-
Notifications
You must be signed in to change notification settings - Fork 179
/
Copy pathbts_sequence.py
190 lines (147 loc) · 7 KB
/
bts_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright (C) 2019 Jin Han Lee
#
# This file is a part of BTS.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
from __future__ import absolute_import, division, print_function
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
import numpy as np
import argparse
import time
import glob
import cv2
import errno
import matplotlib.pyplot as plt
import sys
import tensorflow as tf
import tqdm
from bts_dataloader import *
parser = argparse.ArgumentParser(description='BTS TensorFlow implementation.')
parser.add_argument('--model_name', type=str, help='model name', default='bts_v0_0_1')
parser.add_argument('--encoder', type=str, help='type of encoder, densenet121_bts or densenet161_bts', default='densenet161_bts')
parser.add_argument('--dataset', type=str, help='dataset to test, kitti or nyu', default='')
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=80)
parser.add_argument('--focal', type=float, help='focal length in pixels', default=-1)
parser.add_argument('--image_path', type=str, help='image sequence path', required=True)
parser.add_argument('--out_path', type=str, help='output path', required=True)
parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', required=True)
parser.add_argument('--input_height', type=int, help='input height', default=480)
parser.add_argument('--input_width', type=int, help='input width', default=640)
args = parser.parse_args()
model_dir = os.path.dirname(args.checkpoint_path)
sys.path.append(model_dir)
for key, val in vars(__import__(args.model_name)).items():
if key.startswith('__') and key.endswith('__'):
continue
vars()[key] = val
def test_sequence(params):
image_files = []
for filename in glob.glob(os.path.join(args.image_path, '*.png')):
image_files.append(filename)
image_files.sort()
num_test_samples = len(image_files)
if num_test_samples == 0:
print("No images found! Program abort.")
return
if args.dataset == 'nyu':
focal = 518.8579
elif args.dataset == 'kitti':
focal = 718.856 # Visualize purpose only
elif args.dataset == '' and args.focal == -1:
print('Custom dataset needs to specify focal length with --focal')
return
image = tf.placeholder(tf.float32, [1, args.input_height, args.input_width, 3])
focals = tf.constant([focal])
model = BtsModel(params, 'test', image, None, focal=focals, bn_training=False)
# SESSION
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
# INIT
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
coordinator = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coordinator)
# SAVER
train_saver = tf.train.Saver()
with tf.device('/cpu:0'):
restore_path = args.checkpoint_path
# RESTORE
train_saver.restore(sess, restore_path)
print('now testing {} files for model {}'.format(num_test_samples, args.checkpoint_path))
print('Saving result pngs')
if not os.path.exists(os.path.dirname(args.out_path)):
try:
os.mkdir(args.out_path)
os.mkdir(args.out_path + '/depth')
os.mkdir(args.out_path + '/reduc1x1')
os.mkdir(args.out_path + '/lpg2x2')
os.mkdir(args.out_path + '/lpg4x4')
os.mkdir(args.out_path + '/lpg8x8')
os.mkdir(args.out_path + '/rgb')
except OSError as e:
if e.errno != errno.EEXIST:
raise
start_time = time.time()
for s in tqdm(range(num_test_samples)):
input_image = cv2.imread(image_files[s])
if args.dataset == 'kitti':
height, width, ch = input_image.shape
top_margin = int(height - 352)
left_margin = int((width - 1216) / 2)
input_image = input_image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :]
input_image_original = input_image
input_image = input_image.astype(np.float32)
# Normalize image
input_image[:, :, 0] = (input_image[:, :, 0] - 103.939) * 0.017
input_image[:, :, 1] = (input_image[:, :, 1] - 116.779) * 0.017
input_image[:, :, 2] = (input_image[:, :, 2] - 123.68) * 0.017
input_images = np.reshape(input_image, (1, args.input_height, args.input_width, 3))
depth, pred_8x8, pred_4x4, pred_2x2, pred_1x1 = sess.run(
[model.depth_est, model.lpg8x8, model.lpg4x4, model.lpg2x2, model.reduc1x1], feed_dict={image: input_images})
pred_depth = depth.squeeze()
pred_8x8 = pred_8x8.squeeze()
pred_4x4 = pred_4x4.squeeze()
pred_2x2 = pred_2x2.squeeze()
pred_1x1 = pred_1x1.squeeze()
save_path = os.path.join(args.out_path, 'depth', image_files[s].split('/')[-1])
plt.imsave(save_path, np.log10(pred_depth), cmap='Greys')
save_path = os.path.join(args.out_path, 'rgb', image_files[s].split('/')[-1])
cv2.imwrite(save_path, input_image_original)
save_path = os.path.join(args.out_path, 'reduc1x1', image_files[s].split('/')[-1])
plt.imsave(save_path, np.log10(pred_1x1), cmap='Greys')
save_path = os.path.join(args.out_path, 'lpg2x2', image_files[s].split('/')[-1])
plt.imsave(save_path, np.log10(pred_2x2), cmap='Greys')
save_path = os.path.join(args.out_path, 'lpg4x4', image_files[s].split('/')[-1])
plt.imsave(save_path, np.log10(pred_4x4), cmap='Greys')
save_path = os.path.join(args.out_path, 'lpg8x8', image_files[s].split('/')[-1])
plt.imsave(save_path, np.log10(pred_8x8), cmap='Greys')
print('{}/{}'.format(s, num_test_samples))
elapsed_time = time.time() - start_time
print('Elapesed time: %s' % str(elapsed_time))
print('done.')
def main(_):
params = bts_parameters(
encoder=args.encoder,
height=args.input_height,
width=args.input_width,
batch_size=None,
dataset=None,
max_depth=args.max_depth,
num_gpus=None,
num_threads=None,
num_epochs=None,
)
test_sequence(params)
if __name__ == '__main__':
tf.app.run()