Skip to content

Latest commit

 

History

History
36 lines (30 loc) · 3.59 KB

README.md

File metadata and controls

36 lines (30 loc) · 3.59 KB

FoveaBox: Beyond Anchor-based Object Detector

FoveaBox is an accurate, flexible and completely anchor-free object detection system for object detection framework, as presented in our paper https://arxiv.org/abs/1904.03797: Different from previous anchor-based methods, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object.

Main Results

Results on R50/101-FPN

Backbone Style align ms-train Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP Download
R-50 pytorch N N 1x 5.7 - 36.5 model
R-50 pytorch N N 2x - - 36.9 model
R-50 pytorch Y N 2x - - 37.9 model
R-50 pytorch Y Y 2x - - 40.1 model
R-101 pytorch N N 1x 9.4 - 38.5 model
R-101 pytorch N N 2x - - 38.5 model
R-101 pytorch Y N 2x - - 39.4 model
R-101 pytorch Y Y 2x - - 41.9 model

[1] 1x and 2x mean the model is trained for 12 and 24 epochs, respectively.
[2] Align means utilizing deformable convolution to align the cls branch.
[3] All results are obtained with a single model and without any test time data augmentation.
[4] We use 4 NVIDIA Tesla V100 GPUs for training.

Any pull requests or issues are welcome.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@article{kong2019foveabox,
  title={FoveaBox: Beyond Anchor-based Object Detector},
  author={Kong, Tao and Sun, Fuchun and Liu, Huaping and Jiang, Yuning and Shi, Jianbo},
  journal={arXiv preprint arXiv:1904.03797},
  year={2019}
}