&&e.each(this.tooltips,function(e,t){s._updateContent(t)}),void 0)},_disable:function(){var t=this;e.each(this.tooltips,function(i,s){var n=e.Event("blur");n.target=n.currentTarget=s[0],t.close(n,!0)}),this.element.find(this.options.items).addBack().each(function(){var t=e(this);t.is("[title]")&&t.data("ui-tooltip-title",t.attr("title")).removeAttr("title")})},_enable:function(){this.element.find(this.options.items).addBack().each(function(){var t=e(this);t.data("ui-tooltip-title")&&t.attr("title",t.data("ui-tooltip-title"))})},open:function(t){var i=this,s=e(t?t.target:this.element).closest(this.options.items);s.length&&!s.data("ui-tooltip-id")&&(s.attr("title")&&s.data("ui-tooltip-title",s.attr("title")),s.data("ui-tooltip-open",!0),t&&"mouseover"===t.type&&s.parents().each(function(){var t,s=e(this);s.data("ui-tooltip-open")&&(t=e.Event("blur"),t.target=t.currentTarget=this,i.close(t,!0)),s.attr("title")&&(s.uniqueId(),i.parents[this.id]={element:this,title:s.attr("title")},s.attr("title",""))}),this._updateContent(s,t))},_updateContent:function(e,t){var i,s=this.options.content,n=this,a=t?t.type:null;return"string"==typeof s?this._open(t,e,s):(i=s.call(e[0],function(i){e.data("ui-tooltip-open")&&n._delay(function(){t&&(t.type=a),this._open(t,e,i)})}),i&&this._open(t,e,i),void 0)},_open:function(t,i,s){function n(e){l.of=e,a.is(":hidden")||a.position(l)}var a,o,r,h,l=e.extend({},this.options.position);if(s){if(a=this._find(i),a.length)return a.find(".ui-tooltip-content").html(s),void 0;i.is("[title]")&&(t&&"mouseover"===t.type?i.attr("title",""):i.removeAttr("title")),a=this._tooltip(i),this._addDescribedBy(i,a.attr("id")),a.find(".ui-tooltip-content").html(s),this.liveRegion.children().hide(),s.clone?(h=s.clone(),h.removeAttr("id").find("[id]").removeAttr("id")):h=s,e("
    ").html(h).appendTo(this.liveRegion),this.options.track&&t&&/^mouse/.test(t.type)?(this._on(this.document,{mousemove:n}),n(t)):a.position(e.extend({of:i},this.options.position)),a.hide(),this._show(a,this.options.show),this.options.show&&this.options.show.delay&&(r=this.delayedShow=setInterval(function(){a.is(":visible")&&(n(l.of),clearInterval(r))},e.fx.interval)),this._trigger("open",t,{tooltip:a}),o={keyup:function(t){if(t.keyCode===e.ui.keyCode.ESCAPE){var s=e.Event(t);s.currentTarget=i[0],this.close(s,!0)}}},i[0]!==this.element[0]&&(o.remove=function(){this._removeTooltip(a)}),t&&"mouseover"!==t.type||(o.mouseleave="close"),t&&"focusin"!==t.type||(o.focusout="close"),this._on(!0,i,o)}},close:function(t){var i=this,s=e(t?t.currentTarget:this.element),n=this._find(s);this.closing||(clearInterval(this.delayedShow),s.data("ui-tooltip-title")&&!s.attr("title")&&s.attr("title",s.data("ui-tooltip-title")),this._removeDescribedBy(s),n.stop(!0),this._hide(n,this.options.hide,function(){i._removeTooltip(e(this))}),s.removeData("ui-tooltip-open"),this._off(s,"mouseleave focusout keyup"),s[0]!==this.element[0]&&this._off(s,"remove"),this._off(this.document,"mousemove"),t&&"mouseleave"===t.type&&e.each(this.parents,function(t,s){e(s.element).attr("title",s.title),delete i.parents[t]}),this.closing=!0,this._trigger("close",t,{tooltip:n}),this.closing=!1)},_tooltip:function(t){var i=e("
    ").attr("role","tooltip").addClass("ui-tooltip ui-widget ui-corner-all ui-widget-content "+(this.options.tooltipClass||"")),s=i.uniqueId().attr("id");return e("
    ").addClass("ui-tooltip-content").appendTo(i),i.appendTo(this.document[0].body),this.tooltips[s]=t,i},_find:function(t){var i=t.data("ui-tooltip-id");return i?e("#"+i):e()},_removeTooltip:function(e){e.remove(),delete this.tooltips[e.attr("id")]},_destroy:function(){var t=this;e.each(this.tooltips,function(i,s){var n=e.Event("blur");n.target=n.currentTarget=s[0],t.close(n,!0),e("#"+i).remove(),s.data("ui-tooltip-title")&&(s.attr("title")||s.attr("title",s.data("ui-tooltip-title")),s.removeData("ui-tooltip-title"))}),this.liveRegion.remove()}})}); \ No newline at end of file diff --git a/docs/experiment_1/js/jquery.min.js b/docs/experiment_1/js/jquery.min.js new file mode 100644 index 0000000..76d21a4 --- /dev/null +++ b/docs/experiment_1/js/jquery.min.js @@ -0,0 +1,6 @@ +/*! jQuery v1.10.2 | (c) 2005, 2013 jQuery Foundation, Inc. | jquery.org/license +//@ sourceMappingURL=jquery-1.10.2.min.map +*/ +(function(e,t){var n,r,i=typeof t,o=e.location,a=e.document,s=a.documentElement,l=e.jQuery,u=e.$,c={},p=[],f="1.10.2",d=p.concat,h=p.push,g=p.slice,m=p.indexOf,y=c.toString,v=c.hasOwnProperty,b=f.trim,x=function(e,t){return new x.fn.init(e,t,r)},w=/[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/.source,T=/\S+/g,C=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g,N=/^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]*))$/,k=/^<(\w+)\s*\/?>(?:<\/\1>|)$/,E=/^[\],:{}\s]*$/,S=/(?:^|:|,)(?:\s*\[)+/g,A=/\\(?:["\\\/bfnrt]|u[\da-fA-F]{4})/g,j=/"[^"\\\r\n]*"|true|false|null|-?(?:\d+\.|)\d+(?:[eE][+-]?\d+|)/g,D=/^-ms-/,L=/-([\da-z])/gi,H=function(e,t){return t.toUpperCase()},q=function(e){(a.addEventListener||"load"===e.type||"complete"===a.readyState)&&(_(),x.ready())},_=function(){a.addEventListener?(a.removeEventListener("DOMContentLoaded",q,!1),e.removeEventListener("load",q,!1)):(a.detachEvent("onreadystatechange",q),e.detachEvent("onload",q))};x.fn=x.prototype={jquery:f,constructor:x,init:function(e,n,r){var i,o;if(!e)return this;if("string"==typeof e){if(i="<"===e.charAt(0)&&">"===e.charAt(e.length-1)&&e.length>=3?[null,e,null]:N.exec(e),!i||!i[1]&&n)return!n||n.jquery?(n||r).find(e):this.constructor(n).find(e);if(i[1]){if(n=n instanceof x?n[0]:n,x.merge(this,x.parseHTML(i[1],n&&n.nodeType?n.ownerDocument||n:a,!0)),k.test(i[1])&&x.isPlainObject(n))for(i in n)x.isFunction(this[i])?this[i](n[i]):this.attr(i,n[i]);return this}if(o=a.getElementById(i[2]),o&&o.parentNode){if(o.id!==i[2])return r.find(e);this.length=1,this[0]=o}return this.context=a,this.selector=e,this}return e.nodeType?(this.context=this[0]=e,this.length=1,this):x.isFunction(e)?r.ready(e):(e.selector!==t&&(this.selector=e.selector,this.context=e.context),x.makeArray(e,this))},selector:"",length:0,toArray:function(){return g.call(this)},get:function(e){return null==e?this.toArray():0>e?this[this.length+e]:this[e]},pushStack:function(e){var t=x.merge(this.constructor(),e);return t.prevObject=this,t.context=this.context,t},each:function(e,t){return x.each(this,e,t)},ready:function(e){return x.ready.promise().done(e),this},slice:function(){return this.pushStack(g.apply(this,arguments))},first:function(){return this.eq(0)},last:function(){return this.eq(-1)},eq:function(e){var t=this.length,n=+e+(0>e?t:0);return this.pushStack(n>=0&&t>n?[this[n]]:[])},map:function(e){return this.pushStack(x.map(this,function(t,n){return e.call(t,n,t)}))},end:function(){return this.prevObject||this.constructor(null)},push:h,sort:[].sort,splice:[].splice},x.fn.init.prototype=x.fn,x.extend=x.fn.extend=function(){var e,n,r,i,o,a,s=arguments[0]||{},l=1,u=arguments.length,c=!1;for("boolean"==typeof s&&(c=s,s=arguments[1]||{},l=2),"object"==typeof s||x.isFunction(s)||(s={}),u===l&&(s=this,--l);u>l;l++)if(null!=(o=arguments[l]))for(i in o)e=s[i],r=o[i],s!==r&&(c&&r&&(x.isPlainObject(r)||(n=x.isArray(r)))?(n?(n=!1,a=e&&x.isArray(e)?e:[]):a=e&&x.isPlainObject(e)?e:{},s[i]=x.extend(c,a,r)):r!==t&&(s[i]=r));return s},x.extend({expando:"jQuery"+(f+Math.random()).replace(/\D/g,""),noConflict:function(t){return e.$===x&&(e.$=u),t&&e.jQuery===x&&(e.jQuery=l),x},isReady:!1,readyWait:1,holdReady:function(e){e?x.readyWait++:x.ready(!0)},ready:function(e){if(e===!0?!--x.readyWait:!x.isReady){if(!a.body)return setTimeout(x.ready);x.isReady=!0,e!==!0&&--x.readyWait>0||(n.resolveWith(a,[x]),x.fn.trigger&&x(a).trigger("ready").off("ready"))}},isFunction:function(e){return"function"===x.type(e)},isArray:Array.isArray||function(e){return"array"===x.type(e)},isWindow:function(e){return null!=e&&e==e.window},isNumeric:function(e){return!isNaN(parseFloat(e))&&isFinite(e)},type:function(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?c[y.call(e)]||"object":typeof e},isPlainObject:function(e){var n;if(!e||"object"!==x.type(e)||e.nodeType||x.isWindow(e))return!1;try{if(e.constructor&&!v.call(e,"constructor")&&!v.call(e.constructor.prototype,"isPrototypeOf"))return!1}catch(r){return!1}if(x.support.ownLast)for(n in e)return v.call(e,n);for(n in e);return n===t||v.call(e,n)},isEmptyObject:function(e){var t;for(t in e)return!1;return!0},error:function(e){throw Error(e)},parseHTML:function(e,t,n){if(!e||"string"!=typeof e)return null;"boolean"==typeof t&&(n=t,t=!1),t=t||a;var r=k.exec(e),i=!n&&[];return r?[t.createElement(r[1])]:(r=x.buildFragment([e],t,i),i&&x(i).remove(),x.merge([],r.childNodes))},parseJSON:function(n){return e.JSON&&e.JSON.parse?e.JSON.parse(n):null===n?n:"string"==typeof n&&(n=x.trim(n),n&&E.test(n.replace(A,"@").replace(j,"]").replace(S,"")))?Function("return "+n)():(x.error("Invalid JSON: "+n),t)},parseXML:function(n){var r,i;if(!n||"string"!=typeof n)return null;try{e.DOMParser?(i=new DOMParser,r=i.parseFromString(n,"text/xml")):(r=new ActiveXObject("Microsoft.XMLDOM"),r.async="false",r.loadXML(n))}catch(o){r=t}return r&&r.documentElement&&!r.getElementsByTagName("parsererror").length||x.error("Invalid XML: "+n),r},noop:function(){},globalEval:function(t){t&&x.trim(t)&&(e.execScript||function(t){e.eval.call(e,t)})(t)},camelCase:function(e){return e.replace(D,"ms-").replace(L,H)},nodeName:function(e,t){return e.nodeName&&e.nodeName.toLowerCase()===t.toLowerCase()},each:function(e,t,n){var r,i=0,o=e.length,a=M(e);if(n){if(a){for(;o>i;i++)if(r=t.apply(e[i],n),r===!1)break}else for(i in e)if(r=t.apply(e[i],n),r===!1)break}else if(a){for(;o>i;i++)if(r=t.call(e[i],i,e[i]),r===!1)break}else for(i in e)if(r=t.call(e[i],i,e[i]),r===!1)break;return e},trim:b&&!b.call("\ufeff\u00a0")?function(e){return null==e?"":b.call(e)}:function(e){return null==e?"":(e+"").replace(C,"")},makeArray:function(e,t){var n=t||[];return null!=e&&(M(Object(e))?x.merge(n,"string"==typeof e?[e]:e):h.call(n,e)),n},inArray:function(e,t,n){var r;if(t){if(m)return m.call(t,e,n);for(r=t.length,n=n?0>n?Math.max(0,r+n):n:0;r>n;n++)if(n in t&&t[n]===e)return n}return-1},merge:function(e,n){var r=n.length,i=e.length,o=0;if("number"==typeof r)for(;r>o;o++)e[i++]=n[o];else while(n[o]!==t)e[i++]=n[o++];return e.length=i,e},grep:function(e,t,n){var r,i=[],o=0,a=e.length;for(n=!!n;a>o;o++)r=!!t(e[o],o),n!==r&&i.push(e[o]);return i},map:function(e,t,n){var r,i=0,o=e.length,a=M(e),s=[];if(a)for(;o>i;i++)r=t(e[i],i,n),null!=r&&(s[s.length]=r);else for(i in e)r=t(e[i],i,n),null!=r&&(s[s.length]=r);return d.apply([],s)},guid:1,proxy:function(e,n){var r,i,o;return"string"==typeof n&&(o=e[n],n=e,e=o),x.isFunction(e)?(r=g.call(arguments,2),i=function(){return e.apply(n||this,r.concat(g.call(arguments)))},i.guid=e.guid=e.guid||x.guid++,i):t},access:function(e,n,r,i,o,a,s){var l=0,u=e.length,c=null==r;if("object"===x.type(r)){o=!0;for(l in r)x.access(e,n,l,r[l],!0,a,s)}else if(i!==t&&(o=!0,x.isFunction(i)||(s=!0),c&&(s?(n.call(e,i),n=null):(c=n,n=function(e,t,n){return c.call(x(e),n)})),n))for(;u>l;l++)n(e[l],r,s?i:i.call(e[l],l,n(e[l],r)));return o?e:c?n.call(e):u?n(e[0],r):a},now:function(){return(new Date).getTime()},swap:function(e,t,n,r){var i,o,a={};for(o in t)a[o]=e.style[o],e.style[o]=t[o];i=n.apply(e,r||[]);for(o in t)e.style[o]=a[o];return i}}),x.ready.promise=function(t){if(!n)if(n=x.Deferred(),"complete"===a.readyState)setTimeout(x.ready);else if(a.addEventListener)a.addEventListener("DOMContentLoaded",q,!1),e.addEventListener("load",q,!1);else{a.attachEvent("onreadystatechange",q),e.attachEvent("onload",q);var r=!1;try{r=null==e.frameElement&&a.documentElement}catch(i){}r&&r.doScroll&&function o(){if(!x.isReady){try{r.doScroll("left")}catch(e){return setTimeout(o,50)}_(),x.ready()}}()}return n.promise(t)},x.each("Boolean Number String Function Array Date RegExp Object Error".split(" "),function(e,t){c["[object "+t+"]"]=t.toLowerCase()});function M(e){var t=e.length,n=x.type(e);return x.isWindow(e)?!1:1===e.nodeType&&t?!0:"array"===n||"function"!==n&&(0===t||"number"==typeof t&&t>0&&t-1 in e)}r=x(a),function(e,t){var n,r,i,o,a,s,l,u,c,p,f,d,h,g,m,y,v,b="sizzle"+-new Date,w=e.document,T=0,C=0,N=st(),k=st(),E=st(),S=!1,A=function(e,t){return e===t?(S=!0,0):0},j=typeof t,D=1<<31,L={}.hasOwnProperty,H=[],q=H.pop,_=H.push,M=H.push,O=H.slice,F=H.indexOf||function(e){var t=0,n=this.length;for(;n>t;t++)if(this[t]===e)return t;return-1},B="checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|ismap|loop|multiple|open|readonly|required|scoped",P="[\\x20\\t\\r\\n\\f]",R="(?:\\\\.|[\\w-]|[^\\x00-\\xa0])+",W=R.replace("w","w#"),$="\\["+P+"*("+R+")"+P+"*(?:([*^$|!~]?=)"+P+"*(?:(['\"])((?:\\\\.|[^\\\\])*?)\\3|("+W+")|)|)"+P+"*\\]",I=":("+R+")(?:\\(((['\"])((?:\\\\.|[^\\\\])*?)\\3|((?:\\\\.|[^\\\\()[\\]]|"+$.replace(3,8)+")*)|.*)\\)|)",z=RegExp("^"+P+"+|((?:^|[^\\\\])(?:\\\\.)*)"+P+"+$","g"),X=RegExp("^"+P+"*,"+P+"*"),U=RegExp("^"+P+"*([>+~]|"+P+")"+P+"*"),V=RegExp(P+"*[+~]"),Y=RegExp("="+P+"*([^\\]'\"]*)"+P+"*\\]","g"),J=RegExp(I),G=RegExp("^"+W+"$"),Q={ID:RegExp("^#("+R+")"),CLASS:RegExp("^\\.("+R+")"),TAG:RegExp("^("+R.replace("w","w*")+")"),ATTR:RegExp("^"+$),PSEUDO:RegExp("^"+I),CHILD:RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+P+"*(even|odd|(([+-]|)(\\d*)n|)"+P+"*(?:([+-]|)"+P+"*(\\d+)|))"+P+"*\\)|)","i"),bool:RegExp("^(?:"+B+")$","i"),needsContext:RegExp("^"+P+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+P+"*((?:-\\d)?\\d*)"+P+"*\\)|)(?=[^-]|$)","i")},K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,et=/^(?:input|select|textarea|button)$/i,tt=/^h\d$/i,nt=/'|\\/g,rt=RegExp("\\\\([\\da-f]{1,6}"+P+"?|("+P+")|.)","ig"),it=function(e,t,n){var r="0x"+t-65536;return r!==r||n?t:0>r?String.fromCharCode(r+65536):String.fromCharCode(55296|r>>10,56320|1023&r)};try{M.apply(H=O.call(w.childNodes),w.childNodes),H[w.childNodes.length].nodeType}catch(ot){M={apply:H.length?function(e,t){_.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function at(e,t,n,i){var o,a,s,l,u,c,d,m,y,x;if((t?t.ownerDocument||t:w)!==f&&p(t),t=t||f,n=n||[],!e||"string"!=typeof e)return n;if(1!==(l=t.nodeType)&&9!==l)return[];if(h&&!i){if(o=Z.exec(e))if(s=o[1]){if(9===l){if(a=t.getElementById(s),!a||!a.parentNode)return n;if(a.id===s)return n.push(a),n}else if(t.ownerDocument&&(a=t.ownerDocument.getElementById(s))&&v(t,a)&&a.id===s)return n.push(a),n}else{if(o[2])return M.apply(n,t.getElementsByTagName(e)),n;if((s=o[3])&&r.getElementsByClassName&&t.getElementsByClassName)return M.apply(n,t.getElementsByClassName(s)),n}if(r.qsa&&(!g||!g.test(e))){if(m=d=b,y=t,x=9===l&&e,1===l&&"object"!==t.nodeName.toLowerCase()){c=mt(e),(d=t.getAttribute("id"))?m=d.replace(nt,"\\$&"):t.setAttribute("id",m),m="[id='"+m+"'] ",u=c.length;while(u--)c[u]=m+yt(c[u]);y=V.test(e)&&t.parentNode||t,x=c.join(",")}if(x)try{return M.apply(n,y.querySelectorAll(x)),n}catch(T){}finally{d||t.removeAttribute("id")}}}return kt(e.replace(z,"$1"),t,n,i)}function st(){var e=[];function t(n,r){return e.push(n+=" ")>o.cacheLength&&delete t[e.shift()],t[n]=r}return t}function lt(e){return e[b]=!0,e}function ut(e){var t=f.createElement("div");try{return!!e(t)}catch(n){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function ct(e,t){var n=e.split("|"),r=e.length;while(r--)o.attrHandle[n[r]]=t}function pt(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&(~t.sourceIndex||D)-(~e.sourceIndex||D);if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function ft(e){return function(t){var n=t.nodeName.toLowerCase();return"input"===n&&t.type===e}}function dt(e){return function(t){var n=t.nodeName.toLowerCase();return("input"===n||"button"===n)&&t.type===e}}function ht(e){return lt(function(t){return t=+t,lt(function(n,r){var i,o=e([],n.length,t),a=o.length;while(a--)n[i=o[a]]&&(n[i]=!(r[i]=n[i]))})})}s=at.isXML=function(e){var t=e&&(e.ownerDocument||e).documentElement;return t?"HTML"!==t.nodeName:!1},r=at.support={},p=at.setDocument=function(e){var n=e?e.ownerDocument||e:w,i=n.defaultView;return n!==f&&9===n.nodeType&&n.documentElement?(f=n,d=n.documentElement,h=!s(n),i&&i.attachEvent&&i!==i.top&&i.attachEvent("onbeforeunload",function(){p()}),r.attributes=ut(function(e){return e.className="i",!e.getAttribute("className")}),r.getElementsByTagName=ut(function(e){return e.appendChild(n.createComment("")),!e.getElementsByTagName("*").length}),r.getElementsByClassName=ut(function(e){return e.innerHTML="
    ",e.firstChild.className="i",2===e.getElementsByClassName("i").length}),r.getById=ut(function(e){return d.appendChild(e).id=b,!n.getElementsByName||!n.getElementsByName(b).length}),r.getById?(o.find.ID=function(e,t){if(typeof t.getElementById!==j&&h){var n=t.getElementById(e);return n&&n.parentNode?[n]:[]}},o.filter.ID=function(e){var t=e.replace(rt,it);return function(e){return e.getAttribute("id")===t}}):(delete o.find.ID,o.filter.ID=function(e){var t=e.replace(rt,it);return function(e){var n=typeof e.getAttributeNode!==j&&e.getAttributeNode("id");return n&&n.value===t}}),o.find.TAG=r.getElementsByTagName?function(e,n){return typeof n.getElementsByTagName!==j?n.getElementsByTagName(e):t}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},o.find.CLASS=r.getElementsByClassName&&function(e,n){return typeof n.getElementsByClassName!==j&&h?n.getElementsByClassName(e):t},m=[],g=[],(r.qsa=K.test(n.querySelectorAll))&&(ut(function(e){e.innerHTML="",e.querySelectorAll("[selected]").length||g.push("\\["+P+"*(?:value|"+B+")"),e.querySelectorAll(":checked").length||g.push(":checked")}),ut(function(e){var t=n.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("t",""),e.querySelectorAll("[t^='']").length&&g.push("[*^$]="+P+"*(?:''|\"\")"),e.querySelectorAll(":enabled").length||g.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),g.push(",.*:")})),(r.matchesSelector=K.test(y=d.webkitMatchesSelector||d.mozMatchesSelector||d.oMatchesSelector||d.msMatchesSelector))&&ut(function(e){r.disconnectedMatch=y.call(e,"div"),y.call(e,"[s!='']:x"),m.push("!=",I)}),g=g.length&&RegExp(g.join("|")),m=m.length&&RegExp(m.join("|")),v=K.test(d.contains)||d.compareDocumentPosition?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},A=d.compareDocumentPosition?function(e,t){if(e===t)return S=!0,0;var i=t.compareDocumentPosition&&e.compareDocumentPosition&&e.compareDocumentPosition(t);return i?1&i||!r.sortDetached&&t.compareDocumentPosition(e)===i?e===n||v(w,e)?-1:t===n||v(w,t)?1:c?F.call(c,e)-F.call(c,t):0:4&i?-1:1:e.compareDocumentPosition?-1:1}:function(e,t){var r,i=0,o=e.parentNode,a=t.parentNode,s=[e],l=[t];if(e===t)return S=!0,0;if(!o||!a)return e===n?-1:t===n?1:o?-1:a?1:c?F.call(c,e)-F.call(c,t):0;if(o===a)return pt(e,t);r=e;while(r=r.parentNode)s.unshift(r);r=t;while(r=r.parentNode)l.unshift(r);while(s[i]===l[i])i++;return i?pt(s[i],l[i]):s[i]===w?-1:l[i]===w?1:0},n):f},at.matches=function(e,t){return at(e,null,null,t)},at.matchesSelector=function(e,t){if((e.ownerDocument||e)!==f&&p(e),t=t.replace(Y,"='$1']"),!(!r.matchesSelector||!h||m&&m.test(t)||g&&g.test(t)))try{var n=y.call(e,t);if(n||r.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(i){}return at(t,f,null,[e]).length>0},at.contains=function(e,t){return(e.ownerDocument||e)!==f&&p(e),v(e,t)},at.attr=function(e,n){(e.ownerDocument||e)!==f&&p(e);var i=o.attrHandle[n.toLowerCase()],a=i&&L.call(o.attrHandle,n.toLowerCase())?i(e,n,!h):t;return a===t?r.attributes||!h?e.getAttribute(n):(a=e.getAttributeNode(n))&&a.specified?a.value:null:a},at.error=function(e){throw Error("Syntax error, unrecognized expression: "+e)},at.uniqueSort=function(e){var t,n=[],i=0,o=0;if(S=!r.detectDuplicates,c=!r.sortStable&&e.slice(0),e.sort(A),S){while(t=e[o++])t===e[o]&&(i=n.push(o));while(i--)e.splice(n[i],1)}return e},a=at.getText=function(e){var t,n="",r=0,i=e.nodeType;if(i){if(1===i||9===i||11===i){if("string"==typeof e.textContent)return e.textContent;for(e=e.firstChild;e;e=e.nextSibling)n+=a(e)}else if(3===i||4===i)return e.nodeValue}else for(;t=e[r];r++)n+=a(t);return n},o=at.selectors={cacheLength:50,createPseudo:lt,match:Q,attrHandle:{},find:{},relative:{">":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(rt,it),e[3]=(e[4]||e[5]||"").replace(rt,it),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||at.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&at.error(e[0]),e},PSEUDO:function(e){var n,r=!e[5]&&e[2];return Q.CHILD.test(e[0])?null:(e[3]&&e[4]!==t?e[2]=e[4]:r&&J.test(r)&&(n=mt(r,!0))&&(n=r.indexOf(")",r.length-n)-r.length)&&(e[0]=e[0].slice(0,n),e[2]=r.slice(0,n)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(rt,it).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=N[e+" "];return t||(t=RegExp("(^|"+P+")"+e+"("+P+"|$)"))&&N(e,function(e){return t.test("string"==typeof e.className&&e.className||typeof e.getAttribute!==j&&e.getAttribute("class")||"")})},ATTR:function(e,t,n){return function(r){var i=at.attr(r,e);return null==i?"!="===t:t?(i+="","="===t?i===n:"!="===t?i!==n:"^="===t?n&&0===i.indexOf(n):"*="===t?n&&i.indexOf(n)>-1:"$="===t?n&&i.slice(-n.length)===n:"~="===t?(" "+i+" ").indexOf(n)>-1:"|="===t?i===n||i.slice(0,n.length+1)===n+"-":!1):!0}},CHILD:function(e,t,n,r,i){var o="nth"!==e.slice(0,3),a="last"!==e.slice(-4),s="of-type"===t;return 1===r&&0===i?function(e){return!!e.parentNode}:function(t,n,l){var u,c,p,f,d,h,g=o!==a?"nextSibling":"previousSibling",m=t.parentNode,y=s&&t.nodeName.toLowerCase(),v=!l&&!s;if(m){if(o){while(g){p=t;while(p=p[g])if(s?p.nodeName.toLowerCase()===y:1===p.nodeType)return!1;h=g="only"===e&&!h&&"nextSibling"}return!0}if(h=[a?m.firstChild:m.lastChild],a&&v){c=m[b]||(m[b]={}),u=c[e]||[],d=u[0]===T&&u[1],f=u[0]===T&&u[2],p=d&&m.childNodes[d];while(p=++d&&p&&p[g]||(f=d=0)||h.pop())if(1===p.nodeType&&++f&&p===t){c[e]=[T,d,f];break}}else if(v&&(u=(t[b]||(t[b]={}))[e])&&u[0]===T)f=u[1];else while(p=++d&&p&&p[g]||(f=d=0)||h.pop())if((s?p.nodeName.toLowerCase()===y:1===p.nodeType)&&++f&&(v&&((p[b]||(p[b]={}))[e]=[T,f]),p===t))break;return f-=i,f===r||0===f%r&&f/r>=0}}},PSEUDO:function(e,t){var n,r=o.pseudos[e]||o.setFilters[e.toLowerCase()]||at.error("unsupported pseudo: "+e);return r[b]?r(t):r.length>1?(n=[e,e,"",t],o.setFilters.hasOwnProperty(e.toLowerCase())?lt(function(e,n){var i,o=r(e,t),a=o.length;while(a--)i=F.call(e,o[a]),e[i]=!(n[i]=o[a])}):function(e){return r(e,0,n)}):r}},pseudos:{not:lt(function(e){var t=[],n=[],r=l(e.replace(z,"$1"));return r[b]?lt(function(e,t,n,i){var o,a=r(e,null,i,[]),s=e.length;while(s--)(o=a[s])&&(e[s]=!(t[s]=o))}):function(e,i,o){return t[0]=e,r(t,null,o,n),!n.pop()}}),has:lt(function(e){return function(t){return at(e,t).length>0}}),contains:lt(function(e){return function(t){return(t.textContent||t.innerText||a(t)).indexOf(e)>-1}}),lang:lt(function(e){return G.test(e||"")||at.error("unsupported lang: "+e),e=e.replace(rt,it).toLowerCase(),function(t){var n;do if(n=h?t.lang:t.getAttribute("xml:lang")||t.getAttribute("lang"))return n=n.toLowerCase(),n===e||0===n.indexOf(e+"-");while((t=t.parentNode)&&1===t.nodeType);return!1}}),target:function(t){var n=e.location&&e.location.hash;return n&&n.slice(1)===t.id},root:function(e){return e===d},focus:function(e){return e===f.activeElement&&(!f.hasFocus||f.hasFocus())&&!!(e.type||e.href||~e.tabIndex)},enabled:function(e){return e.disabled===!1},disabled:function(e){return e.disabled===!0},checked:function(e){var t=e.nodeName.toLowerCase();return"input"===t&&!!e.checked||"option"===t&&!!e.selected},selected:function(e){return e.parentNode&&e.parentNode.selectedIndex,e.selected===!0},empty:function(e){for(e=e.firstChild;e;e=e.nextSibling)if(e.nodeName>"@"||3===e.nodeType||4===e.nodeType)return!1;return!0},parent:function(e){return!o.pseudos.empty(e)},header:function(e){return tt.test(e.nodeName)},input:function(e){return et.test(e.nodeName)},button:function(e){var t=e.nodeName.toLowerCase();return"input"===t&&"button"===e.type||"button"===t},text:function(e){var t;return"input"===e.nodeName.toLowerCase()&&"text"===e.type&&(null==(t=e.getAttribute("type"))||t.toLowerCase()===e.type)},first:ht(function(){return[0]}),last:ht(function(e,t){return[t-1]}),eq:ht(function(e,t,n){return[0>n?n+t:n]}),even:ht(function(e,t){var n=0;for(;t>n;n+=2)e.push(n);return e}),odd:ht(function(e,t){var n=1;for(;t>n;n+=2)e.push(n);return e}),lt:ht(function(e,t,n){var r=0>n?n+t:n;for(;--r>=0;)e.push(r);return e}),gt:ht(function(e,t,n){var r=0>n?n+t:n;for(;t>++r;)e.push(r);return e})}},o.pseudos.nth=o.pseudos.eq;for(n in{radio:!0,checkbox:!0,file:!0,password:!0,image:!0})o.pseudos[n]=ft(n);for(n in{submit:!0,reset:!0})o.pseudos[n]=dt(n);function gt(){}gt.prototype=o.filters=o.pseudos,o.setFilters=new gt;function mt(e,t){var n,r,i,a,s,l,u,c=k[e+" "];if(c)return t?0:c.slice(0);s=e,l=[],u=o.preFilter;while(s){(!n||(r=X.exec(s)))&&(r&&(s=s.slice(r[0].length)||s),l.push(i=[])),n=!1,(r=U.exec(s))&&(n=r.shift(),i.push({value:n,type:r[0].replace(z," ")}),s=s.slice(n.length));for(a in o.filter)!(r=Q[a].exec(s))||u[a]&&!(r=u[a](r))||(n=r.shift(),i.push({value:n,type:a,matches:r}),s=s.slice(n.length));if(!n)break}return t?s.length:s?at.error(e):k(e,l).slice(0)}function yt(e){var t=0,n=e.length,r="";for(;n>t;t++)r+=e[t].value;return r}function vt(e,t,n){var r=t.dir,o=n&&"parentNode"===r,a=C++;return t.first?function(t,n,i){while(t=t[r])if(1===t.nodeType||o)return e(t,n,i)}:function(t,n,s){var l,u,c,p=T+" "+a;if(s){while(t=t[r])if((1===t.nodeType||o)&&e(t,n,s))return!0}else while(t=t[r])if(1===t.nodeType||o)if(c=t[b]||(t[b]={}),(u=c[r])&&u[0]===p){if((l=u[1])===!0||l===i)return l===!0}else if(u=c[r]=[p],u[1]=e(t,n,s)||i,u[1]===!0)return!0}}function bt(e){return e.length>1?function(t,n,r){var i=e.length;while(i--)if(!e[i](t,n,r))return!1;return!0}:e[0]}function xt(e,t,n,r,i){var o,a=[],s=0,l=e.length,u=null!=t;for(;l>s;s++)(o=e[s])&&(!n||n(o,r,i))&&(a.push(o),u&&t.push(s));return a}function wt(e,t,n,r,i,o){return r&&!r[b]&&(r=wt(r)),i&&!i[b]&&(i=wt(i,o)),lt(function(o,a,s,l){var u,c,p,f=[],d=[],h=a.length,g=o||Nt(t||"*",s.nodeType?[s]:s,[]),m=!e||!o&&t?g:xt(g,f,e,s,l),y=n?i||(o?e:h||r)?[]:a:m;if(n&&n(m,y,s,l),r){u=xt(y,d),r(u,[],s,l),c=u.length;while(c--)(p=u[c])&&(y[d[c]]=!(m[d[c]]=p))}if(o){if(i||e){if(i){u=[],c=y.length;while(c--)(p=y[c])&&u.push(m[c]=p);i(null,y=[],u,l)}c=y.length;while(c--)(p=y[c])&&(u=i?F.call(o,p):f[c])>-1&&(o[u]=!(a[u]=p))}}else y=xt(y===a?y.splice(h,y.length):y),i?i(null,a,y,l):M.apply(a,y)})}function Tt(e){var t,n,r,i=e.length,a=o.relative[e[0].type],s=a||o.relative[" "],l=a?1:0,c=vt(function(e){return e===t},s,!0),p=vt(function(e){return F.call(t,e)>-1},s,!0),f=[function(e,n,r){return!a&&(r||n!==u)||((t=n).nodeType?c(e,n,r):p(e,n,r))}];for(;i>l;l++)if(n=o.relative[e[l].type])f=[vt(bt(f),n)];else{if(n=o.filter[e[l].type].apply(null,e[l].matches),n[b]){for(r=++l;i>r;r++)if(o.relative[e[r].type])break;return wt(l>1&&bt(f),l>1&&yt(e.slice(0,l-1).concat({value:" "===e[l-2].type?"*":""})).replace(z,"$1"),n,r>l&&Tt(e.slice(l,r)),i>r&&Tt(e=e.slice(r)),i>r&&yt(e))}f.push(n)}return bt(f)}function Ct(e,t){var n=0,r=t.length>0,a=e.length>0,s=function(s,l,c,p,d){var h,g,m,y=[],v=0,b="0",x=s&&[],w=null!=d,C=u,N=s||a&&o.find.TAG("*",d&&l.parentNode||l),k=T+=null==C?1:Math.random()||.1;for(w&&(u=l!==f&&l,i=n);null!=(h=N[b]);b++){if(a&&h){g=0;while(m=e[g++])if(m(h,l,c)){p.push(h);break}w&&(T=k,i=++n)}r&&((h=!m&&h)&&v--,s&&x.push(h))}if(v+=b,r&&b!==v){g=0;while(m=t[g++])m(x,y,l,c);if(s){if(v>0)while(b--)x[b]||y[b]||(y[b]=q.call(p));y=xt(y)}M.apply(p,y),w&&!s&&y.length>0&&v+t.length>1&&at.uniqueSort(p)}return w&&(T=k,u=C),x};return r?lt(s):s}l=at.compile=function(e,t){var n,r=[],i=[],o=E[e+" "];if(!o){t||(t=mt(e)),n=t.length;while(n--)o=Tt(t[n]),o[b]?r.push(o):i.push(o);o=E(e,Ct(i,r))}return o};function Nt(e,t,n){var r=0,i=t.length;for(;i>r;r++)at(e,t[r],n);return n}function kt(e,t,n,i){var a,s,u,c,p,f=mt(e);if(!i&&1===f.length){if(s=f[0]=f[0].slice(0),s.length>2&&"ID"===(u=s[0]).type&&r.getById&&9===t.nodeType&&h&&o.relative[s[1].type]){if(t=(o.find.ID(u.matches[0].replace(rt,it),t)||[])[0],!t)return n;e=e.slice(s.shift().value.length)}a=Q.needsContext.test(e)?0:s.length;while(a--){if(u=s[a],o.relative[c=u.type])break;if((p=o.find[c])&&(i=p(u.matches[0].replace(rt,it),V.test(s[0].type)&&t.parentNode||t))){if(s.splice(a,1),e=i.length&&yt(s),!e)return M.apply(n,i),n;break}}}return l(e,f)(i,t,!h,n,V.test(e)),n}r.sortStable=b.split("").sort(A).join("")===b,r.detectDuplicates=S,p(),r.sortDetached=ut(function(e){return 1&e.compareDocumentPosition(f.createElement("div"))}),ut(function(e){return e.innerHTML="
    ","#"===e.firstChild.getAttribute("href")})||ct("type|href|height|width",function(e,n,r){return r?t:e.getAttribute(n,"type"===n.toLowerCase()?1:2)}),r.attributes&&ut(function(e){return e.innerHTML="",e.firstChild.setAttribute("value",""),""===e.firstChild.getAttribute("value")})||ct("value",function(e,n,r){return r||"input"!==e.nodeName.toLowerCase()?t:e.defaultValue}),ut(function(e){return null==e.getAttribute("disabled")})||ct(B,function(e,n,r){var i;return r?t:(i=e.getAttributeNode(n))&&i.specified?i.value:e[n]===!0?n.toLowerCase():null}),x.find=at,x.expr=at.selectors,x.expr[":"]=x.expr.pseudos,x.unique=at.uniqueSort,x.text=at.getText,x.isXMLDoc=at.isXML,x.contains=at.contains}(e);var O={};function F(e){var t=O[e]={};return x.each(e.match(T)||[],function(e,n){t[n]=!0}),t}x.Callbacks=function(e){e="string"==typeof e?O[e]||F(e):x.extend({},e);var n,r,i,o,a,s,l=[],u=!e.once&&[],c=function(t){for(r=e.memory&&t,i=!0,a=s||0,s=0,o=l.length,n=!0;l&&o>a;a++)if(l[a].apply(t[0],t[1])===!1&&e.stopOnFalse){r=!1;break}n=!1,l&&(u?u.length&&c(u.shift()):r?l=[]:p.disable())},p={add:function(){if(l){var t=l.length;(function i(t){x.each(t,function(t,n){var r=x.type(n);"function"===r?e.unique&&p.has(n)||l.push(n):n&&n.length&&"string"!==r&&i(n)})})(arguments),n?o=l.length:r&&(s=t,c(r))}return this},remove:function(){return l&&x.each(arguments,function(e,t){var r;while((r=x.inArray(t,l,r))>-1)l.splice(r,1),n&&(o>=r&&o--,a>=r&&a--)}),this},has:function(e){return e?x.inArray(e,l)>-1:!(!l||!l.length)},empty:function(){return l=[],o=0,this},disable:function(){return l=u=r=t,this},disabled:function(){return!l},lock:function(){return u=t,r||p.disable(),this},locked:function(){return!u},fireWith:function(e,t){return!l||i&&!u||(t=t||[],t=[e,t.slice?t.slice():t],n?u.push(t):c(t)),this},fire:function(){return p.fireWith(this,arguments),this},fired:function(){return!!i}};return p},x.extend({Deferred:function(e){var t=[["resolve","done",x.Callbacks("once memory"),"resolved"],["reject","fail",x.Callbacks("once memory"),"rejected"],["notify","progress",x.Callbacks("memory")]],n="pending",r={state:function(){return n},always:function(){return i.done(arguments).fail(arguments),this},then:function(){var e=arguments;return x.Deferred(function(n){x.each(t,function(t,o){var a=o[0],s=x.isFunction(e[t])&&e[t];i[o[1]](function(){var e=s&&s.apply(this,arguments);e&&x.isFunction(e.promise)?e.promise().done(n.resolve).fail(n.reject).progress(n.notify):n[a+"With"](this===r?n.promise():this,s?[e]:arguments)})}),e=null}).promise()},promise:function(e){return null!=e?x.extend(e,r):r}},i={};return r.pipe=r.then,x.each(t,function(e,o){var a=o[2],s=o[3];r[o[1]]=a.add,s&&a.add(function(){n=s},t[1^e][2].disable,t[2][2].lock),i[o[0]]=function(){return i[o[0]+"With"](this===i?r:this,arguments),this},i[o[0]+"With"]=a.fireWith}),r.promise(i),e&&e.call(i,i),i},when:function(e){var t=0,n=g.call(arguments),r=n.length,i=1!==r||e&&x.isFunction(e.promise)?r:0,o=1===i?e:x.Deferred(),a=function(e,t,n){return function(r){t[e]=this,n[e]=arguments.length>1?g.call(arguments):r,n===s?o.notifyWith(t,n):--i||o.resolveWith(t,n)}},s,l,u;if(r>1)for(s=Array(r),l=Array(r),u=Array(r);r>t;t++)n[t]&&x.isFunction(n[t].promise)?n[t].promise().done(a(t,u,n)).fail(o.reject).progress(a(t,l,s)):--i;return i||o.resolveWith(u,n),o.promise()}}),x.support=function(t){var n,r,o,s,l,u,c,p,f,d=a.createElement("div");if(d.setAttribute("className","t"),d.innerHTML="
    a",n=d.getElementsByTagName("*")||[],r=d.getElementsByTagName("a")[0],!r||!r.style||!n.length)return t;s=a.createElement("select"),u=s.appendChild(a.createElement("option")),o=d.getElementsByTagName("input")[0],r.style.cssText="top:1px;float:left;opacity:.5",t.getSetAttribute="t"!==d.className,t.leadingWhitespace=3===d.firstChild.nodeType,t.tbody=!d.getElementsByTagName("tbody").length,t.htmlSerialize=!!d.getElementsByTagName("link").length,t.style=/top/.test(r.getAttribute("style")),t.hrefNormalized="/a"===r.getAttribute("href"),t.opacity=/^0.5/.test(r.style.opacity),t.cssFloat=!!r.style.cssFloat,t.checkOn=!!o.value,t.optSelected=u.selected,t.enctype=!!a.createElement("form").enctype,t.html5Clone="<:nav>"!==a.createElement("nav").cloneNode(!0).outerHTML,t.inlineBlockNeedsLayout=!1,t.shrinkWrapBlocks=!1,t.pixelPosition=!1,t.deleteExpando=!0,t.noCloneEvent=!0,t.reliableMarginRight=!0,t.boxSizingReliable=!0,o.checked=!0,t.noCloneChecked=o.cloneNode(!0).checked,s.disabled=!0,t.optDisabled=!u.disabled;try{delete d.test}catch(h){t.deleteExpando=!1}o=a.createElement("input"),o.setAttribute("value",""),t.input=""===o.getAttribute("value"),o.value="t",o.setAttribute("type","radio"),t.radioValue="t"===o.value,o.setAttribute("checked","t"),o.setAttribute("name","t"),l=a.createDocumentFragment(),l.appendChild(o),t.appendChecked=o.checked,t.checkClone=l.cloneNode(!0).cloneNode(!0).lastChild.checked,d.attachEvent&&(d.attachEvent("onclick",function(){t.noCloneEvent=!1}),d.cloneNode(!0).click());for(f in{submit:!0,change:!0,focusin:!0})d.setAttribute(c="on"+f,"t"),t[f+"Bubbles"]=c in e||d.attributes[c].expando===!1;d.style.backgroundClip="content-box",d.cloneNode(!0).style.backgroundClip="",t.clearCloneStyle="content-box"===d.style.backgroundClip;for(f in x(t))break;return t.ownLast="0"!==f,x(function(){var n,r,o,s="padding:0;margin:0;border:0;display:block;box-sizing:content-box;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;",l=a.getElementsByTagName("body")[0];l&&(n=a.createElement("div"),n.style.cssText="border:0;width:0;height:0;position:absolute;top:0;left:-9999px;margin-top:1px",l.appendChild(n).appendChild(d),d.innerHTML="
    t
    ",o=d.getElementsByTagName("td"),o[0].style.cssText="padding:0;margin:0;border:0;display:none",p=0===o[0].offsetHeight,o[0].style.display="",o[1].style.display="none",t.reliableHiddenOffsets=p&&0===o[0].offsetHeight,d.innerHTML="",d.style.cssText="box-sizing:border-box;-moz-box-sizing:border-box;-webkit-box-sizing:border-box;padding:1px;border:1px;display:block;width:4px;margin-top:1%;position:absolute;top:1%;",x.swap(l,null!=l.style.zoom?{zoom:1}:{},function(){t.boxSizing=4===d.offsetWidth}),e.getComputedStyle&&(t.pixelPosition="1%"!==(e.getComputedStyle(d,null)||{}).top,t.boxSizingReliable="4px"===(e.getComputedStyle(d,null)||{width:"4px"}).width,r=d.appendChild(a.createElement("div")),r.style.cssText=d.style.cssText=s,r.style.marginRight=r.style.width="0",d.style.width="1px",t.reliableMarginRight=!parseFloat((e.getComputedStyle(r,null)||{}).marginRight)),typeof d.style.zoom!==i&&(d.innerHTML="",d.style.cssText=s+"width:1px;padding:1px;display:inline;zoom:1",t.inlineBlockNeedsLayout=3===d.offsetWidth,d.style.display="block",d.innerHTML="
    ",d.firstChild.style.width="5px",t.shrinkWrapBlocks=3!==d.offsetWidth,t.inlineBlockNeedsLayout&&(l.style.zoom=1)),l.removeChild(n),n=d=o=r=null)}),n=s=l=u=r=o=null,t +}({});var B=/(?:\{[\s\S]*\}|\[[\s\S]*\])$/,P=/([A-Z])/g;function R(e,n,r,i){if(x.acceptData(e)){var o,a,s=x.expando,l=e.nodeType,u=l?x.cache:e,c=l?e[s]:e[s]&&s;if(c&&u[c]&&(i||u[c].data)||r!==t||"string"!=typeof n)return c||(c=l?e[s]=p.pop()||x.guid++:s),u[c]||(u[c]=l?{}:{toJSON:x.noop}),("object"==typeof n||"function"==typeof n)&&(i?u[c]=x.extend(u[c],n):u[c].data=x.extend(u[c].data,n)),a=u[c],i||(a.data||(a.data={}),a=a.data),r!==t&&(a[x.camelCase(n)]=r),"string"==typeof n?(o=a[n],null==o&&(o=a[x.camelCase(n)])):o=a,o}}function W(e,t,n){if(x.acceptData(e)){var r,i,o=e.nodeType,a=o?x.cache:e,s=o?e[x.expando]:x.expando;if(a[s]){if(t&&(r=n?a[s]:a[s].data)){x.isArray(t)?t=t.concat(x.map(t,x.camelCase)):t in r?t=[t]:(t=x.camelCase(t),t=t in r?[t]:t.split(" ")),i=t.length;while(i--)delete r[t[i]];if(n?!I(r):!x.isEmptyObject(r))return}(n||(delete a[s].data,I(a[s])))&&(o?x.cleanData([e],!0):x.support.deleteExpando||a!=a.window?delete a[s]:a[s]=null)}}}x.extend({cache:{},noData:{applet:!0,embed:!0,object:"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"},hasData:function(e){return e=e.nodeType?x.cache[e[x.expando]]:e[x.expando],!!e&&!I(e)},data:function(e,t,n){return R(e,t,n)},removeData:function(e,t){return W(e,t)},_data:function(e,t,n){return R(e,t,n,!0)},_removeData:function(e,t){return W(e,t,!0)},acceptData:function(e){if(e.nodeType&&1!==e.nodeType&&9!==e.nodeType)return!1;var t=e.nodeName&&x.noData[e.nodeName.toLowerCase()];return!t||t!==!0&&e.getAttribute("classid")===t}}),x.fn.extend({data:function(e,n){var r,i,o=null,a=0,s=this[0];if(e===t){if(this.length&&(o=x.data(s),1===s.nodeType&&!x._data(s,"parsedAttrs"))){for(r=s.attributes;r.length>a;a++)i=r[a].name,0===i.indexOf("data-")&&(i=x.camelCase(i.slice(5)),$(s,i,o[i]));x._data(s,"parsedAttrs",!0)}return o}return"object"==typeof e?this.each(function(){x.data(this,e)}):arguments.length>1?this.each(function(){x.data(this,e,n)}):s?$(s,e,x.data(s,e)):null},removeData:function(e){return this.each(function(){x.removeData(this,e)})}});function $(e,n,r){if(r===t&&1===e.nodeType){var i="data-"+n.replace(P,"-$1").toLowerCase();if(r=e.getAttribute(i),"string"==typeof r){try{r="true"===r?!0:"false"===r?!1:"null"===r?null:+r+""===r?+r:B.test(r)?x.parseJSON(r):r}catch(o){}x.data(e,n,r)}else r=t}return r}function I(e){var t;for(t in e)if(("data"!==t||!x.isEmptyObject(e[t]))&&"toJSON"!==t)return!1;return!0}x.extend({queue:function(e,n,r){var i;return e?(n=(n||"fx")+"queue",i=x._data(e,n),r&&(!i||x.isArray(r)?i=x._data(e,n,x.makeArray(r)):i.push(r)),i||[]):t},dequeue:function(e,t){t=t||"fx";var n=x.queue(e,t),r=n.length,i=n.shift(),o=x._queueHooks(e,t),a=function(){x.dequeue(e,t)};"inprogress"===i&&(i=n.shift(),r--),i&&("fx"===t&&n.unshift("inprogress"),delete o.stop,i.call(e,a,o)),!r&&o&&o.empty.fire()},_queueHooks:function(e,t){var n=t+"queueHooks";return x._data(e,n)||x._data(e,n,{empty:x.Callbacks("once memory").add(function(){x._removeData(e,t+"queue"),x._removeData(e,n)})})}}),x.fn.extend({queue:function(e,n){var r=2;return"string"!=typeof e&&(n=e,e="fx",r--),r>arguments.length?x.queue(this[0],e):n===t?this:this.each(function(){var t=x.queue(this,e,n);x._queueHooks(this,e),"fx"===e&&"inprogress"!==t[0]&&x.dequeue(this,e)})},dequeue:function(e){return this.each(function(){x.dequeue(this,e)})},delay:function(e,t){return e=x.fx?x.fx.speeds[e]||e:e,t=t||"fx",this.queue(t,function(t,n){var r=setTimeout(t,e);n.stop=function(){clearTimeout(r)}})},clearQueue:function(e){return this.queue(e||"fx",[])},promise:function(e,n){var r,i=1,o=x.Deferred(),a=this,s=this.length,l=function(){--i||o.resolveWith(a,[a])};"string"!=typeof e&&(n=e,e=t),e=e||"fx";while(s--)r=x._data(a[s],e+"queueHooks"),r&&r.empty&&(i++,r.empty.add(l));return l(),o.promise(n)}});var z,X,U=/[\t\r\n\f]/g,V=/\r/g,Y=/^(?:input|select|textarea|button|object)$/i,J=/^(?:a|area)$/i,G=/^(?:checked|selected)$/i,Q=x.support.getSetAttribute,K=x.support.input;x.fn.extend({attr:function(e,t){return x.access(this,x.attr,e,t,arguments.length>1)},removeAttr:function(e){return this.each(function(){x.removeAttr(this,e)})},prop:function(e,t){return x.access(this,x.prop,e,t,arguments.length>1)},removeProp:function(e){return e=x.propFix[e]||e,this.each(function(){try{this[e]=t,delete this[e]}catch(n){}})},addClass:function(e){var t,n,r,i,o,a=0,s=this.length,l="string"==typeof e&&e;if(x.isFunction(e))return this.each(function(t){x(this).addClass(e.call(this,t,this.className))});if(l)for(t=(e||"").match(T)||[];s>a;a++)if(n=this[a],r=1===n.nodeType&&(n.className?(" "+n.className+" ").replace(U," "):" ")){o=0;while(i=t[o++])0>r.indexOf(" "+i+" ")&&(r+=i+" ");n.className=x.trim(r)}return this},removeClass:function(e){var t,n,r,i,o,a=0,s=this.length,l=0===arguments.length||"string"==typeof e&&e;if(x.isFunction(e))return this.each(function(t){x(this).removeClass(e.call(this,t,this.className))});if(l)for(t=(e||"").match(T)||[];s>a;a++)if(n=this[a],r=1===n.nodeType&&(n.className?(" "+n.className+" ").replace(U," "):"")){o=0;while(i=t[o++])while(r.indexOf(" "+i+" ")>=0)r=r.replace(" "+i+" "," ");n.className=e?x.trim(r):""}return this},toggleClass:function(e,t){var n=typeof e;return"boolean"==typeof t&&"string"===n?t?this.addClass(e):this.removeClass(e):x.isFunction(e)?this.each(function(n){x(this).toggleClass(e.call(this,n,this.className,t),t)}):this.each(function(){if("string"===n){var t,r=0,o=x(this),a=e.match(T)||[];while(t=a[r++])o.hasClass(t)?o.removeClass(t):o.addClass(t)}else(n===i||"boolean"===n)&&(this.className&&x._data(this,"__className__",this.className),this.className=this.className||e===!1?"":x._data(this,"__className__")||"")})},hasClass:function(e){var t=" "+e+" ",n=0,r=this.length;for(;r>n;n++)if(1===this[n].nodeType&&(" "+this[n].className+" ").replace(U," ").indexOf(t)>=0)return!0;return!1},val:function(e){var n,r,i,o=this[0];{if(arguments.length)return i=x.isFunction(e),this.each(function(n){var o;1===this.nodeType&&(o=i?e.call(this,n,x(this).val()):e,null==o?o="":"number"==typeof o?o+="":x.isArray(o)&&(o=x.map(o,function(e){return null==e?"":e+""})),r=x.valHooks[this.type]||x.valHooks[this.nodeName.toLowerCase()],r&&"set"in r&&r.set(this,o,"value")!==t||(this.value=o))});if(o)return r=x.valHooks[o.type]||x.valHooks[o.nodeName.toLowerCase()],r&&"get"in r&&(n=r.get(o,"value"))!==t?n:(n=o.value,"string"==typeof n?n.replace(V,""):null==n?"":n)}}}),x.extend({valHooks:{option:{get:function(e){var t=x.find.attr(e,"value");return null!=t?t:e.text}},select:{get:function(e){var t,n,r=e.options,i=e.selectedIndex,o="select-one"===e.type||0>i,a=o?null:[],s=o?i+1:r.length,l=0>i?s:o?i:0;for(;s>l;l++)if(n=r[l],!(!n.selected&&l!==i||(x.support.optDisabled?n.disabled:null!==n.getAttribute("disabled"))||n.parentNode.disabled&&x.nodeName(n.parentNode,"optgroup"))){if(t=x(n).val(),o)return t;a.push(t)}return a},set:function(e,t){var n,r,i=e.options,o=x.makeArray(t),a=i.length;while(a--)r=i[a],(r.selected=x.inArray(x(r).val(),o)>=0)&&(n=!0);return n||(e.selectedIndex=-1),o}}},attr:function(e,n,r){var o,a,s=e.nodeType;if(e&&3!==s&&8!==s&&2!==s)return typeof e.getAttribute===i?x.prop(e,n,r):(1===s&&x.isXMLDoc(e)||(n=n.toLowerCase(),o=x.attrHooks[n]||(x.expr.match.bool.test(n)?X:z)),r===t?o&&"get"in o&&null!==(a=o.get(e,n))?a:(a=x.find.attr(e,n),null==a?t:a):null!==r?o&&"set"in o&&(a=o.set(e,r,n))!==t?a:(e.setAttribute(n,r+""),r):(x.removeAttr(e,n),t))},removeAttr:function(e,t){var n,r,i=0,o=t&&t.match(T);if(o&&1===e.nodeType)while(n=o[i++])r=x.propFix[n]||n,x.expr.match.bool.test(n)?K&&Q||!G.test(n)?e[r]=!1:e[x.camelCase("default-"+n)]=e[r]=!1:x.attr(e,n,""),e.removeAttribute(Q?n:r)},attrHooks:{type:{set:function(e,t){if(!x.support.radioValue&&"radio"===t&&x.nodeName(e,"input")){var n=e.value;return e.setAttribute("type",t),n&&(e.value=n),t}}}},propFix:{"for":"htmlFor","class":"className"},prop:function(e,n,r){var i,o,a,s=e.nodeType;if(e&&3!==s&&8!==s&&2!==s)return a=1!==s||!x.isXMLDoc(e),a&&(n=x.propFix[n]||n,o=x.propHooks[n]),r!==t?o&&"set"in o&&(i=o.set(e,r,n))!==t?i:e[n]=r:o&&"get"in o&&null!==(i=o.get(e,n))?i:e[n]},propHooks:{tabIndex:{get:function(e){var t=x.find.attr(e,"tabindex");return t?parseInt(t,10):Y.test(e.nodeName)||J.test(e.nodeName)&&e.href?0:-1}}}}),X={set:function(e,t,n){return t===!1?x.removeAttr(e,n):K&&Q||!G.test(n)?e.setAttribute(!Q&&x.propFix[n]||n,n):e[x.camelCase("default-"+n)]=e[n]=!0,n}},x.each(x.expr.match.bool.source.match(/\w+/g),function(e,n){var r=x.expr.attrHandle[n]||x.find.attr;x.expr.attrHandle[n]=K&&Q||!G.test(n)?function(e,n,i){var o=x.expr.attrHandle[n],a=i?t:(x.expr.attrHandle[n]=t)!=r(e,n,i)?n.toLowerCase():null;return x.expr.attrHandle[n]=o,a}:function(e,n,r){return r?t:e[x.camelCase("default-"+n)]?n.toLowerCase():null}}),K&&Q||(x.attrHooks.value={set:function(e,n,r){return x.nodeName(e,"input")?(e.defaultValue=n,t):z&&z.set(e,n,r)}}),Q||(z={set:function(e,n,r){var i=e.getAttributeNode(r);return i||e.setAttributeNode(i=e.ownerDocument.createAttribute(r)),i.value=n+="","value"===r||n===e.getAttribute(r)?n:t}},x.expr.attrHandle.id=x.expr.attrHandle.name=x.expr.attrHandle.coords=function(e,n,r){var i;return r?t:(i=e.getAttributeNode(n))&&""!==i.value?i.value:null},x.valHooks.button={get:function(e,n){var r=e.getAttributeNode(n);return r&&r.specified?r.value:t},set:z.set},x.attrHooks.contenteditable={set:function(e,t,n){z.set(e,""===t?!1:t,n)}},x.each(["width","height"],function(e,n){x.attrHooks[n]={set:function(e,r){return""===r?(e.setAttribute(n,"auto"),r):t}}})),x.support.hrefNormalized||x.each(["href","src"],function(e,t){x.propHooks[t]={get:function(e){return e.getAttribute(t,4)}}}),x.support.style||(x.attrHooks.style={get:function(e){return e.style.cssText||t},set:function(e,t){return e.style.cssText=t+""}}),x.support.optSelected||(x.propHooks.selected={get:function(e){var t=e.parentNode;return t&&(t.selectedIndex,t.parentNode&&t.parentNode.selectedIndex),null}}),x.each(["tabIndex","readOnly","maxLength","cellSpacing","cellPadding","rowSpan","colSpan","useMap","frameBorder","contentEditable"],function(){x.propFix[this.toLowerCase()]=this}),x.support.enctype||(x.propFix.enctype="encoding"),x.each(["radio","checkbox"],function(){x.valHooks[this]={set:function(e,n){return x.isArray(n)?e.checked=x.inArray(x(e).val(),n)>=0:t}},x.support.checkOn||(x.valHooks[this].get=function(e){return null===e.getAttribute("value")?"on":e.value})});var Z=/^(?:input|select|textarea)$/i,et=/^key/,tt=/^(?:mouse|contextmenu)|click/,nt=/^(?:focusinfocus|focusoutblur)$/,rt=/^([^.]*)(?:\.(.+)|)$/;function it(){return!0}function ot(){return!1}function at(){try{return a.activeElement}catch(e){}}x.event={global:{},add:function(e,n,r,o,a){var s,l,u,c,p,f,d,h,g,m,y,v=x._data(e);if(v){r.handler&&(c=r,r=c.handler,a=c.selector),r.guid||(r.guid=x.guid++),(l=v.events)||(l=v.events={}),(f=v.handle)||(f=v.handle=function(e){return typeof x===i||e&&x.event.triggered===e.type?t:x.event.dispatch.apply(f.elem,arguments)},f.elem=e),n=(n||"").match(T)||[""],u=n.length;while(u--)s=rt.exec(n[u])||[],g=y=s[1],m=(s[2]||"").split(".").sort(),g&&(p=x.event.special[g]||{},g=(a?p.delegateType:p.bindType)||g,p=x.event.special[g]||{},d=x.extend({type:g,origType:y,data:o,handler:r,guid:r.guid,selector:a,needsContext:a&&x.expr.match.needsContext.test(a),namespace:m.join(".")},c),(h=l[g])||(h=l[g]=[],h.delegateCount=0,p.setup&&p.setup.call(e,o,m,f)!==!1||(e.addEventListener?e.addEventListener(g,f,!1):e.attachEvent&&e.attachEvent("on"+g,f))),p.add&&(p.add.call(e,d),d.handler.guid||(d.handler.guid=r.guid)),a?h.splice(h.delegateCount++,0,d):h.push(d),x.event.global[g]=!0);e=null}},remove:function(e,t,n,r,i){var o,a,s,l,u,c,p,f,d,h,g,m=x.hasData(e)&&x._data(e);if(m&&(c=m.events)){t=(t||"").match(T)||[""],u=t.length;while(u--)if(s=rt.exec(t[u])||[],d=g=s[1],h=(s[2]||"").split(".").sort(),d){p=x.event.special[d]||{},d=(r?p.delegateType:p.bindType)||d,f=c[d]||[],s=s[2]&&RegExp("(^|\\.)"+h.join("\\.(?:.*\\.|)")+"(\\.|$)"),l=o=f.length;while(o--)a=f[o],!i&&g!==a.origType||n&&n.guid!==a.guid||s&&!s.test(a.namespace)||r&&r!==a.selector&&("**"!==r||!a.selector)||(f.splice(o,1),a.selector&&f.delegateCount--,p.remove&&p.remove.call(e,a));l&&!f.length&&(p.teardown&&p.teardown.call(e,h,m.handle)!==!1||x.removeEvent(e,d,m.handle),delete c[d])}else for(d in c)x.event.remove(e,d+t[u],n,r,!0);x.isEmptyObject(c)&&(delete m.handle,x._removeData(e,"events"))}},trigger:function(n,r,i,o){var s,l,u,c,p,f,d,h=[i||a],g=v.call(n,"type")?n.type:n,m=v.call(n,"namespace")?n.namespace.split("."):[];if(u=f=i=i||a,3!==i.nodeType&&8!==i.nodeType&&!nt.test(g+x.event.triggered)&&(g.indexOf(".")>=0&&(m=g.split("."),g=m.shift(),m.sort()),l=0>g.indexOf(":")&&"on"+g,n=n[x.expando]?n:new x.Event(g,"object"==typeof n&&n),n.isTrigger=o?2:3,n.namespace=m.join("."),n.namespace_re=n.namespace?RegExp("(^|\\.)"+m.join("\\.(?:.*\\.|)")+"(\\.|$)"):null,n.result=t,n.target||(n.target=i),r=null==r?[n]:x.makeArray(r,[n]),p=x.event.special[g]||{},o||!p.trigger||p.trigger.apply(i,r)!==!1)){if(!o&&!p.noBubble&&!x.isWindow(i)){for(c=p.delegateType||g,nt.test(c+g)||(u=u.parentNode);u;u=u.parentNode)h.push(u),f=u;f===(i.ownerDocument||a)&&h.push(f.defaultView||f.parentWindow||e)}d=0;while((u=h[d++])&&!n.isPropagationStopped())n.type=d>1?c:p.bindType||g,s=(x._data(u,"events")||{})[n.type]&&x._data(u,"handle"),s&&s.apply(u,r),s=l&&u[l],s&&x.acceptData(u)&&s.apply&&s.apply(u,r)===!1&&n.preventDefault();if(n.type=g,!o&&!n.isDefaultPrevented()&&(!p._default||p._default.apply(h.pop(),r)===!1)&&x.acceptData(i)&&l&&i[g]&&!x.isWindow(i)){f=i[l],f&&(i[l]=null),x.event.triggered=g;try{i[g]()}catch(y){}x.event.triggered=t,f&&(i[l]=f)}return n.result}},dispatch:function(e){e=x.event.fix(e);var n,r,i,o,a,s=[],l=g.call(arguments),u=(x._data(this,"events")||{})[e.type]||[],c=x.event.special[e.type]||{};if(l[0]=e,e.delegateTarget=this,!c.preDispatch||c.preDispatch.call(this,e)!==!1){s=x.event.handlers.call(this,e,u),n=0;while((o=s[n++])&&!e.isPropagationStopped()){e.currentTarget=o.elem,a=0;while((i=o.handlers[a++])&&!e.isImmediatePropagationStopped())(!e.namespace_re||e.namespace_re.test(i.namespace))&&(e.handleObj=i,e.data=i.data,r=((x.event.special[i.origType]||{}).handle||i.handler).apply(o.elem,l),r!==t&&(e.result=r)===!1&&(e.preventDefault(),e.stopPropagation()))}return c.postDispatch&&c.postDispatch.call(this,e),e.result}},handlers:function(e,n){var r,i,o,a,s=[],l=n.delegateCount,u=e.target;if(l&&u.nodeType&&(!e.button||"click"!==e.type))for(;u!=this;u=u.parentNode||this)if(1===u.nodeType&&(u.disabled!==!0||"click"!==e.type)){for(o=[],a=0;l>a;a++)i=n[a],r=i.selector+" ",o[r]===t&&(o[r]=i.needsContext?x(r,this).index(u)>=0:x.find(r,this,null,[u]).length),o[r]&&o.push(i);o.length&&s.push({elem:u,handlers:o})}return n.length>l&&s.push({elem:this,handlers:n.slice(l)}),s},fix:function(e){if(e[x.expando])return e;var t,n,r,i=e.type,o=e,s=this.fixHooks[i];s||(this.fixHooks[i]=s=tt.test(i)?this.mouseHooks:et.test(i)?this.keyHooks:{}),r=s.props?this.props.concat(s.props):this.props,e=new x.Event(o),t=r.length;while(t--)n=r[t],e[n]=o[n];return e.target||(e.target=o.srcElement||a),3===e.target.nodeType&&(e.target=e.target.parentNode),e.metaKey=!!e.metaKey,s.filter?s.filter(e,o):e},props:"altKey bubbles cancelable ctrlKey currentTarget eventPhase metaKey relatedTarget shiftKey target timeStamp view which".split(" "),fixHooks:{},keyHooks:{props:"char charCode key keyCode".split(" "),filter:function(e,t){return null==e.which&&(e.which=null!=t.charCode?t.charCode:t.keyCode),e}},mouseHooks:{props:"button buttons clientX clientY fromElement offsetX offsetY pageX pageY screenX screenY toElement".split(" "),filter:function(e,n){var r,i,o,s=n.button,l=n.fromElement;return null==e.pageX&&null!=n.clientX&&(i=e.target.ownerDocument||a,o=i.documentElement,r=i.body,e.pageX=n.clientX+(o&&o.scrollLeft||r&&r.scrollLeft||0)-(o&&o.clientLeft||r&&r.clientLeft||0),e.pageY=n.clientY+(o&&o.scrollTop||r&&r.scrollTop||0)-(o&&o.clientTop||r&&r.clientTop||0)),!e.relatedTarget&&l&&(e.relatedTarget=l===e.target?n.toElement:l),e.which||s===t||(e.which=1&s?1:2&s?3:4&s?2:0),e}},special:{load:{noBubble:!0},focus:{trigger:function(){if(this!==at()&&this.focus)try{return this.focus(),!1}catch(e){}},delegateType:"focusin"},blur:{trigger:function(){return this===at()&&this.blur?(this.blur(),!1):t},delegateType:"focusout"},click:{trigger:function(){return x.nodeName(this,"input")&&"checkbox"===this.type&&this.click?(this.click(),!1):t},_default:function(e){return x.nodeName(e.target,"a")}},beforeunload:{postDispatch:function(e){e.result!==t&&(e.originalEvent.returnValue=e.result)}}},simulate:function(e,t,n,r){var i=x.extend(new x.Event,n,{type:e,isSimulated:!0,originalEvent:{}});r?x.event.trigger(i,null,t):x.event.dispatch.call(t,i),i.isDefaultPrevented()&&n.preventDefault()}},x.removeEvent=a.removeEventListener?function(e,t,n){e.removeEventListener&&e.removeEventListener(t,n,!1)}:function(e,t,n){var r="on"+t;e.detachEvent&&(typeof e[r]===i&&(e[r]=null),e.detachEvent(r,n))},x.Event=function(e,n){return this instanceof x.Event?(e&&e.type?(this.originalEvent=e,this.type=e.type,this.isDefaultPrevented=e.defaultPrevented||e.returnValue===!1||e.getPreventDefault&&e.getPreventDefault()?it:ot):this.type=e,n&&x.extend(this,n),this.timeStamp=e&&e.timeStamp||x.now(),this[x.expando]=!0,t):new x.Event(e,n)},x.Event.prototype={isDefaultPrevented:ot,isPropagationStopped:ot,isImmediatePropagationStopped:ot,preventDefault:function(){var e=this.originalEvent;this.isDefaultPrevented=it,e&&(e.preventDefault?e.preventDefault():e.returnValue=!1)},stopPropagation:function(){var e=this.originalEvent;this.isPropagationStopped=it,e&&(e.stopPropagation&&e.stopPropagation(),e.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=it,this.stopPropagation()}},x.each({mouseenter:"mouseover",mouseleave:"mouseout"},function(e,t){x.event.special[e]={delegateType:t,bindType:t,handle:function(e){var n,r=this,i=e.relatedTarget,o=e.handleObj;return(!i||i!==r&&!x.contains(r,i))&&(e.type=o.origType,n=o.handler.apply(this,arguments),e.type=t),n}}}),x.support.submitBubbles||(x.event.special.submit={setup:function(){return x.nodeName(this,"form")?!1:(x.event.add(this,"click._submit keypress._submit",function(e){var n=e.target,r=x.nodeName(n,"input")||x.nodeName(n,"button")?n.form:t;r&&!x._data(r,"submitBubbles")&&(x.event.add(r,"submit._submit",function(e){e._submit_bubble=!0}),x._data(r,"submitBubbles",!0))}),t)},postDispatch:function(e){e._submit_bubble&&(delete e._submit_bubble,this.parentNode&&!e.isTrigger&&x.event.simulate("submit",this.parentNode,e,!0))},teardown:function(){return x.nodeName(this,"form")?!1:(x.event.remove(this,"._submit"),t)}}),x.support.changeBubbles||(x.event.special.change={setup:function(){return Z.test(this.nodeName)?(("checkbox"===this.type||"radio"===this.type)&&(x.event.add(this,"propertychange._change",function(e){"checked"===e.originalEvent.propertyName&&(this._just_changed=!0)}),x.event.add(this,"click._change",function(e){this._just_changed&&!e.isTrigger&&(this._just_changed=!1),x.event.simulate("change",this,e,!0)})),!1):(x.event.add(this,"beforeactivate._change",function(e){var t=e.target;Z.test(t.nodeName)&&!x._data(t,"changeBubbles")&&(x.event.add(t,"change._change",function(e){!this.parentNode||e.isSimulated||e.isTrigger||x.event.simulate("change",this.parentNode,e,!0)}),x._data(t,"changeBubbles",!0))}),t)},handle:function(e){var n=e.target;return this!==n||e.isSimulated||e.isTrigger||"radio"!==n.type&&"checkbox"!==n.type?e.handleObj.handler.apply(this,arguments):t},teardown:function(){return x.event.remove(this,"._change"),!Z.test(this.nodeName)}}),x.support.focusinBubbles||x.each({focus:"focusin",blur:"focusout"},function(e,t){var n=0,r=function(e){x.event.simulate(t,e.target,x.event.fix(e),!0)};x.event.special[t]={setup:function(){0===n++&&a.addEventListener(e,r,!0)},teardown:function(){0===--n&&a.removeEventListener(e,r,!0)}}}),x.fn.extend({on:function(e,n,r,i,o){var a,s;if("object"==typeof e){"string"!=typeof n&&(r=r||n,n=t);for(a in e)this.on(a,n,r,e[a],o);return this}if(null==r&&null==i?(i=n,r=n=t):null==i&&("string"==typeof n?(i=r,r=t):(i=r,r=n,n=t)),i===!1)i=ot;else if(!i)return this;return 1===o&&(s=i,i=function(e){return x().off(e),s.apply(this,arguments)},i.guid=s.guid||(s.guid=x.guid++)),this.each(function(){x.event.add(this,e,i,r,n)})},one:function(e,t,n,r){return this.on(e,t,n,r,1)},off:function(e,n,r){var i,o;if(e&&e.preventDefault&&e.handleObj)return i=e.handleObj,x(e.delegateTarget).off(i.namespace?i.origType+"."+i.namespace:i.origType,i.selector,i.handler),this;if("object"==typeof e){for(o in e)this.off(o,n,e[o]);return this}return(n===!1||"function"==typeof n)&&(r=n,n=t),r===!1&&(r=ot),this.each(function(){x.event.remove(this,e,r,n)})},trigger:function(e,t){return this.each(function(){x.event.trigger(e,t,this)})},triggerHandler:function(e,n){var r=this[0];return r?x.event.trigger(e,n,r,!0):t}});var st=/^.[^:#\[\.,]*$/,lt=/^(?:parents|prev(?:Until|All))/,ut=x.expr.match.needsContext,ct={children:!0,contents:!0,next:!0,prev:!0};x.fn.extend({find:function(e){var t,n=[],r=this,i=r.length;if("string"!=typeof e)return this.pushStack(x(e).filter(function(){for(t=0;i>t;t++)if(x.contains(r[t],this))return!0}));for(t=0;i>t;t++)x.find(e,r[t],n);return n=this.pushStack(i>1?x.unique(n):n),n.selector=this.selector?this.selector+" "+e:e,n},has:function(e){var t,n=x(e,this),r=n.length;return this.filter(function(){for(t=0;r>t;t++)if(x.contains(this,n[t]))return!0})},not:function(e){return this.pushStack(ft(this,e||[],!0))},filter:function(e){return this.pushStack(ft(this,e||[],!1))},is:function(e){return!!ft(this,"string"==typeof e&&ut.test(e)?x(e):e||[],!1).length},closest:function(e,t){var n,r=0,i=this.length,o=[],a=ut.test(e)||"string"!=typeof e?x(e,t||this.context):0;for(;i>r;r++)for(n=this[r];n&&n!==t;n=n.parentNode)if(11>n.nodeType&&(a?a.index(n)>-1:1===n.nodeType&&x.find.matchesSelector(n,e))){n=o.push(n);break}return this.pushStack(o.length>1?x.unique(o):o)},index:function(e){return e?"string"==typeof e?x.inArray(this[0],x(e)):x.inArray(e.jquery?e[0]:e,this):this[0]&&this[0].parentNode?this.first().prevAll().length:-1},add:function(e,t){var n="string"==typeof e?x(e,t):x.makeArray(e&&e.nodeType?[e]:e),r=x.merge(this.get(),n);return this.pushStack(x.unique(r))},addBack:function(e){return this.add(null==e?this.prevObject:this.prevObject.filter(e))}});function pt(e,t){do e=e[t];while(e&&1!==e.nodeType);return e}x.each({parent:function(e){var t=e.parentNode;return t&&11!==t.nodeType?t:null},parents:function(e){return x.dir(e,"parentNode")},parentsUntil:function(e,t,n){return x.dir(e,"parentNode",n)},next:function(e){return pt(e,"nextSibling")},prev:function(e){return pt(e,"previousSibling")},nextAll:function(e){return x.dir(e,"nextSibling")},prevAll:function(e){return x.dir(e,"previousSibling")},nextUntil:function(e,t,n){return x.dir(e,"nextSibling",n)},prevUntil:function(e,t,n){return x.dir(e,"previousSibling",n)},siblings:function(e){return x.sibling((e.parentNode||{}).firstChild,e)},children:function(e){return x.sibling(e.firstChild)},contents:function(e){return x.nodeName(e,"iframe")?e.contentDocument||e.contentWindow.document:x.merge([],e.childNodes)}},function(e,t){x.fn[e]=function(n,r){var i=x.map(this,t,n);return"Until"!==e.slice(-5)&&(r=n),r&&"string"==typeof r&&(i=x.filter(r,i)),this.length>1&&(ct[e]||(i=x.unique(i)),lt.test(e)&&(i=i.reverse())),this.pushStack(i)}}),x.extend({filter:function(e,t,n){var r=t[0];return n&&(e=":not("+e+")"),1===t.length&&1===r.nodeType?x.find.matchesSelector(r,e)?[r]:[]:x.find.matches(e,x.grep(t,function(e){return 1===e.nodeType}))},dir:function(e,n,r){var i=[],o=e[n];while(o&&9!==o.nodeType&&(r===t||1!==o.nodeType||!x(o).is(r)))1===o.nodeType&&i.push(o),o=o[n];return i},sibling:function(e,t){var n=[];for(;e;e=e.nextSibling)1===e.nodeType&&e!==t&&n.push(e);return n}});function ft(e,t,n){if(x.isFunction(t))return x.grep(e,function(e,r){return!!t.call(e,r,e)!==n});if(t.nodeType)return x.grep(e,function(e){return e===t!==n});if("string"==typeof t){if(st.test(t))return x.filter(t,e,n);t=x.filter(t,e)}return x.grep(e,function(e){return x.inArray(e,t)>=0!==n})}function dt(e){var t=ht.split("|"),n=e.createDocumentFragment();if(n.createElement)while(t.length)n.createElement(t.pop());return n}var ht="abbr|article|aside|audio|bdi|canvas|data|datalist|details|figcaption|figure|footer|header|hgroup|mark|meter|nav|output|progress|section|summary|time|video",gt=/ jQuery\d+="(?:null|\d+)"/g,mt=RegExp("<(?:"+ht+")[\\s/>]","i"),yt=/^\s+/,vt=/<(?!area|br|col|embed|hr|img|input|link|meta|param)(([\w:]+)[^>]*)\/>/gi,bt=/<([\w:]+)/,xt=/\s*$/g,At={option:[1,""],legend:[1,"
    ","
    "],area:[1,"",""],param:[1,"",""],thead:[1,"","
    "],tr:[2,"","
    "],col:[2,"","
    "],td:[3,"","
    "],_default:x.support.htmlSerialize?[0,"",""]:[1,"X
    ","
    "]},jt=dt(a),Dt=jt.appendChild(a.createElement("div"));At.optgroup=At.option,At.tbody=At.tfoot=At.colgroup=At.caption=At.thead,At.th=At.td,x.fn.extend({text:function(e){return x.access(this,function(e){return e===t?x.text(this):this.empty().append((this[0]&&this[0].ownerDocument||a).createTextNode(e))},null,e,arguments.length)},append:function(){return this.domManip(arguments,function(e){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var t=Lt(this,e);t.appendChild(e)}})},prepend:function(){return this.domManip(arguments,function(e){if(1===this.nodeType||11===this.nodeType||9===this.nodeType){var t=Lt(this,e);t.insertBefore(e,t.firstChild)}})},before:function(){return this.domManip(arguments,function(e){this.parentNode&&this.parentNode.insertBefore(e,this)})},after:function(){return this.domManip(arguments,function(e){this.parentNode&&this.parentNode.insertBefore(e,this.nextSibling)})},remove:function(e,t){var n,r=e?x.filter(e,this):this,i=0;for(;null!=(n=r[i]);i++)t||1!==n.nodeType||x.cleanData(Ft(n)),n.parentNode&&(t&&x.contains(n.ownerDocument,n)&&_t(Ft(n,"script")),n.parentNode.removeChild(n));return this},empty:function(){var e,t=0;for(;null!=(e=this[t]);t++){1===e.nodeType&&x.cleanData(Ft(e,!1));while(e.firstChild)e.removeChild(e.firstChild);e.options&&x.nodeName(e,"select")&&(e.options.length=0)}return this},clone:function(e,t){return e=null==e?!1:e,t=null==t?e:t,this.map(function(){return x.clone(this,e,t)})},html:function(e){return x.access(this,function(e){var n=this[0]||{},r=0,i=this.length;if(e===t)return 1===n.nodeType?n.innerHTML.replace(gt,""):t;if(!("string"!=typeof e||Tt.test(e)||!x.support.htmlSerialize&&mt.test(e)||!x.support.leadingWhitespace&&yt.test(e)||At[(bt.exec(e)||["",""])[1].toLowerCase()])){e=e.replace(vt,"<$1>");try{for(;i>r;r++)n=this[r]||{},1===n.nodeType&&(x.cleanData(Ft(n,!1)),n.innerHTML=e);n=0}catch(o){}}n&&this.empty().append(e)},null,e,arguments.length)},replaceWith:function(){var e=x.map(this,function(e){return[e.nextSibling,e.parentNode]}),t=0;return this.domManip(arguments,function(n){var r=e[t++],i=e[t++];i&&(r&&r.parentNode!==i&&(r=this.nextSibling),x(this).remove(),i.insertBefore(n,r))},!0),t?this:this.remove()},detach:function(e){return this.remove(e,!0)},domManip:function(e,t,n){e=d.apply([],e);var r,i,o,a,s,l,u=0,c=this.length,p=this,f=c-1,h=e[0],g=x.isFunction(h);if(g||!(1>=c||"string"!=typeof h||x.support.checkClone)&&Nt.test(h))return this.each(function(r){var i=p.eq(r);g&&(e[0]=h.call(this,r,i.html())),i.domManip(e,t,n)});if(c&&(l=x.buildFragment(e,this[0].ownerDocument,!1,!n&&this),r=l.firstChild,1===l.childNodes.length&&(l=r),r)){for(a=x.map(Ft(l,"script"),Ht),o=a.length;c>u;u++)i=l,u!==f&&(i=x.clone(i,!0,!0),o&&x.merge(a,Ft(i,"script"))),t.call(this[u],i,u);if(o)for(s=a[a.length-1].ownerDocument,x.map(a,qt),u=0;o>u;u++)i=a[u],kt.test(i.type||"")&&!x._data(i,"globalEval")&&x.contains(s,i)&&(i.src?x._evalUrl(i.src):x.globalEval((i.text||i.textContent||i.innerHTML||"").replace(St,"")));l=r=null}return this}});function Lt(e,t){return x.nodeName(e,"table")&&x.nodeName(1===t.nodeType?t:t.firstChild,"tr")?e.getElementsByTagName("tbody")[0]||e.appendChild(e.ownerDocument.createElement("tbody")):e}function Ht(e){return e.type=(null!==x.find.attr(e,"type"))+"/"+e.type,e}function qt(e){var t=Et.exec(e.type);return t?e.type=t[1]:e.removeAttribute("type"),e}function _t(e,t){var n,r=0;for(;null!=(n=e[r]);r++)x._data(n,"globalEval",!t||x._data(t[r],"globalEval"))}function Mt(e,t){if(1===t.nodeType&&x.hasData(e)){var n,r,i,o=x._data(e),a=x._data(t,o),s=o.events;if(s){delete a.handle,a.events={};for(n in s)for(r=0,i=s[n].length;i>r;r++)x.event.add(t,n,s[n][r])}a.data&&(a.data=x.extend({},a.data))}}function Ot(e,t){var n,r,i;if(1===t.nodeType){if(n=t.nodeName.toLowerCase(),!x.support.noCloneEvent&&t[x.expando]){i=x._data(t);for(r in i.events)x.removeEvent(t,r,i.handle);t.removeAttribute(x.expando)}"script"===n&&t.text!==e.text?(Ht(t).text=e.text,qt(t)):"object"===n?(t.parentNode&&(t.outerHTML=e.outerHTML),x.support.html5Clone&&e.innerHTML&&!x.trim(t.innerHTML)&&(t.innerHTML=e.innerHTML)):"input"===n&&Ct.test(e.type)?(t.defaultChecked=t.checked=e.checked,t.value!==e.value&&(t.value=e.value)):"option"===n?t.defaultSelected=t.selected=e.defaultSelected:("input"===n||"textarea"===n)&&(t.defaultValue=e.defaultValue)}}x.each({appendTo:"append",prependTo:"prepend",insertBefore:"before",insertAfter:"after",replaceAll:"replaceWith"},function(e,t){x.fn[e]=function(e){var n,r=0,i=[],o=x(e),a=o.length-1;for(;a>=r;r++)n=r===a?this:this.clone(!0),x(o[r])[t](n),h.apply(i,n.get());return this.pushStack(i)}});function Ft(e,n){var r,o,a=0,s=typeof e.getElementsByTagName!==i?e.getElementsByTagName(n||"*"):typeof e.querySelectorAll!==i?e.querySelectorAll(n||"*"):t;if(!s)for(s=[],r=e.childNodes||e;null!=(o=r[a]);a++)!n||x.nodeName(o,n)?s.push(o):x.merge(s,Ft(o,n));return n===t||n&&x.nodeName(e,n)?x.merge([e],s):s}function Bt(e){Ct.test(e.type)&&(e.defaultChecked=e.checked)}x.extend({clone:function(e,t,n){var r,i,o,a,s,l=x.contains(e.ownerDocument,e);if(x.support.html5Clone||x.isXMLDoc(e)||!mt.test("<"+e.nodeName+">")?o=e.cloneNode(!0):(Dt.innerHTML=e.outerHTML,Dt.removeChild(o=Dt.firstChild)),!(x.support.noCloneEvent&&x.support.noCloneChecked||1!==e.nodeType&&11!==e.nodeType||x.isXMLDoc(e)))for(r=Ft(o),s=Ft(e),a=0;null!=(i=s[a]);++a)r[a]&&Ot(i,r[a]);if(t)if(n)for(s=s||Ft(e),r=r||Ft(o),a=0;null!=(i=s[a]);a++)Mt(i,r[a]);else Mt(e,o);return r=Ft(o,"script"),r.length>0&&_t(r,!l&&Ft(e,"script")),r=s=i=null,o},buildFragment:function(e,t,n,r){var i,o,a,s,l,u,c,p=e.length,f=dt(t),d=[],h=0;for(;p>h;h++)if(o=e[h],o||0===o)if("object"===x.type(o))x.merge(d,o.nodeType?[o]:o);else if(wt.test(o)){s=s||f.appendChild(t.createElement("div")),l=(bt.exec(o)||["",""])[1].toLowerCase(),c=At[l]||At._default,s.innerHTML=c[1]+o.replace(vt,"<$1>")+c[2],i=c[0];while(i--)s=s.lastChild;if(!x.support.leadingWhitespace&&yt.test(o)&&d.push(t.createTextNode(yt.exec(o)[0])),!x.support.tbody){o="table"!==l||xt.test(o)?""!==c[1]||xt.test(o)?0:s:s.firstChild,i=o&&o.childNodes.length;while(i--)x.nodeName(u=o.childNodes[i],"tbody")&&!u.childNodes.length&&o.removeChild(u)}x.merge(d,s.childNodes),s.textContent="";while(s.firstChild)s.removeChild(s.firstChild);s=f.lastChild}else d.push(t.createTextNode(o));s&&f.removeChild(s),x.support.appendChecked||x.grep(Ft(d,"input"),Bt),h=0;while(o=d[h++])if((!r||-1===x.inArray(o,r))&&(a=x.contains(o.ownerDocument,o),s=Ft(f.appendChild(o),"script"),a&&_t(s),n)){i=0;while(o=s[i++])kt.test(o.type||"")&&n.push(o)}return s=null,f},cleanData:function(e,t){var n,r,o,a,s=0,l=x.expando,u=x.cache,c=x.support.deleteExpando,f=x.event.special;for(;null!=(n=e[s]);s++)if((t||x.acceptData(n))&&(o=n[l],a=o&&u[o])){if(a.events)for(r in a.events)f[r]?x.event.remove(n,r):x.removeEvent(n,r,a.handle); +u[o]&&(delete u[o],c?delete n[l]:typeof n.removeAttribute!==i?n.removeAttribute(l):n[l]=null,p.push(o))}},_evalUrl:function(e){return x.ajax({url:e,type:"GET",dataType:"script",async:!1,global:!1,"throws":!0})}}),x.fn.extend({wrapAll:function(e){if(x.isFunction(e))return this.each(function(t){x(this).wrapAll(e.call(this,t))});if(this[0]){var t=x(e,this[0].ownerDocument).eq(0).clone(!0);this[0].parentNode&&t.insertBefore(this[0]),t.map(function(){var e=this;while(e.firstChild&&1===e.firstChild.nodeType)e=e.firstChild;return e}).append(this)}return this},wrapInner:function(e){return x.isFunction(e)?this.each(function(t){x(this).wrapInner(e.call(this,t))}):this.each(function(){var t=x(this),n=t.contents();n.length?n.wrapAll(e):t.append(e)})},wrap:function(e){var t=x.isFunction(e);return this.each(function(n){x(this).wrapAll(t?e.call(this,n):e)})},unwrap:function(){return this.parent().each(function(){x.nodeName(this,"body")||x(this).replaceWith(this.childNodes)}).end()}});var Pt,Rt,Wt,$t=/alpha\([^)]*\)/i,It=/opacity\s*=\s*([^)]*)/,zt=/^(top|right|bottom|left)$/,Xt=/^(none|table(?!-c[ea]).+)/,Ut=/^margin/,Vt=RegExp("^("+w+")(.*)$","i"),Yt=RegExp("^("+w+")(?!px)[a-z%]+$","i"),Jt=RegExp("^([+-])=("+w+")","i"),Gt={BODY:"block"},Qt={position:"absolute",visibility:"hidden",display:"block"},Kt={letterSpacing:0,fontWeight:400},Zt=["Top","Right","Bottom","Left"],en=["Webkit","O","Moz","ms"];function tn(e,t){if(t in e)return t;var n=t.charAt(0).toUpperCase()+t.slice(1),r=t,i=en.length;while(i--)if(t=en[i]+n,t in e)return t;return r}function nn(e,t){return e=t||e,"none"===x.css(e,"display")||!x.contains(e.ownerDocument,e)}function rn(e,t){var n,r,i,o=[],a=0,s=e.length;for(;s>a;a++)r=e[a],r.style&&(o[a]=x._data(r,"olddisplay"),n=r.style.display,t?(o[a]||"none"!==n||(r.style.display=""),""===r.style.display&&nn(r)&&(o[a]=x._data(r,"olddisplay",ln(r.nodeName)))):o[a]||(i=nn(r),(n&&"none"!==n||!i)&&x._data(r,"olddisplay",i?n:x.css(r,"display"))));for(a=0;s>a;a++)r=e[a],r.style&&(t&&"none"!==r.style.display&&""!==r.style.display||(r.style.display=t?o[a]||"":"none"));return e}x.fn.extend({css:function(e,n){return x.access(this,function(e,n,r){var i,o,a={},s=0;if(x.isArray(n)){for(o=Rt(e),i=n.length;i>s;s++)a[n[s]]=x.css(e,n[s],!1,o);return a}return r!==t?x.style(e,n,r):x.css(e,n)},e,n,arguments.length>1)},show:function(){return rn(this,!0)},hide:function(){return rn(this)},toggle:function(e){return"boolean"==typeof e?e?this.show():this.hide():this.each(function(){nn(this)?x(this).show():x(this).hide()})}}),x.extend({cssHooks:{opacity:{get:function(e,t){if(t){var n=Wt(e,"opacity");return""===n?"1":n}}}},cssNumber:{columnCount:!0,fillOpacity:!0,fontWeight:!0,lineHeight:!0,opacity:!0,order:!0,orphans:!0,widows:!0,zIndex:!0,zoom:!0},cssProps:{"float":x.support.cssFloat?"cssFloat":"styleFloat"},style:function(e,n,r,i){if(e&&3!==e.nodeType&&8!==e.nodeType&&e.style){var o,a,s,l=x.camelCase(n),u=e.style;if(n=x.cssProps[l]||(x.cssProps[l]=tn(u,l)),s=x.cssHooks[n]||x.cssHooks[l],r===t)return s&&"get"in s&&(o=s.get(e,!1,i))!==t?o:u[n];if(a=typeof r,"string"===a&&(o=Jt.exec(r))&&(r=(o[1]+1)*o[2]+parseFloat(x.css(e,n)),a="number"),!(null==r||"number"===a&&isNaN(r)||("number"!==a||x.cssNumber[l]||(r+="px"),x.support.clearCloneStyle||""!==r||0!==n.indexOf("background")||(u[n]="inherit"),s&&"set"in s&&(r=s.set(e,r,i))===t)))try{u[n]=r}catch(c){}}},css:function(e,n,r,i){var o,a,s,l=x.camelCase(n);return n=x.cssProps[l]||(x.cssProps[l]=tn(e.style,l)),s=x.cssHooks[n]||x.cssHooks[l],s&&"get"in s&&(a=s.get(e,!0,r)),a===t&&(a=Wt(e,n,i)),"normal"===a&&n in Kt&&(a=Kt[n]),""===r||r?(o=parseFloat(a),r===!0||x.isNumeric(o)?o||0:a):a}}),e.getComputedStyle?(Rt=function(t){return e.getComputedStyle(t,null)},Wt=function(e,n,r){var i,o,a,s=r||Rt(e),l=s?s.getPropertyValue(n)||s[n]:t,u=e.style;return s&&(""!==l||x.contains(e.ownerDocument,e)||(l=x.style(e,n)),Yt.test(l)&&Ut.test(n)&&(i=u.width,o=u.minWidth,a=u.maxWidth,u.minWidth=u.maxWidth=u.width=l,l=s.width,u.width=i,u.minWidth=o,u.maxWidth=a)),l}):a.documentElement.currentStyle&&(Rt=function(e){return e.currentStyle},Wt=function(e,n,r){var i,o,a,s=r||Rt(e),l=s?s[n]:t,u=e.style;return null==l&&u&&u[n]&&(l=u[n]),Yt.test(l)&&!zt.test(n)&&(i=u.left,o=e.runtimeStyle,a=o&&o.left,a&&(o.left=e.currentStyle.left),u.left="fontSize"===n?"1em":l,l=u.pixelLeft+"px",u.left=i,a&&(o.left=a)),""===l?"auto":l});function on(e,t,n){var r=Vt.exec(t);return r?Math.max(0,r[1]-(n||0))+(r[2]||"px"):t}function an(e,t,n,r,i){var o=n===(r?"border":"content")?4:"width"===t?1:0,a=0;for(;4>o;o+=2)"margin"===n&&(a+=x.css(e,n+Zt[o],!0,i)),r?("content"===n&&(a-=x.css(e,"padding"+Zt[o],!0,i)),"margin"!==n&&(a-=x.css(e,"border"+Zt[o]+"Width",!0,i))):(a+=x.css(e,"padding"+Zt[o],!0,i),"padding"!==n&&(a+=x.css(e,"border"+Zt[o]+"Width",!0,i)));return a}function sn(e,t,n){var r=!0,i="width"===t?e.offsetWidth:e.offsetHeight,o=Rt(e),a=x.support.boxSizing&&"border-box"===x.css(e,"boxSizing",!1,o);if(0>=i||null==i){if(i=Wt(e,t,o),(0>i||null==i)&&(i=e.style[t]),Yt.test(i))return i;r=a&&(x.support.boxSizingReliable||i===e.style[t]),i=parseFloat(i)||0}return i+an(e,t,n||(a?"border":"content"),r,o)+"px"}function ln(e){var t=a,n=Gt[e];return n||(n=un(e,t),"none"!==n&&n||(Pt=(Pt||x("