-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpheno_tutorial_live.R
112 lines (84 loc) · 3.35 KB
/
pheno_tutorial_live.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
library(neonUtilities)
library(dplyr)
library(ggplot2)
options(stringsAsFactors = F)
phe <- loadByProduct(dpID='DP1.10055.001', site=c('BLAN','SCBI','SERC'),
startdate='2017-01', enddate='2019-12',
check.size=F)
ind <- phe$phe_perindividual
status <- phe$phe_statusintensity
View(ind)
View(status)
# clean up the data
ind_noUID <- select(ind, -(uid))
status_noUID <- select(status, -(uid))
ind_noD <- distinct(ind_noUID)
status_noD <- distinct(status_noUID)
intersect(names(status_noD), names(ind_noD))
status_noD <- rename(status_noD, dateStat=date,
editedDateStat=editedDate,
measuredByStat=measuredBy,
recordedByStat=recordedBy,
samplingProtocolVersionStat=samplingProtocolVersion,
remarksStat=remarks,
dataQFStat=dataQF,
publicationDateStat=publicationDate)
# keep only the most recently edited record for each individual
ind_last <- ind_noD %>%
group_by(individualID) %>%
filter(editedDate==max(editedDate))
ind_lastnoD <- ind_last %>%
group_by(editedDate, individualID) %>%
filter(row_number()==1)
phe_ind <- left_join(status_noD, ind_lastnoD)
phe_1st <- filter(phe_ind, siteID %in% 'SCBI')
unique(phe_1st$taxonID)
unique(phe_1st$scientificName)
phe_1sp <- filter(phe_1st, taxonID=='LITU')
unique(phe_1sp$phenophaseName)
phe_1sp <- filter(phe_1sp, phenophaseName %in% 'Leaves')
phe_1spPrimary <- filter(phe_1sp, subtypeSpecification=='primary')
inStat <- phe_1spPrimary %>%
group_by(dateStat, phenophaseStatus) %>%
summarise(countYes = n_distinct(individualID))
sampSize <- phe_1spPrimary %>%
group_by(dateStat) %>%
summarise(numInd = n_distinct(individualID))
inStat <- full_join(sampSize, inStat, by='dateStat')
inStat_T <- filter(inStat, phenophaseStatus=='yes')
View(inStat_T)
ggplot(inStat_T, aes(dateStat, countYes)) +
geom_bar(stat='identity', na.rm=T)
# calculate a % in leaf
inStat_T$percent <- ((inStat_T$countYes)/inStat_T$numInd.x)*100
# trim to just 2018 data
phe_1sp_2018 <- filter(inStat_T, dateStat >= "2018-01-01" &
dateStat <= "2018-12-31")
View(phe_1sp_2018)
# now get temperature data for comparison
saat <- loadByProduct(dpID='DP1.00002.001', site='SCBI',
startdate='2018-01', enddate='2018-12',
timeIndex=30, check.size=F)
list2env(saat, .GlobalEnv)
ggplot(data=SAAT_30min, aes(startDateTime, tempSingleMean)) +
geom_point()
SAAT_30minC <- filter(SAAT_30min, SAAT_30min$finalQF==0)
ggplot(data=SAAT_30minC, aes(startDateTime, tempSingleMean)) +
geom_point()
head(SAAT_30minC$startDateTime)
SAAT_30minC$Date <- as.Date(SAAT_30minC$startDateTime)
head(SAAT_30minC$Date)
temp_day <- SAAT_30minC %>%
group_by(Date) %>%
distinct(Date, .keep_all = T) %>%
mutate(dayMax = max(tempSingleMean))
ggplot(data=temp_day, aes(Date, dayMax)) +
geom_point()
# merge phenology and temperature data - first need to trim to matching days
temp_day_filt <- filter(temp_day, Date >= min(phe_1sp_2018$dateStat) &
Date <= max(phe_1sp_2018$dateStat))
tempPlot_dayMaxFiltered <- ggplot(temp_day_filt, aes(Date, dayMax)) +
geom_point()
phenoPlot <- ggplot(phe_1sp_2018, aes(dateStat, countYes)) +
geom_bar(stat='identity', na.rm=T)
grid.arrange(phenoPlot, tempPlot_dayMaxFiltered)