-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining_helpers.py
443 lines (359 loc) · 14.9 KB
/
training_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import math
import torch
import torch.nn as nn
import random
import numpy as np
import torch.nn.functional as F
import argparse
import os
import shutil
import time
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from torch.utils.data import Dataset
from torch.utils.data.dataset import random_split
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from neural_network import *
from utils import *
from metrics import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
import copy
def train_reject(train_loader, model, optimizer, scheduler, epoch, expert_fn, n_classes, alpha):
"""
Train for one epoch on the training set with deferral (L_{CE} loss)
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, expert, _, _ ) in enumerate(train_loader):
target = target.to(device)
input = input.to(device)
m = expert.to(device)
# compute output
output = model(input)
# get expert predictions and costs
batch_size = output.size()[0] # batch_size
m2 = [0] * batch_size
for j in range(0, batch_size):
if m[j].item() == target[j].item():
m[j] = 1
m2[j] = alpha
else:
m[j] = 0
m2[j] = 1
m = torch.tensor(m)
m2 = torch.tensor(m2)
m = m.to(device)
m2 = m2.to(device)
# done getting expert predictions and costs
# compute loss
criterion = nn.CrossEntropyLoss()
loss = reject_CrossEntropyLoss(output, m, target, m2, n_classes)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
def train_reject_class(train_loader, model, optimizer, scheduler, epoch, apply_softmax):
"""Train for one epoch on the training set without deferral
apply_softmax: boolean to apply softmax, if model last layer doesn't have softmax
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, expert, _, _ ) in enumerate(train_loader):
target = target.to(device)
input = input.to(device)
# compute output
output = model(input)
# compute loss
if apply_softmax:
loss = my_CrossEntropyLossWithSoftmax(output, target)
else:
loss = my_CrossEntropyLoss(output, target)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
def validate_reject(val_loader, model, epoch, expert_fn, n_classes):
"""Perform validation on the validation set with deferral"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, expert, _ , _ ) in enumerate(val_loader):
target = target.to(device)
input = input.to(device)
# compute output
with torch.no_grad():
output = model(input)
# expert prediction
batch_size = output.size()[0] # batch_size
m = expert
alpha = 1
m2 = [0] * batch_size
for j in range(0, batch_size):
if m[j] == target[j].item():
m[j] = 1
m2[j] = alpha
else:
m[j] = 0
m2[j] = 1
m = torch.tensor(m)
m2 = torch.tensor(m2)
m = m.to(device)
m2 = m2.to(device)
# compute loss
loss = reject_CrossEntropyLoss(output, m, target, m2, n_classes)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
def run_reject(model, n_dataset, expert_fn, epochs, alpha, train_loader, val_loader, best_on_val = False, epoch_freq = 10):
'''
Overall helper for training to defer (this is the function to call)
model: WideResNet model or pytorch model
n_dataset: number of classes
expert_fn: expert model
epochs: number of epochs to train
alpha: alpha parameter in L_{CE}^{\alpha}
train_loader:
val_loader:
best_on_val: whether to return the best model on the validation set
epoch_freq: how frequently to print metrics
'''
# Data loading code
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# for training on multiple GPUs.
# Use CUDA_VISIBLE_DEVICES=0,1 to specify which GPUs to use
# model = torch.nn.DataParallel(model).cuda()
model = model.to(device)
# optionally resume from a checkpoint
cudnn.benchmark = True
# define loss function (criterion) and optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
# cosine learning rate
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * epochs)
best_model = copy.deepcopy(model.state_dict())
best_val_score = 0
for epoch in range(0, epochs):
# train for one epoch
train_reject(train_loader, model, optimizer, scheduler, epoch, expert_fn, n_dataset, alpha)
if epoch % epoch_freq == 0:
score = metrics_print(model, expert_fn, n_dataset, val_loader)['system accuracy']
if score > best_val_score:
best_model = copy.deepcopy(model.state_dict())
if best_on_val:
return best_model
def run_reject_class(model, epochs, train_loader, val_loader, apply_softmax = False):
'''
only train classifier
model: WideResNet model
epochs: number of epochs to train
train_loader:
val_loader:
apply_softmax: apply softmax on top of model
'''
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# define loss function (criterion) and optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
# cosine learning rate
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * epochs)
for epoch in range(0, epochs):
# train for one epoch
train_reject_class(train_loader, model, optimizer, scheduler, epoch, apply_softmax)
#if epoch % 10 == 0:
#metrics_print_classifier(model, val_loader)
def train_expert_confidence(train_loader, model, optimizer, scheduler, epoch, apply_softmax):
"""Train for one epoch the model to predict expert agreement with label"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, label, expert_pred, _, _ ) in enumerate(train_loader):
expert_pred = expert_pred.long()
expert_pred = (expert_pred == label) *1
target = expert_pred.to(device)
input = input.to(device)
# compute output
output = model(input)
# compute loss
if apply_softmax:
loss = my_CrossEntropyLossWithSoftmax(output, target)
else:
loss = my_CrossEntropyLoss(output, target)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
def run_expert(model, epochs, train_loader, val_loader, apply_softmax = False):
'''
train expert model to predict disagreement with label
model: WideResNet model or pytorch model (2 outputs)
epochs: number of epochs to train
'''
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# define loss function (criterion) and optimizer
#optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
optimizer = torch.optim.SGD(model.parameters(), 0.001, #0.001
momentum=0.9, nesterov=True,
weight_decay=5e-4)
# cosine learning rate
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * epochs)
for epoch in range(0, epochs):
# train for one epoch
train_expert_confidence(train_loader, model, optimizer, scheduler, epoch, apply_softmax)
if epoch % 10 == 0:
metrics_print_expert(model, val_loader)
metrics_print_expert(model, val_loader)
def train_reject_pseudo(train_loader, model, optimizer, scheduler, epoch, expert_fn, n_classes, alpha):
"""Train for one epoch on the training set with deferral with pseudo labels"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, expert, _, _ ) in enumerate(train_loader):
target = target.to(device)
input = input.to(device)
m = expert.to(device)
# compute output
output = model(input)
# get expert predictions and costs
batch_size = output.size()[0] # batch_size
m2 = [1] * batch_size
m = torch.tensor(m)
m2 = torch.tensor(m2)
m = m.to(device)
m2 = m2.to(device)
# done getting expert predictions and costs
# compute loss
criterion = nn.CrossEntropyLoss()
loss = reject_CrossEntropyLoss(output, m, target, m2, n_classes)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % 10 == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
def run_reject_pseudo(model, n_dataset, expert_fn, epochs, alpha, train_loader, val_loader, best_on_val = False, epoch_freq = 10):
'''
This trains the model with labeled and pseudo labeled data, same mechanics as run_reject
'''
# Data loading code
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
# for training on multiple GPUs.
# Use CUDA_VISIBLE_DEVICES=0,1 to specify which GPUs to use
# model = torch.nn.DataParallel(model).cuda()
model = model.to(device)
# optionally resume from a checkpoint
cudnn.benchmark = True
# define loss function (criterion) and optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
# cosine learning rate
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * epochs)
best_model = copy.deepcopy(model.state_dict())
best_val_score = 0
for epoch in range(0, epochs):
# train for one epoch
train_reject_pseudo(train_loader, model, optimizer, scheduler, epoch, expert_fn, n_dataset, alpha)
if epoch % epoch_freq == 0:
score = metrics_print(model, expert_fn, n_dataset, val_loader)['system accuracy']
if score > best_val_score:
best_model = copy.deepcopy(model.state_dict())
if best_on_val:
return best_model