-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSNMP-FRAMEWORK-MIB.yang
563 lines (465 loc) · 18 KB
/
SNMP-FRAMEWORK-MIB.yang
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
* This YANG module has been generated by smidump 0.5.0:
*
* smidump -f yang SNMP-FRAMEWORK-MIB
*
* Do not edit. Edit the source file instead!
*/
module SNMP-FRAMEWORK-MIB {
namespace "urn:ietf:params:xml:ns:yang:smiv2:SNMP-FRAMEWORK-MIB";
prefix "snmp-framework";
import ietf-yang-smiv2 {
prefix "smiv2";
}
organization
"SNMPv3 Working Group";
contact
"WG-EMail: [email protected]
Subscribe: [email protected]
Co-Chair: Russ Mundy
Network Associates Laboratories
postal: 15204 Omega Drive, Suite 300
Rockville, MD 20850-4601
USA
EMail: [email protected]
phone: +1 301-947-7107
Co-Chair &
Co-editor: David Harrington
Enterasys Networks
postal: 35 Industrial Way
P. O. Box 5005
Rochester, New Hampshire 03866-5005
USA
EMail: [email protected]
phone: +1 603-337-2614
Co-editor: Randy Presuhn
BMC Software, Inc.
postal: 2141 North First Street
San Jose, California 95131
USA
EMail: [email protected]
phone: +1 408-546-1006
Co-editor: Bert Wijnen
Lucent Technologies
postal: Schagen 33
3461 GL Linschoten
Netherlands
EMail: [email protected]
phone: +31 348-680-485
";
description
"The SNMP Management Architecture MIB
Copyright (C) The Internet Society (2002). This
version of this MIB module is part of RFC 3411;
see the RFC itself for full legal notices.";
revision 2002-10-14 {
description
"Changes in this revision:
- Updated various administrative information.
- Corrected some typos.
- Corrected typo in description of SnmpEngineID
that led to range overlap for 127.
- Changed '255a' to '255t' in definition of
SnmpAdminString to align with current SMI.
- Reworded 'reserved' for value zero in
DESCRIPTION of SnmpSecurityModel.
- The algorithm for allocating security models
should give 256 per enterprise block, rather
than 255.
- The example engine ID of 'abcd' is not
legal. Replaced with '800002b804616263'H based
on example enterprise 696, string 'abc'.
- Added clarification that engineID should
persist across re-initializations.
This revision published as RFC 3411.";
}
revision 1999-01-19 {
description
"Updated editors' addresses, fixed typos.
Published as RFC 2571.";
}
revision 1997-11-20 {
description
"The initial version, published in RFC 2271.";
}
typedef SnmpEngineID {
type binary {
length "5..32";
}
description
"An SNMP engine's administratively-unique identifier.
Objects of this type are for identification, not for
addressing, even though it is possible that an
address may have been used in the generation of
a specific value.
The value for this object may not be all zeros or
all 'ff'H or the empty (zero length) string.
The initial value for this object may be configured
via an operator console entry or via an algorithmic
function. In the latter case, the following
example algorithm is recommended.
In cases where there are multiple engines on the
same system, the use of this algorithm is NOT
appropriate, as it would result in all of those
engines ending up with the same ID value.
1) The very first bit is used to indicate how the
rest of the data is composed.
0 - as defined by enterprise using former methods
that existed before SNMPv3. See item 2 below.
1 - as defined by this architecture, see item 3
below.
Note that this allows existing uses of the
engineID (also known as AgentID [RFC1910]) to
co-exist with any new uses.
2) The snmpEngineID has a length of 12 octets.
The first four octets are set to the binary
equivalent of the agent's SNMP management
private enterprise number as assigned by the
Internet Assigned Numbers Authority (IANA).
For example, if Acme Networks has been assigned
{ enterprises 696 }, the first four octets would
be assigned '000002b8'H.
The remaining eight octets are determined via
one or more enterprise-specific methods. Such
methods must be designed so as to maximize the
possibility that the value of this object will
be unique in the agent's administrative domain.
For example, it may be the IP address of the SNMP
entity, or the MAC address of one of the
interfaces, with each address suitably padded
with random octets. If multiple methods are
defined, then it is recommended that the first
octet indicate the method being used and the
remaining octets be a function of the method.
3) The length of the octet string varies.
The first four octets are set to the binary
equivalent of the agent's SNMP management
private enterprise number as assigned by the
Internet Assigned Numbers Authority (IANA).
For example, if Acme Networks has been assigned
{ enterprises 696 }, the first four octets would
be assigned '000002b8'H.
The very first bit is set to 1. For example, the
above value for Acme Networks now changes to be
'800002b8'H.
The fifth octet indicates how the rest (6th and
following octets) are formatted. The values for
the fifth octet are:
0 - reserved, unused.
1 - IPv4 address (4 octets)
lowest non-special IP address
2 - IPv6 address (16 octets)
lowest non-special IP address
3 - MAC address (6 octets)
lowest IEEE MAC address, canonical
order
4 - Text, administratively assigned
Maximum remaining length 27
5 - Octets, administratively assigned
Maximum remaining length 27
6-127 - reserved, unused
128-255 - as defined by the enterprise
Maximum remaining length 27";
}
typedef SnmpSecurityModel {
type int32 {
range "0..2147483647";
}
description
"An identifier that uniquely identifies a
Security Model of the Security Subsystem within
this SNMP Management Architecture.
The values for securityModel are allocated as
follows:
- The zero value does not identify any particular
security model.
- Values between 1 and 255, inclusive, are reserved
for standards-track Security Models and are
managed by the Internet Assigned Numbers Authority
(IANA).
- Values greater than 255 are allocated to
enterprise-specific Security Models. An
enterprise-specific securityModel value is defined
to be:
enterpriseID * 256 + security model within
enterprise
For example, the fourth Security Model defined by
the enterprise whose enterpriseID is 1 would be
259.
This scheme for allocation of securityModel
values allows for a maximum of 255 standards-
based Security Models, and for a maximum of
256 Security Models per enterprise.
It is believed that the assignment of new
securityModel values will be rare in practice
because the larger the number of simultaneously
utilized Security Models, the larger the
chance that interoperability will suffer.
Consequently, it is believed that such a range
will be sufficient. In the unlikely event that
the standards committee finds this number to be
insufficient over time, an enterprise number
can be allocated to obtain an additional 256
possible values.
Note that the most significant bit must be zero;
hence, there are 23 bits allocated for various
organizations to design and define non-standard
securityModels. This limits the ability to
define new proprietary implementations of Security
Models to the first 8,388,608 enterprises.
It is worthwhile to note that, in its encoded
form, the securityModel value will normally
require only a single byte since, in practice,
the leftmost bits will be zero for most messages
and sign extension is suppressed by the encoding
rules.
As of this writing, there are several values
of securityModel defined for use with SNMP or
reserved for use with supporting MIB objects.
They are as follows:
0 reserved for 'any'
1 reserved for SNMPv1
2 reserved for SNMPv2c
3 User-Based Security Model (USM)";
}
typedef SnmpMessageProcessingModel {
type int32 {
range "0..2147483647";
}
description
"An identifier that uniquely identifies a Message
Processing Model of the Message Processing
Subsystem within this SNMP Management Architecture.
The values for messageProcessingModel are
allocated as follows:
- Values between 0 and 255, inclusive, are
reserved for standards-track Message Processing
Models and are managed by the Internet Assigned
Numbers Authority (IANA).
- Values greater than 255 are allocated to
enterprise-specific Message Processing Models.
An enterprise messageProcessingModel value is
defined to be:
enterpriseID * 256 +
messageProcessingModel within enterprise
For example, the fourth Message Processing Model
defined by the enterprise whose enterpriseID
is 1 would be 259.
This scheme for allocating messageProcessingModel
values allows for a maximum of 255 standards-
based Message Processing Models, and for a
maximum of 256 Message Processing Models per
enterprise.
It is believed that the assignment of new
messageProcessingModel values will be rare
in practice because the larger the number of
simultaneously utilized Message Processing Models,
the larger the chance that interoperability
will suffer. It is believed that such a range
will be sufficient. In the unlikely event that
the standards committee finds this number to be
insufficient over time, an enterprise number
can be allocated to obtain an additional 256
possible values.
Note that the most significant bit must be zero;
hence, there are 23 bits allocated for various
organizations to design and define non-standard
messageProcessingModels. This limits the ability
to define new proprietary implementations of
Message Processing Models to the first 8,388,608
enterprises.
It is worthwhile to note that, in its encoded
form, the messageProcessingModel value will
normally require only a single byte since, in
practice, the leftmost bits will be zero for
most messages and sign extension is suppressed
by the encoding rules.
As of this writing, there are several values of
messageProcessingModel defined for use with SNMP.
They are as follows:
0 reserved for SNMPv1
1 reserved for SNMPv2c
2 reserved for SNMPv2u and SNMPv2*
3 reserved for SNMPv3";
}
typedef SnmpSecurityLevel {
type enumeration {
enum "noAuthNoPriv" {
value "1";
}
enum "authNoPriv" {
value "2";
}
enum "authPriv" {
value "3";
}
}
description
"A Level of Security at which SNMP messages can be
sent or with which operations are being processed;
in particular, one of:
noAuthNoPriv - without authentication and
without privacy,
authNoPriv - with authentication but
without privacy,
authPriv - with authentication and
with privacy.
These three values are ordered such that
noAuthNoPriv is less than authNoPriv and
authNoPriv is less than authPriv.";
}
typedef SnmpAdminString {
type string {
length "0..255";
}
description
"An octet string containing administrative
information, preferably in human-readable form.
To facilitate internationalization, this
information is represented using the ISO/IEC
IS 10646-1 character set, encoded as an octet
string using the UTF-8 transformation format
described in [RFC2279].
Since additional code points are added by
amendments to the 10646 standard from time
to time, implementations must be prepared to
encounter any code point from 0x00000000 to
0x7fffffff. Byte sequences that do not
correspond to the valid UTF-8 encoding of a
code point or are outside this range are
prohibited.
The use of control codes should be avoided.
When it is necessary to represent a newline,
the control code sequence CR LF should be used.
The use of leading or trailing white space should
be avoided.
For code points not directly supported by user
interface hardware or software, an alternative
means of entry and display, such as hexadecimal,
may be provided.
For information encoded in 7-bit US-ASCII,
the UTF-8 encoding is identical to the
US-ASCII encoding.
UTF-8 may require multiple bytes to represent a
single character / code point; thus the length
of this object in octets may be different from
the number of characters encoded. Similarly,
size constraints refer to the number of encoded
octets, not the number of characters represented
by an encoding.
Note that when this TC is used for an object that
is used or envisioned to be used as an index, then
a SIZE restriction MUST be specified so that the
number of sub-identifiers for any object instance
does not exceed the limit of 128, as defined by
[RFC3416].
Note that the size of an SnmpAdminString object is
measured in octets, not characters.";
smiv2:display-hint "255t";
}
identity snmpAuthProtocols {
base smiv2:object-identity;
description
"Registration point for standards-track
authentication protocols used in SNMP Management
Frameworks.";
smiv2:oid "1.3.6.1.6.3.10.1.1";
}
identity snmpPrivProtocols {
base smiv2:object-identity;
description
"Registration point for standards-track privacy
protocols used in SNMP Management Frameworks.";
smiv2:oid "1.3.6.1.6.3.10.1.2";
}
container SNMP-FRAMEWORK-MIB {
config false;
container snmpEngine {
smiv2:oid "1.3.6.1.6.3.10.2.1";
leaf snmpEngineID {
type snmp-framework:SnmpEngineID;
description
"An SNMP engine's administratively-unique identifier.
This information SHOULD be stored in non-volatile
storage so that it remains constant across
re-initializations of the SNMP engine.";
smiv2:max-access "read-only";
smiv2:oid "1.3.6.1.6.3.10.2.1.1";
}
leaf snmpEngineBoots {
type int32 {
range "1..2147483647";
}
description
"The number of times that the SNMP engine has
(re-)initialized itself since snmpEngineID
was last configured.";
smiv2:max-access "read-only";
smiv2:oid "1.3.6.1.6.3.10.2.1.2";
}
leaf snmpEngineTime {
type int32 {
range "0..2147483647";
}
units "seconds";
description
"The number of seconds since the value of
the snmpEngineBoots object last changed.
When incrementing this object's value would
cause it to exceed its maximum,
snmpEngineBoots is incremented as if a
re-initialization had occurred, and this
object's value consequently reverts to zero.";
smiv2:max-access "read-only";
smiv2:oid "1.3.6.1.6.3.10.2.1.3";
}
leaf snmpEngineMaxMessageSize {
type int32 {
range "484..2147483647";
}
description
"The maximum length in octets of an SNMP message
which this SNMP engine can send or receive and
process, determined as the minimum of the maximum
message size values supported among all of the
transports available to and supported by the engine.";
smiv2:max-access "read-only";
smiv2:oid "1.3.6.1.6.3.10.2.1.4";
}
}
}
smiv2:alias "snmpFrameworkMIB" {
smiv2:oid "1.3.6.1.6.3.10";
}
smiv2:alias "snmpFrameworkAdmin" {
smiv2:oid "1.3.6.1.6.3.10.1";
}
smiv2:alias "snmpAuthProtocols" {
description
"Registration point for standards-track
authentication protocols used in SNMP Management
Frameworks.";
smiv2:oid "1.3.6.1.6.3.10.1.1";
}
smiv2:alias "snmpPrivProtocols" {
description
"Registration point for standards-track privacy
protocols used in SNMP Management Frameworks.";
smiv2:oid "1.3.6.1.6.3.10.1.2";
}
smiv2:alias "snmpFrameworkMIBObjects" {
smiv2:oid "1.3.6.1.6.3.10.2";
}
smiv2:alias "snmpEngine" {
smiv2:oid "1.3.6.1.6.3.10.2.1";
}
smiv2:alias "snmpFrameworkMIBConformance" {
smiv2:oid "1.3.6.1.6.3.10.3";
}
smiv2:alias "snmpFrameworkMIBCompliances" {
smiv2:oid "1.3.6.1.6.3.10.3.1";
}
smiv2:alias "snmpFrameworkMIBGroups" {
smiv2:oid "1.3.6.1.6.3.10.3.2";
}
}