-
Notifications
You must be signed in to change notification settings - Fork 172
/
Copy pathapp_benchmark_float.cpp
123 lines (99 loc) · 3.94 KB
/
app_benchmark_float.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
///////////////////////////////////////////////////////////////////////////////
// Copyright Christopher Kormanyos 2010 - 2020.
// Distributed under the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include <app/benchmark/app_benchmark.h>
#if (defined(APP_BENCHMARK_TYPE) && (APP_BENCHMARK_TYPE == APP_BENCHMARK_TYPE_FLOAT))
#include <app/benchmark/app_benchmark_detail.h>
#include <math/constants/constants.h>
#include <math/functions/math_functions_bessel.h>
#include <math/functions/math_functions_hypergeometric.h>
#include <math/functions/math_functions_legendre.h>
namespace
{
constexpr float app_benchmark_tolerance = 1.0E-5F * 20.0F;
}
bool app::benchmark::run_float()
{
static std::uint_fast8_t app_benchmark_index;
bool app_benchmark_result_is_ok = true;
if(app_benchmark_index == 0U)
{
// Test the value of a Bessel function.
// Here is a control value from Wolfram Alpha.
// N[BesselJ[11/9, EulerGamma], 40]
// 0.1890533651853886085356717332711858771597
constexpr float v = 11.0F / 9.0F;
const float app_benchmark_result_bessel =
math::functions::cyl_bessel_j(v, math::constants::euler<float>());
app_benchmark_result_is_ok &= detail::is_close_fraction(0.1890533652F,
app_benchmark_result_bessel,
app_benchmark_tolerance);
}
else if(app_benchmark_index == 1U)
{
// Test the value of a hypergeometric function.
// Here is a control value from Wolfram Alpha.
// N[HypergeometricPFQ[3/{7, 8, 9, 10}, 7/{13, 14, 15, 16, 17}, Log[2]], 40]
// 1.583596313998374915091256357139915173598
constexpr std::array<float, 4U> ap =
{{
3.0F / 7.0F,
3.0F / 8.0F,
3.0F / 9.0F,
3.0F / 10.0F
}};
constexpr std::array<float, 5U> bq =
{{
7.0F / 13.0F,
7.0F / 14.0F,
7.0F / 15.0F,
7.0F / 16.0F,
7.0F / 17.0F
}};
const float app_benchmark_result_hypergeometric =
math::functions::hypergeometric_pfq(ap.cbegin(),
ap.cend(),
bq.cbegin(),
bq.cend(),
math::constants::ln_two<float>());
app_benchmark_result_is_ok &= detail::is_close_fraction(1.5835963140F,
app_benchmark_result_hypergeometric,
app_benchmark_tolerance);
}
else if(app_benchmark_index == 2U)
{
// Test the value of a Legendre function of the first kind.
// Here is a control value from Wolfram Alpha.
// N[LegendreP[1/11, 14/19, 2/7], 40]
// 0.2937838815278435137954432141091105343408
constexpr float v = 1.0F / 11.0F;
constexpr float u = 14.0F / 19.0F;
constexpr float x = 2.0F / 7.0F;
const float app_benchmark_result_legendre = math::functions::legendre_p(v, u, x);
app_benchmark_result_is_ok &= detail::is_close_fraction(0.2937838815F,
app_benchmark_result_legendre,
app_benchmark_tolerance);
}
++app_benchmark_index;
if(app_benchmark_index == 3U)
{
app_benchmark_index = 0U;
}
return app_benchmark_result_is_ok;
}
#if defined(APP_BENCHMARK_STANDALONE_MAIN)
int main()
{
// g++ -Wall -O3 -march=native -I./ref_app/src/mcal/host -I./ref_app/src -DAPP_BENCHMARK_TYPE=APP_BENCHMARK_TYPE_FLOAT -DAPP_BENCHMARK_STANDALONE_MAIN ./ref_app/src/app/benchmark/app_benchmark_float.cpp -o ./ref_app/bin/app_benchmark_float.exe
bool result_is_ok = true;
for(unsigned i = 0U; i < 64U; ++i)
{
result_is_ok &= app::benchmark::run_float();
}
return result_is_ok ? 0 : -1;
}
#endif
#endif // APP_BENCHMARK_TYPE_FLOAT