-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathcirc_vmrnd.m
82 lines (67 loc) · 1.59 KB
/
circ_vmrnd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function alpha = circ_vmrnd(theta, kappa, n)
%
% alpha = circ_vmrnd(theta, kappa, n)
% Simulates n random angles from a von Mises distribution, with preferred
% direction theta and concentration parameter kappa.
%
% Input:
% [theta preferred direction, default is 0]
% [kappa width, default is 1]
% [n number of samples, default is 10]
%
% If n is a vector with two entries (e.g. [2 10]), the function creates
% a matrix output with the respective dimensionality.
%
% Output:
% alpha samples from von Mises distribution
%
%
% References:
% Statistical analysis of circular data, Fisher, sec. 3.3.6, p. 49
%
% Circular Statistics Toolbox for Matlab
% By Philipp Berens and Marc J. Velasco, 2009
% default parameter
if nargin < 3
n = 10;
end
if nargin < 2
kappa = 1;
end
if nargin < 1
theta = 0;
end
if numel(n) > 2
error('n must be a scalar or two-entry vector!')
elseif numel(n) == 2
m = n;
n = n(1) * n(2);
end
% if kappa is small, treat as uniform distribution
if kappa < 1e-6
alpha = 2*pi*rand(n,1)-pi;
return
end
% other cases
a = 1 + sqrt((1+4*kappa.^2));
b = (a - sqrt(2*a))/(2*kappa);
r = (1 + b^2)/(2*b);
alpha = zeros(n,1);
for j = 1:n
while true
u = rand(3,1);
z = cos(pi*u(1));
f = (1+r*z)/(r+z);
c = kappa*(r-f);
if u(2) < c * (2-c) || ~(log(c)-log(u(2)) + 1 -c < 0)
break
end
end
alpha(j) = theta + sign(u(3) - 0.5) * acos(f);
alpha(j) = angle(exp(1i*alpha(j)));
end
if exist('m','var')
alpha = reshape(alpha,m(1),m(2));
end
end