-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdeferral_finetune_with_hf_trainer.sh
executable file
·79 lines (73 loc) · 2.95 KB
/
deferral_finetune_with_hf_trainer.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
export CUDA_VISIBLE_DEVICES=0,1,2,3
export PYTHONPATH="${PYTHONPATH}:$(pwd)"
DATASET_BASE_PATH="checkpoints/dataset"
LLAMA_BASE_PATH="./weights"
BASE_SAVE_PATH="checkpoints/deferral_finetuned"
DATASET_NAME="gsm8k-completion/Llama-2-70b-hf"
DEFERRAL_INIT_DATASET="gsm8k-completion/init-a-Llama-2-7b-hf+Llama-2-70b-hf"
MODEL_NAME="Llama-2-7b-hf"
NUM_GPUS=4
BATCH_SIZE_PER_GPU=2
TOTAL_BATCH_SIZE=128
GRADIENT_ACC_STEPS=$(($TOTAL_BATCH_SIZE/$NUM_GPUS/$BATCH_SIZE_PER_GPU))
echo "Training llama model ${MODEL_NAME} using $NUM_GPUS GPUs, $BATCH_SIZE_PER_GPU batch size per GPU, $GRADIENT_ACC_STEPS gradient accumulation steps"
export WANDB_PROJECT="deferral_finetune-${DATASET_NAME//\//_}-${MODEL_NAME}-$(date +'%y-%m-%d-%H-%M')"
# It will run two times, one for searching the gperp and one for real training
python collm/training/deferral_trainer_hf.py \
--model_name_or_path ${LLAMA_BASE_PATH}/${MODEL_NAME} \
--tokenizer_name ${LLAMA_BASE_PATH}/${MODEL_NAME} \
--use_fast_tokenizer False \
--dataset_name ${DATASET_BASE_PATH}/${DEFERRAL_INIT_DATASET} \
--deferral_initialization_weight_balance 8 \
--deferral_initialization_search_version "v1" \
--max_seq_length 2048 \
--use_flash_attn \
--deferral_initialization_search_max_steps 8000 \
--do_train \
--per_device_train_batch_size $BATCH_SIZE_PER_GPU \
--gradient_accumulation_steps $GRADIENT_ACC_STEPS \
--learning_rate 2e-5 \
--lr_scheduler_type linear \
--torch_dtype "bfloat16" \
--warmup_ratio 0.04 \
--weight_decay 0. \
--evaluation_strategy "no" \
--logging_steps 1 \
--save_strategy epoch \
--save_total_limit 1 \
--num_train_epochs 2 \
--output_dir ${BASE_SAVE_PATH}/${DATASET_NAME//\//_}/${MODEL_NAME}~${TOTAL_BATCH_SIZE}bz \
--bf16 \
--tf32 True \
--report_to "wandb" \
--log_level "info"
deepspeed --master_port 29600 --include=localhost:0,1,2,3 collm/training/deferral_trainer_hf.py \
--deepspeed ds_configs/stage2_no_offloading.conf \
--model_name_or_path ${LLAMA_BASE_PATH}/${MODEL_NAME} \
--tokenizer_name ${LLAMA_BASE_PATH}/${MODEL_NAME} \
--use_flash_attn True \
--use_fast_tokenizer False \
--dataset_name ${DATASET_BASE_PATH}/${DATASET_NAME} \
--deferral_initialization_search_max_steps 8000 \
--deferral_trainer_version "v1" \
--max_seq_length 2048 \
--preprocessing_num_workers 64 \
--do_train \
--per_device_train_batch_size $BATCH_SIZE_PER_GPU \
--gradient_accumulation_steps $GRADIENT_ACC_STEPS \
--learning_rate 2e-5 \
--lr_scheduler_type linear \
--warmup_ratio 0.04 \
--weight_decay 0. \
--evaluation_strategy "no" \
--logging_steps 1 \
--save_strategy epoch \
--save_total_limit 1 \
--num_train_epochs 2 \
--output_dir ${BASE_SAVE_PATH}/${DATASET_NAME//\//_}/${MODEL_NAME}~${TOTAL_BATCH_SIZE}bz \
--bf16 \
--tf32 True \
--torch_dtype bfloat16 \
--overwrite_output_dir \
--report_to "wandb" \
--log_level "info"