-
Notifications
You must be signed in to change notification settings - Fork 24
/
bitcoin-public-from-private.py
192 lines (159 loc) · 5.78 KB
/
bitcoin-public-from-private.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python
# (Python 2 & python 3 compatible)
# Calculate public (x, y) bitcoin key from private bitcoin key (secret)
# by circulosmeos //github.com/circulosmeos/bitcoin-in-tiny-pieces
#
# modified from:
# //bitcoin.stackexchange.com/questions/25024/how-do-you-get-a-bitcoin-public-key-from-a-private-key/29880#25039
#
import sys
import fileinput
from re import match
VERBOSE = 0 # 0 (None), 1, 2
class CurveFp( object ):
def __init__( self, p, a, b ):
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
def __init__( self, curve, x, y, order = None ):
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __add__( self, other ):
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
def leftmost_bit( x ):
assert x > 0
result = 1
while result <= x: result = 2 * result
return result / 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = int(leftmost_bit( e3 ) / 2)
result = self
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
i = int(i / 2)
return result
def __rmul__( self, other ):
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
if self == INFINITY:
return INFINITY
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
INFINITY = Point( None, None, None )
def inverse_mod( a, m ):
if a < 0 or m <= a: a = a % m
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
assert d == 1
if ud > 0: return ud
else: return ud + m
# secp256k1
_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
_b = 0x0000000000000000000000000000000000000000000000000000000000000007
_a = 0x0000000000000000000000000000000000000000000000000000000000000000
_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
class Public_key( object ):
def __init__( self, generator, point ):
self.curve = generator.curve()
self.generator = generator
self.point = point
n = generator.order()
if not n:
raise RuntimeError( "Generator point must have order." )
if not n * point == INFINITY:
raise RuntimeError( "Generator point order is bad." )
if ( (point.x() is None or point.y() is None) or
point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y() ):
raise RuntimeError( "Generator point has x or y out of range." )
curve_256 = CurveFp( _p, _a, _b )
generator_256 = Point( curve_256, _Gx, _Gy, _r )
g = generator_256
if __name__ == "__main__":
if (VERBOSE == 2): print ('='*73)
### set privkey
secret = 0x0
# try to read parameters or stdin if they exist (in this order)
# read parameter from cmdline
if ( len(sys.argv) >= 2 ):
secret = sys.argv[1]
else:
# tries to read stdin
try:
for secret in fileinput.input('-'):
break
except:
pass
# check for secret correcteness
m = match(r' *(?:0x)?([a-fA-F0-9]{1,64})L?', secret)
if ( m is not None ):
secret = int( m.group(1), 16)
else:
print("\n./bitcoin-public-from-private [hex private key]\n")
exit(1)
# print (privkey)
if (VERBOSE >= 1): print ('secret = ' + "{0:0{1}x}".format( secret,64 ))
# generate pubkey
pubkey = Public_key( g, g * secret )
# print (pubkey)
BREAK_LINE = ''
if (VERBOSE >= 1):
sys.stdout.write('pubkey = ')
if (VERBOSE == 2): BREAK_LINE = "\n\t"
print ("{0:0{1}x}".format( pubkey.point.x(),64 ) + BREAK_LINE + " {0:0{1}x}".format( pubkey.point.y(),64 ))
if (VERBOSE == 2): print ('='*73)