-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_bcms.py
47 lines (38 loc) · 1.16 KB
/
predict_bcms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from simpletransformers.classification import MultiLabelClassificationModel
import numpy as np
import pickle
import reverse_geocode
class GlobalScaler():
def __init__(self):
self.means = None
self.stddev = None
def fit_transform(self, data):
self.means = np.mean(data, axis=0)
centereddata = data - self.means
self.stddev = np.std(centereddata)
return centereddata / self.stddev
def transform(self, data):
return (data - self.means) / self.stddev
def inverse_transform(self, data):
return (np.asarray(data) * self.stddev) + self.means
scl=pickle.load(open('bcms.scaler','rb'))
# Setting optional model configuration
model_args = {
"regression": True,
"do_lower_case": True,
"eval_batch_size": 64,
}
# Create a ClassificationModel
model = MultiLabelClassificationModel(
"electra",
"CLASSLA/bcms-bertic-geo",
num_labels=2,
loss_fct="MAELoss",
args=model_args,
)
text = ['Kaj si rekel', 'Ne mogu to da uradim', 'Sjutra idemo na more', 'Skuvaj kahvu, bona!']
pred = model.predict(text)
pred_inv = scl.inverse_transform(pred)[0]
pred_rev = reverse_geocode.search(pred_inv)
for t, c, r in zip(text, pred_inv, pred_rev):
print(t,c,r)