-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathcirc_kuipertest.m
113 lines (95 loc) · 3.06 KB
/
circ_kuipertest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
function [pval, k, K] = circ_kuipertest(alpha1, alpha2, res, vis_on)
% [pval, k, K] = circ_kuipertest(alpha1, alpha2, res, vis_on)
%
% The Kuiper two-sample test tests whether the two samples differ
% significantly.The difference can be in any property, such as mean
% location and dispersion. It is a circular analogue of the
% Kolmogorov-Smirnov test.
%
% H0: The two distributions are identical.
% HA: The two distributions are different.
%
% Input:
% alpha1 fist sample (in radians)
% alpha2 second sample (in radians)
% res resolution at which the cdf is evaluated
% vis_on display graph
%
% Output:
% pval p-value; the smallest of .10, .05, .02, .01, .005, .002,
% .001, for which the test statistic is still higher
% than the respective critical value. this is due to
% the use of tabulated values. if p>.1, pval is set to 1.
% k test statistic
% K critical value
%
% References:
% Batschelet, 1980, p. 112
%
% Circular Statistics Toolbox for Matlab
% Update 2012
% By Marc J. Velasco and Philipp Berens, 2009
if nargin < 3
res = 100;
end
if nargin < 4
vis_on = 0;
end
n = length(alpha1(:));
m = length(alpha2(:));
% create cdfs of both samples
[phis1, cdf1, phiplot1, cdfplot1] = circ_samplecdf(alpha1, res);
[foo, cdf2, phiplot2, cdfplot2] = circ_samplecdf(alpha2, res); %#ok<ASGLU>
% maximal difference between sample cdfs
[dplus, gdpi] = max([0 cdf1-cdf2]);
[dminus, gdmi] = max([0 cdf2-cdf1]);
% calculate k-statistic
k = n * m * (dplus + dminus);
% find p-value
[pval, K] = kuiperlookup(min(n,m),k/sqrt(n*m*(n+m)));
K = K * sqrt(n*m*(n+m));
% visualize
if vis_on
figure
plot(phiplot1, cdfplot1, 'b', phiplot2, cdfplot2, 'r');
hold on
plot([phis1(gdpi-1), phis1(gdpi-1)], [cdf1(gdpi-1) cdf2(gdpi-1)], 'o:g');
plot([phis1(gdmi-1), phis1(gdmi-1)], [cdf1(gdmi-1) cdf2(gdmi-1)], 'o:g');
hold off
set(gca, 'XLim', [0, 2*pi]);
set(gca, 'YLim', [0, 1.1]);
xlabel('Circular Location')
ylabel('Sample CDF')
title('CircStat: Kuiper test')
h = legend('Sample 1', 'Sample 2', 'Location', 'Southeast');
set(h,'box','off')
set(gca, 'XTick', pi*(0:.25:2))
set(gca, 'XTickLabel', {'0', '', '', '', 'pi', '', '', '', '2pi'})
end
end
function [p, K] = kuiperlookup(n, k)
load kuipertable.mat;
alpha = [.10, .05, .02, .01, .005, .002, .001];
nn = ktable(:,1); %#ok<NODEF>
% find correct row of the table
[easy, row] = ismember(n, nn);
if ~easy
% find closest value if no entry is present)
row = length(nn) - sum(n<nn);
if row == 0
error('N too small.');
else
warning('CIRCSTAT:circ_kuipertest:nNotFound', ...
'N=%d not found in table, using closest N=%d present.',n,nn(row)) %#ok<WNTAG>
end
end
% find minimal p-value and test-statistic
idx = find(ktable(row,2:end)<k,1,'last');
if ~isempty(idx)
p = alpha(idx);
else
p = 1;
end
K = ktable(row,idx+1);
end