-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmmm.py
890 lines (799 loc) · 37.7 KB
/
mmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
# -*- coding: utf-8 -*-
""" Classes for MSTM Model Manager's data model
This module provides the classes necessary for the MVC "Model" portion of the
MSTM Model Manager program.
Classes:
Sphere
ModelOption
ModelOptionValue
RunType
ModelRun
Grain
Cluster
Pack
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
"""
import math
import attr
import random
import sys
from enum import Enum
import re
import glob
import json
import pickle
import os
__author__ = 'Carey Legett'
__contact__ = '[email protected]'
__copyright__ = 'Copyright 2018, Stony Brook University'
__credits__ = ['Carey Legett', 'Freenode #r/linux', 'Freenode #python']
__date__ = '2018/02/19'
__deprecated__ = False
__email__ = '[email protected]'
__license__ = 'GPLv3'
__maintainer = 'Carey Legett'
__status__ = 'Development'
__version__ = '1.0'
class Sphere(object):
"""A class describing the spheres used in the MSTM model
This class holds the physical and optical properties of the spheres used in
the MSTM model. The physical properties are required variables while the
optical properties are optional. The units for x, y, z, and r should be
identical.
Attributes:
x (float): the x coordinate for the center of the sphere
y (float): the y coordinate for the center of the sphere
z (float): the z coordinate for the center of the sphere
r (float): the radius of the sphere
n (float): the real portion of the index of refraction
k (float): the imaginary portion of the index of refraction (extinction
coefficient)
real_chiral (float): the real portion of the chiral factor beta
imag_chiral (float): the imaginary portion of the chiral factor beta
tmatrix_file (Str): the name of the file containing the previously
calculated T-matrix for this sphere
"""
def __init__(self, x, y, z, r, n=None, k=None, real_chiral=None,
imag_chiral=None, tmatrix_file=None):
"""Constructor
Note: x, y, z, and r must be in identical units
Args:
x (float): the x coordinate for the center of the sphere
y (float): the y coordinate for the center of the sphere
z (float): the z coordinate for the center of the sphere
r (float): the radius of the sphere
n (float, optional): the real portion of the index of refraction
(default=None)
k (float, optional): the imaginary portion of the index of
refraction a.k.a. extinction coefficient (default=None)
real_chiral (float, optional): the real portion of the chiral
factor "beta" (default=None)
imag_chiral (float, optional): the imaginary portion of the chiral
factor "beta" (Default=None)
tmatrix_file (Str, optional): the name of the file containing the
previously calculated T-matrix for this sphere (default=None)
Returns: a Sphere object
"""
self.x = x
self.y = y
self.z = z
self.r = r
self.n = n
self.k = k
self.real_chiral = real_chiral
self.imag_chiral = imag_chiral
self.tmatrix_file = tmatrix_file
def distance_from(self, another_sphere=None, x1=None, y1=None, z1=None):
"""Return the distance of the center of this sphere from the provided
coordinates.
Args:
another_sphere -- a second sphere to get the distance from
x1 -- the x coord of the point from which distance is calculated
y1 -- the y coord of the point from which distance is calculated
z1 -- the z coord of the point from which distance is calculated
Returns:
A float representing the distance from the provided coords to the
center of this sphere.
"""
if another_sphere is None:
return math.sqrt(
(self.x - x1) ** 2 + (self.y - y1) ** 2 + (self.z - z1) ** 2)
else:
return (math.sqrt((self.x - another_sphere.x) ** 2 + (self.y -
another_sphere.y) ** 2 + (self.z - another_sphere.z) ** 2))
def geom_x_sec(self):
"""Return the geometric cross sectional area of this sphere."""
return math.pi * self.r ** 2
def get_tabbed_rxyz(self):
return '{r!s}\t{x!s}\t{y!s}\t{z!s}'.format(**self.__dict__)
def get_tabbed_rxyznk(self):
if self.n is None:
raise ValueError('attribute n cannot be None')
elif self.k is None:
raise ValueError('attribute k cannot be None')
else:
return('{r!s}\t{x!s}\t{y!s}\t{z!s}\t{n!s}\t{k!s}'
''.format(**self.__dict__))
def get_tabbed_chiral(self):
if self.n is None:
raise ValueError('attribute n cannot be None')
elif self.k is None:
raise ValueError('attribute k cannot be None')
elif self.real_chiral is None:
raise ValueError('attribute real_chiral cannot be None')
elif self.imag_chiral is None:
raise ValueError('attribute imag_chiral cannot be None')
else:
return('{r!s}\t{x!s}\t{y!s}\t{z!s}\t{n!s}\t{k!s}\t'
'{real_chiral!s}\t{imag_chiral!s}'.format(**self.__dict__))
def get_tabbed_tmatrix(self):
if self.tmatrix_file is None:
raise ValueError('attribute tmatrix_file cannot be None')
else:
return('{r!s}\t{x!s}\t{y!s}\t{z!s}\t{tmatrix_file!s}'
''.format(**self.__dict__))
class ModelOption(object):
"""A class to store a name & default value of an option for the MSTM model.
This class holds a name and a default value of a single option to be passed
to the MSTM model in an input file. It is primarily intended to be used
with the module level dictionary 'opt_dict' which initializes one
ModelOption for every possible valid option.
Attributes:
name (str): the name of the MSTM model option
default_value: the default value of the model option as listed in MSTM
documentation
"""
def __init__(self, name, default_value):
"""Initializes ModelOption with a name and default value"""
self.name = name
self.default_value = default_value
opts = [ModelOption('number_spheres', ''),
ModelOption('sphere_position_file', 'at_bottom'),
ModelOption('length_scale_factor', 1),
ModelOption('real_ref_index_scale_factor', 1),
ModelOption('imag_ref_index_scale_factor', 1),
ModelOption('real_chiral_factor', 0),
ModelOption('imag_chiral_factor', 0),
ModelOption('medium_real_ref_index', 1),
ModelOption('medium_imag_ref_index', 0),
ModelOption('medium_real_chiral_factor', 0),
ModelOption('medium_imag_chiral_factor', 0),
ModelOption('target_euler_angles_deg', [0, 0, 0]),
ModelOption('mie_epsilon', 1e-6),
ModelOption('translation_epsilon', 1e-8),
ModelOption('solution_epsilon', 1e-8),
ModelOption('iterations_per_correction', 20),
ModelOption('max_number_iterations', 2000),
ModelOption('near_field_translation_distance', 1e6),
ModelOption('store_translation_matrix', 0),
ModelOption('fixed_or_random_orientation', 0),
ModelOption('gaussian_beam_constant', 0),
ModelOption('gaussian_beam_focal_point', [0, 0, 0]),
ModelOption('output_file', 'test.dat'),
ModelOption('run_print_file', 'run_print.dat'),
ModelOption('write_sphere_data', 1),
ModelOption('incident_or_target_frame', 0),
ModelOption('min_scattering_angle_deg', 0),
ModelOption('max_scattering_angle_deg', 180),
ModelOption('min_scattering_plane_angle_deg', 0),
ModelOption('max_scattering_plane_angle_deg', 0),
ModelOption('delta_scattering_angle_deg', ''),
ModelOption('number_scattering_angles', ''),
ModelOption('scattering_angle_file', ''),
ModelOption('incident_azimuth_angle_deg', 0),
ModelOption('incident_polar_angle_deg', 0),
ModelOption('calculate_scattering_coefficients', 1),
ModelOption('scattering_coefficient_file', 'amn-temp.dat'),
ModelOption('track_iterations', 1),
ModelOption('azimuth_average_scattering_matrix', 0),
ModelOption('calculate_near_field', 0),
ModelOption('near_field_plane_coord', 1),
ModelOption('near_field_plane_position', 0),
ModelOption('near_field_plane_vertices', ''),
ModelOption('spacial_step_size', 0.1),
ModelOption('polarization_angle_deg', 0),
ModelOption('near_field_output_file', 'nf-temp.dat'),
ModelOption('near_field_output_data', 1),
ModelOption('plane_wave_epsilon', 1e-3),
ModelOption('calculate_t_matrix', 1),
ModelOption('t_matrix_file', 'tmatrix-temp.dat'),
ModelOption('t_matrix_convergence_epsilon', 1e-6),
ModelOption('sm_number_processors', 10)]
opt_dict = {o.name: o for o in opts}
class ModelOptionValue(object):
"""A class to associate a ModelOption object with a value set at runtime
This class holds a ModelOption object and an associated value for a single
option to be passed to the MSTM model in an input file.
Attributes:
option (ModelOption): the ModelOption object to which we want to assign
a value
value: the value of that model option
"""
def __init__(self, option, value=None):
"""Initializes ModelOptionValue with an option and optional value"""
self.option = option
if value is None:
self.value = option.default_value
else:
self.value = value
@classmethod
def mov_from_name(cls, name, value=None):
if name in opt_dict:
return cls(opt_dict[name], value)
else:
raise AttributeError('{} is not a valid '
'ModelOption name'.format(name))
def formatted_option(self):
return self.option.name + '\n' + str(self.value)
class RunType(Enum):
FIXED = 0
RANDOM = 1
class ModelRun(object):
def __init__(self, name=None, fixed_or_random=RunType.FIXED,
option_val_list=None):
self.name = name
self.fixed_or_random = fixed_or_random
if option_val_list is None:
self.option_val_list = []
if fixed_or_random == RunType.FIXED:
self.option_val_list.append(
ModelOptionValue.mov_from_name('number_spheres'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('sphere_position_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('length_scale_factor'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'real_ref_index_scale_factor'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'imag_ref_index_scale_factor'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('medium_real_ref_index'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('medium_imag_ref_index'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'fixed_or_random_orientation', 0))
self.option_val_list.append(
ModelOptionValue.mov_from_name('min_scattering_angle_deg'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('max_scattering_angle_deg'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('output_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('run_print_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'scattering_coefficient_file'))
elif fixed_or_random == RunType.RANDOM:
self.option_val_list.append(
ModelOptionValue.mov_from_name('number_spheres'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('sphere_position_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('length_scale_factor'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'real_ref_index_scale_factor'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'imag_ref_index_scale_factor'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('medium_real_ref_index'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('medium_imag_ref_index'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'fixed_or_random_orientation', 1))
self.option_val_list.append(
ModelOptionValue.mov_from_name('output_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('run_print_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name(
'scattering_coefficient_file'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('calculate_t_matrix'))
self.option_val_list.append(
ModelOptionValue.mov_from_name('t_matrix_file'))
else:
sys.exit('fixed_or_random is an invalid value')
else:
self.option_val_list = option_val_list
def set_option(self, option_name, value=None):
current_opts = {opt_val.option.name:
[opt_val.value, self.option_val_list.index(opt_val)]
for opt_val in self.option_val_list}
if option_name in current_opts:
self.option_val_list[current_opts[option_name][1]].value = value
else:
self.option_val_list.append(
ModelOptionValue.mov_from_name(option_name, value))
def formatted_options(self):
options = ['']
for option_val in self.option_val_list:
if option_val is not self.option_val_list[len(
self.option_val_list) - 1]:
options.append(option_val.formatted_option())
options.append('\n')
else:
options.append(option_val.formatted_option())
return ''.join(options)
class Grain(object):
def __init__(self, host_sphere=None, rim=None, inclusions=None,
host_radius=None, rim_thickness=None, num_inclusions=None):
self.host_sphere = host_sphere
self.rim = rim
self.inclusions = inclusions
self.host_radius = host_radius
self.rim_thickness = rim_thickness
self.num_inclusions = num_inclusions
@classmethod
def new_grain(cls, x, y, z, r_host, dr_rim, r_incl, n_incl):
chost_sphere = Sphere(x, y, z, r_host)
crim = Sphere(x, y, z, r_host + dr_rim)
cnum_inclusions = 0
cinclusions = []
while cnum_inclusions < n_incl:
theta = 2 * math.pi * random.random()
phi = math.acos(2 * random.random()-1)
arandom = random.random()
r = (((dr_rim - (2 * r_incl) - 0.0004) * arandom) +
((r_host + r_incl) + 0.0002))
this_x = (r * math.cos(theta) * math.sin(phi)) + x
this_y = (r * math.sin(theta) * math.sin(phi)) + y
this_z = (r * math.cos(phi)) + z
j = 0
while j < cnum_inclusions:
p1 = (this_x, this_y, this_z)
p2 = (cinclusions[j].x, cinclusions[j].y,
cinclusions[j].z)
distance = math.sqrt(sum([(a - b) ** 2 for a, b in
zip(p1, p2)]))
if distance <= (2.01 * r_incl):
break
j += 1
else:
cinclusions.append(Sphere(this_x, this_y, this_z, r_incl))
cnum_inclusions += 1
return cls(host_sphere=chost_sphere, rim=crim,
inclusions=cinclusions, host_radius=r_host,
rim_thickness=dr_rim, num_inclusions=cnum_inclusions)
# move grain
def move_to(self, x, y, z):
old_x = self.host_sphere.x
old_y = self.host_sphere.y
old_z = self.host_sphere.z
dx = x - old_x
dy = y - old_y
dz = z - old_z
self.host_sphere.x += dx
self.host_sphere.y += dy
self.host_sphere.z += dz
self.rim.x += dx
self.rim.y += dy
self.rim.z += dz
for inclusion in self.inclusions:
inclusion.x += dx
inclusion.y += dy
inclusion.z += dz
def set_grain_oc(self, host_n, host_k, rim_n, rim_k, incl_n, incl_k):
self.host_sphere.n = host_n
self.host_sphere.k = host_k
self.rim.n = rim_n
self.rim.k = rim_k
for inclusion in self.inclusions:
inclusion.n = incl_n
inclusion.k = incl_k
def get_rxyznk(self):
mylist = [self.host_sphere.get_tabbed_rxyznk(), '\n',
self.rim.get_tabbed_rxyznk(), '\n']
for c, inclusion in enumerate(self.inclusions):
mylist.append(inclusion.get_tabbed_rxyznk())
if c < len(self.inclusions) - 1:
mylist.append('\n')
return ''.join(mylist)
@attr.s
class Cluster(object):
grainlist = attr.ib(default=None)
def get_bounding_sphere(self):
# max distance between grain centers + 2*rim_r
# centered on midpoint between grain centers if r1=r2
max_distance = 0
center = []
for grain_a in self.grainlist:
for grain_b in self.grainlist:
if grain_a.rim is not None and grain_b.rim is not None:
distance = (grain_a.rim.distance_from(
another_sphere=grain_b.rim) + grain_a.rim.r +
grain_b.rim.r)
if distance > max_distance:
max_distance = distance
center.append((grain_a.rim.x + grain_b.rim.x) / 2)
center.append((grain_a.rim.y + grain_b.rim.y) / 2)
center.append((grain_a.rim.z + grain_b.rim.z) / 2)
elif grain_a.rim is not None and grain_b.rim is None:
distance = (grain_a.rim.distance_from(
another_sphere=grain_b.host) + grain_a.rim.r +
grain_b.host.r)
if distance > max_distance:
max_distance = distance
center.append((grain_a.rim.x + grain_b.host.x) / 2)
center.append((grain_a.rim.y + grain_b.host.y) / 2)
center.append((grain_a.rim.z + grain_b.host.z) / 2)
elif grain_a.rim is None and grain_b.rim is not None:
distance = (grain_a.host.distance_from(
another_sphere=grain_b.rim) + grain_a.host.r +
grain_b.rim.r)
if distance > max_distance:
max_distance = distance
center.append((grain_a.host.x + grain_b.rim.x) / 2)
center.append((grain_a.host.y + grain_b.rim.y) / 2)
center.append((grain_a.host.z + grain_b.rim.z) / 2)
elif grain_a.rim is None and grain_b.rim is None:
distance = (grain_a.host.distance_from(
another_sphere=grain_b.host) + grain_a.host.r +
grain_b.host.r)
if distance > max_distance:
max_distance = distance
center.append((grain_a.host.x + grain_b.host.x) / 2)
center.append((grain_a.host.y + grain_b.host.y) / 2)
center.append((grain_a.host.z + grain_b.host.z) / 2)
return Sphere(center[0], center[1], center[2], max_distance/2)
def get_packing_fraction(self):
vol_of_grains = 0
bounding_sphere = self.get_bounding_sphere()
vol_of_bounding_sphere = (4/3) * math.pi * bounding_sphere.r ** 3
for grain in self.grainlist:
if grain.rim is not None:
vol_of_grains += (4/3) * math.pi * grain.rim.r ** 3
elif grain.host is not None:
vol_of_grains += (4/3) * math.pi * grain.host.r ** 3
else:
# Should not get here, but may need to handle this later
pass
return vol_of_grains/vol_of_bounding_sphere
# geometric cross section
def get_geom_xsection(self):
bounding_sphere = self.get_bounding_sphere()
return math.pi * bounding_sphere.r ** 2
class Pack(object):
"""A class containing the data generated by a PackLSD run.
This class holds the metadata and x,y,z coordinates generated by a PackLSD
run.
Attributes:
"""
def __init__(self, dims=None, num_of_particles=None, dispersity=None,
sphere_radius=None, sphere_coords=None):
if sphere_coords is None:
sphere_coords = [[]]
self.dims = dims
self.num_of_particles = num_of_particles
self.dispersity = dispersity
self.sphere_radius = sphere_radius
self.sphere_coords = sphere_coords
@classmethod
def from_file(cls, a_filename):
# Check for the version of python being used and use appropriate flags
# for opening the input file as necessary
if sys.version_info[0] == 2:
raccess = 'rb'
kwargs = {}
else:
raccess = 'rt'
kwargs = {'newline': ''}
try:
with open(a_filename, raccess, **kwargs) as infile:
rawfile = infile.read().splitlines()
if not rawfile:
sys.exit('No data in file ' + a_filename)
except IOError as e:
sys.exit('I/O error: file {}: {}'.format(a_filename, e))
lines = []
for line in rawfile:
lines.append(line.split())
coords = [[float(item) for item in row] for row in lines[6:]]
return(cls(int(lines[0][0]), int(lines[1][0]), int(lines[1][1]),
float(lines[3][0])/2, coords))
def center_pack(self):
xtotal = 0
ytotal = 0
ztotal = 0
for line in self.sphere_coords:
xtotal += line[0]
ytotal += line[1]
ztotal += line[2]
length = len(self.sphere_coords)
avgs = [xtotal/length, ytotal/length, ztotal/length]
self.sphere_coords = [[element - avg for element, avg in
zip(line, avgs)] for line in self.sphere_coords]
def rescale_pack(self, new_sphere_radius):
multiplier = new_sphere_radius / self.sphere_radius
self.sphere_coords = [[coord * multiplier for coord in row] for row in
self.sphere_coords]
self.sphere_radius = new_sphere_radius
class ModelRunTypeError(Exception):
def __init__(self, message):
super(ModelRunTypeError, self).__init__(message)
class RunOutput(object):
def __init__(self, input_dir_name, theta_i=30, theta_e=0):
def h(a_mu, a_gamma):
top = 1 + (2 * a_mu)
bottom = 1 + (2 * a_gamma * a_mu)
return top/bottom
input_dir_name = input_dir_name.strip()
if not input_dir_name.endswith('/'):
input_dir_name += '/'
self.input_dir_name = input_dir_name
file_list = glob.glob('{}dat/*.dat'.format(input_dir_name))
self.wl_dict = dict()
for file in file_list:
wl = int(re.search(r'(\d{3,4})\.?nm\.dat', file).group(1))
if os.path.isfile('{}/sc/{}.nm.sc.dat'.format(input_dir_name, wl)):
self.wl_dict[wl] = SingleRunOutput.from_dat_file(file)
if self.wl_dict[wl].unpol_qext is None:
self.wl_dict[wl].incomplete = True
else:
self.wl_dict[wl].incomplete = False
self.wl_list = [*self.wl_dict]
self.wl_list.sort()
stats_file = glob.glob('{}*stats.txt'.format(input_dir_name))
if stats_file:
try:
with open(stats_file[0], 'r') as s:
for line in s:
if re.match(r'runname:', line) is not None:
self.runname = re.search(r'runname:\s(.+)\n',
line).group(1)
continue
if re.match('cluster packing', line) is not None:
self.pack_frac = float(re.search(r':\s(.+)\n',
line).group(1))
continue
if re.match('cluster x-section', line) is not None:
self.x_sect = float(re.search(r':\s(.+)\n', line
).group(1))
continue
if re.match('cluster bounding', line) is not None:
self.bound_r = float(re.search(r':\s(.+)\n', line)
.group(1))
continue
except IOError as e:
sys.exit('I/O error: file {}: {}'.format(stats_file, e))
else:
raise ModelRunTypeError('This model run does not have a stats file'
' in {}.'.format(input_dir_name))
for wl in self.wl_list:
mu0 = math.cos(math.radians(theta_i))
mu = math.cos(math.radians(theta_e))
self.wl_dict[wl].k = (2 * math.pi) / wl
self.wl_dict[wl].dcsca = \
self.wl_dict[wl].s_matrix_dict['150.00']['11']
self.wl_dict[wl].csca = self.wl_dict[wl].unpol_qsca * self.x_sect
self.wl_dict[wl].p_g = 4 * math.pi * (1 / self.wl_dict[wl].csca) \
* self.wl_dict[wl].dcsca
self.wl_dict[wl].ssa = (self.wl_dict[wl].unpol_qsca /
self.wl_dict[wl].unpol_qext)
if self.wl_dict[wl].ssa > 1:
print('Bad SSA!')
self.wl_dict[wl].incomplete = True
self.wl_dict[wl].ssa = 1
gamma = math.sqrt(1 - self.wl_dict[wl].ssa)
hmu0 = h(mu0, gamma)
hmu = h(mu, gamma)
self.wl_dict[wl].hapke_refl = (self.wl_dict[wl].ssa /
(4 * math.pi)) * (mu0 / (mu0 + mu))\
* ((1 + 0) * self.wl_dict[wl].p_g + (hmu0 * hmu)-1)
def write_json(self, filename):
run_dict = self.__dict__
for key, val in run_dict.items():
if isinstance(val, dict):
for inner_key, inner_val in val.items():
if isinstance(inner_val, SingleRunOutput):
val[inner_key] = inner_val.__dict__
try:
with open(filename, 'w') as o:
json.dump(run_dict, o, indent=1)
except IOError as e:
sys.exit('I/O error: file {}: {}'.format(filename, e))
def write_pickle(self, filename):
try:
with open(filename, 'wb') as p:
pickle.dump(self, p)
except IOError as e:
sys.exit('I/O error: file {}: {}'.format(filename, e))
class SingleRunOutput(object):
def __init__(self):
self.run_number = None
self.n_spheres = None
self.vol_size_param = None
self.position_file = None
self.output_file = None
self.length_scale_factor = None
self.real_ref_index_scale_factor = None
self.imag_ref_index_scale_factor = None
self.real_chiral_factor = None
self.imag_chiral_factor = None
self.incident_or_target_frame = None
self.theta_min = None
self.theta_max = None
self.azimuth_averaged = None
self.num_scattering_angles = None
self.eps_mie = None
self.eps_soln = None
self.max_iterations = None
self.real_medium_ref_index = None
self.imag_medium_ref_index = None
self.target_euler_rotation_x = None
self.target_euler_rotation_y = None
self.target_euler_rotation_z = None
self.far_field_kr = None
self.iter_per_corr = None
self.incident_azimuth_angle = None
self.incident_polar_angle = None
self.common_exp_eps = None
self.sc_file = None
self.sphere_data_dict = None
self.unpol_qext = None
self.unpol_qabs = None
self.unpol_qsca = None
self.asym = None
self.parpol_qext = None
self.parpol_qabs = None
self.parpol_qsca = None
self.perpol_qext = None
self.perpol_qabs = None
self.perpol_qsca = None
self.s_matrix_dict = None
@classmethod
def from_dat_file(cls, filename):
thisrun = SingleRunOutput()
thisrun.azimuth_averaged = False
try:
with open(filename, 'r') as f:
for line in f:
if (re.search('input parameters for run number', line)
is not None):
thisrun.run_number = int(next(f).strip())
continue
if re.search('number of spheres', line) is not None:
thisrun.n_spheres, thisrun.vol_size_param = \
next(f).split()
thisrun.n_spheres = int(thisrun.n_spheres)
thisrun.vol_size_param = float(thisrun.vol_size_param)
continue
if re.search('position file', line) is not None:
thisrun.position_file = next(f).strip()
continue
if re.search('output file', line) is not None:
thisrun.output_file = next(f).strip()
continue
if re.search('length, ref\. indx', line) is not None:
thisrun.length_scale_factor, \
thisrun.real_ref_index_scale_factor, \
thisrun.imag_ref_index_scale_factor = \
[float(i) for i in next(f).split()]
continue
if re.search('chiral factors:', line) is not None:
thisrun.real_chiral_factor, \
thisrun.imag_chiral_factor = \
[float(i) for i in next(f).split()]
continue
if re.search('based on incident frame', line) is not None:
thisrun.incident_or_target_frame = 'incident'
continue
elif re.search('based on target frame', line) is not None:
thisrun.incident_or_target_frame = 'target'
continue
if re.search('thetamin, thetamax', line) is not None:
thisrun.theta_min, thisrun.theta_max = \
[float(i) for i in next(f).split()]
continue
if (re.search('scattering matrix is averaged', line) is
not None):
thisrun.azimuth_averaged = True
continue
if re.search('number scattering angles', line) is not None:
thisrun.num_scattering_angles = int(next(f).strip())
continue
if re.search('epsmie, epssoln', line) is not None:
temp = next(f).strip()
captures = re.match(
r'(\d*\.\d+E[+|\-]\d{2})\s*(\d*\.\d+E[+|\-]'
r'\d{2})\s*(\d+)', temp)
thisrun.eps_mie = float(captures.group(1))
thisrun.eps_soln = float(captures.group(2))
thisrun.max_iterations = int(captures.group(3))
continue
if re.search('medium refractive index', line) is not None:
thisrun.real_medium_ref_index, \
thisrun.imag_medium_ref_index = [float(i) for i in
next(f).split()]
continue
if re.search('target euler', line) is not None:
thisrun.target_euler_rotation_x, \
thisrun.target_euler_rotation_y, \
thisrun.target_euler_rotation_z = [float(i) for i
in
next(f).split()]
continue
if re.search('far field kr', line) is not None:
thisrun.far_field_kr, thisrun.iter_per_corr = \
next(f).split()
thisrun.far_field_kr = float(thisrun.far_field_kr)
thisrun.iter_per_corr = int(thisrun.iter_per_corr)
continue
if re.search('incident azimuth', line) is not None:
thisrun.incident_azimuth_angle, \
thisrun.incident_polar_angle = [float(i) for i in
next(f).split()]
continue
if re.search('common expansion', line) is not None:
thisrun.common_exp_eps = float(next(f).strip())
continue
if (re.search('scattering coefficients calculated', line)
is not None):
thisrun.sc_file = next(f).strip()
continue
if (re.search('calculation results for run', line) is
not None):
thisrun.run_number = int(next(f).strip())
continue
if re.search(r'\s*sphere\s*host', line) is not None:
headers = line.split()
line = next(f)
thisrun.sphere_data_dict = dict()
while re.match(r'^\s*\d+', line):
thisrow = line.split()
thisdict = {a: float(b) for a, b in
zip(headers[1:], thisrow[1:])}
thisdict['host'] = int(thisdict['host'])
thisrun.sphere_data_dict[int(thisrow[0])] = \
thisdict
line = next(f)
if re.search('unpolarized total ext', line) is not None:
thisrun.unpol_qext, thisrun.unpol_qabs, \
thisrun.unpol_qsca, thisrun.asym = \
[float(i) for i in next(f).split()]
continue
if re.search('parallel total ext', line) is not None:
thisrun.parpol_qext, thisrun.parpol_qabs, \
thisrun.parpol_qsca = [float(i) for i in
next(f).split()]
continue
if re.search('perpendicular total ext', line) is not None:
thisrun.perpol_qext, thisrun.perpol_qabs, \
thisrun.perpol_qsca = [float(i) for i in
next(f).split()]
continue
if (re.search('scattering matrix elements', line) is not
None):
line = next(f)
headers = line.split()
thisrun.s_matrix_dict = dict()
line = next(f)
while re.match(r'^\s*\d+\.\d{2}', line):
thisrow = line.split()
if thisrow[2] == 'NaN':
pass
else:
thisdict = {a: float(b) for a, b in
zip(headers[1:], thisrow[1:])}
thisrun.s_matrix_dict[thisrow[0]] = thisdict
try:
line = next(f)
except StopIteration:
break
continue
except IOError as e:
sys.exit('I/O error: file {}: {}'.format(filename, e))
return thisrun