-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_data.py
152 lines (126 loc) · 8.79 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import pandas as pd
import nltk
from nltk.util import ngrams
from gensim import corpora, models, similarities
import numpy as np
from tweet_process import Tweet_process
from text_process import Text_process
from tqdm import tqdm
tqdm.pandas()
import os
import glob
from helpers import create_folder_path, write_csv_file, save_pk_file, load_pk_file
def similarity_calculator(headline, content):
"""
https://dev.to/coderasha/compare-documents-similarity-using-python-nlp-4odp
https://medium.com/better-programming/introduction-to-gensim-calculating-text-similarity-9e8b55de342d
"""
dictionary = corpora.Dictionary(content)
corpus = [dictionary.doc2bow(text) for text in content]
tf_idf = models.TfidfModel(corpus)
headline_vector = dictionary.doc2bow(headline)
headline_vector_tf_idf = tf_idf[headline_vector]
index = similarities.SparseMatrixSimilarity(tf_idf[corpus],num_features = len(dictionary))
sim_scores = index[headline_vector_tf_idf]
#sum_of_sims =(np.sum(sims, dtype=np.float32))
#avr_sims = float(sum_of_sims/len(content))
#percentage_of_similarity = round(float((sum_of_sims / len(content)) * 100))
return sim_scores
def preprocess_text(column):
"""Preprocessing text data
column: dataframs column that contains text data
Return a dataframe containing processed data
"""
processed_data = pd.DataFrame()
docs = column.progress_map(lambda text: Text_process(text))
processed_data["token"] = docs.progress_map(lambda doc:Text_process.tokenizer(doc))
processed_data["num_token"] = processed_data["token"].progress_map(lambda x: len(x))
processed_data["avr_token_len"] = processed_data["token"].progress_map(lambda x: round(sum(len(i) for i in x)/len(x)))
processed_data["punct"] = docs.progress_map(lambda doc:Text_process.get_punct(doc))
contr = docs.progress_map(lambda doc:Text_process.get_contr(doc))
processed_data["num_contr"] = contr.progress_map(lambda x: len(x))
processed_data["pos"] = docs.progress_map(lambda doc:Text_process.pos_tagger(doc))
processed_data["tag"] = docs.progress_map(lambda doc: Text_process.tag_tagger(doc))
processed_data["pos_trigram"] = processed_data["pos"].progress_map(lambda token: list(ngrams(token,3)))
processed_data["pos_fourgram"] = processed_data["pos"].progress_map(lambda token: list(ngrams(token,4)))
processed_data["max_dep_path"] = docs.progress_map(lambda doc: Text_process.max_dep_path(doc))
processed_data["dep"] = docs.progress_map(lambda doc:Text_process.dep_parser(doc))
processed_data["arg"] = docs.progress_map(lambda doc: Text_process.get_arg(doc))
processed_data["root"] = docs.progress_map(lambda doc: Text_process.get_root(doc))
processed_data["det"] = docs.progress_map(lambda doc: Text_process.get_det(doc))
processed_data["advmod"] = docs.progress_map(lambda doc: Text_process.get_advmod(doc))
processed_data["verb"] = docs.progress_map(lambda doc: Text_process.get_verb(doc))
processed_data["nn"] = docs.progress_map(lambda doc: Text_process.get_nn(doc))
processed_data["adj"] = docs.progress_map(lambda doc: Text_process.get_adj(doc))
processed_data["pron"] = docs.progress_map(lambda doc: Text_process.get_pron(doc))
processed_data["adv"] = docs.progress_map(lambda doc: Text_process.get_adv(doc))
processed_data["ent"] = docs.progress_map(lambda doc:Text_process.get_ent(doc))
processed_data["ent_label"] = docs.progress_map(lambda doc:Text_process.get_ent_label(doc))
processed_data["chunk_dep"] = docs.progress_map(lambda doc:Text_process.get_chunk_dep(doc))
processed_data["senti_score"] = docs.progress_map(lambda doc:Text_process.senti_score(doc))
processed_data["use_question"] = docs.progress_map(lambda doc:Text_process.check_question_form(doc))
processed_data["use_passive"] = docs.progress_map(lambda doc: Text_process.check_passive(doc))
processed_data["use_supper"] = docs.progress_map(lambda doc: Text_process.check_supper(doc) )
processed_data["use_if"] = docs.progress_map(lambda doc: Text_process.check_conditional(doc))
processed_data["use_list"] = docs.progress_map(lambda doc: Text_process.check_listicle(doc))
processed_data["use_modal"] = docs.progress_map(lambda doc: Text_process.check_modal(doc))
#processed_data["dep_bigram"] = processed_data["dep"].progress_map(lambda token: list(ngrams(token,2)))
#processed_data["dep_trigram"] = processed_data["dep"].progress_map(lambda token: list(ngrams(token,3)))
#use_det = docs.progress_map(lambda doc: Text_process.check_det(doc))
#lemma = docs.progress_map(lambda doc:Text_process.lemmatizer(doc))
#lemma_bigram = token.progress_map(lambda token: list(ngrams(lemma, 2)))
#lemma_trigram = token.progress_map(lambda token: list(ngrams(lemma, 3)))
#tokenized_sent = docs.progress_map(lambda doc:Text_processing.tokenised_sentencier(doc))
#nn_chunk = docs.progress_map(lambda doc:Text_process.get_nn_chunk(doc))
#ent = docs.progress_map(lambda doc:Text_process.get_ent(doc))
#pos_bigram = pos.progress_map(lambda token: list(ngrams(token, 2)))
#dep_sub = docs.progress_map(lambda doc: Text_process.get_dep_subtree(doc))
#use_comp = tag.progress_map(lambda x: True if "JJC" in x or "RBR" in x else False)
return processed_data
def preprocess(in_folder, out_folder):
"""
Preprocess the data file in in_folder and return the processed data to out_folder
in_folder: path to folder containing the data file
out_folder: path to folder in which the processed data file is saved
"""
processed_folder = create_folder_path(out_folder)
for file_name in glob.glob(os.path.join(in_folder, '*.pk')):
print(f"Reading {file_name}")
load_data = load_pk_file(file_name)
headlines = load_data["targetTitle"]
processed_headlines = preprocess_text(headlines)
processed_data = pd.concat([headlines, processed_headlines], axis=1)
processed_data["truthClass"] = load_data["truthClass"]
if len(load_data.columns) > 2:
processed_data["targetParagraphs"] = load_data["targetParagraphs"]
docs = processed_data["targetParagraphs"].progress_map(lambda text: [] if text == [] else Text_process(text))
processed_data["cont_sent"] = docs.progress_map(lambda doc: [] if doc == [] else Text_process.tokenised_sentencier(doc))
processed_data["cont_num_sent"] = processed_data["cont_sent"].progress_map(lambda x: len(x))
processed_data["cont_avr_sent_len"] = processed_data["cont_sent"].progress_map(lambda x: 0 if len(x) == 0 else round(sum(len(i) for i in x)/len(x)))
processed_data["cont_token"] = docs.progress_map(lambda doc: [] if doc == [] else Text_process.tokenizer(doc))
processed_data ["cont_num_token"] = processed_data["cont_token"].progress_map(lambda x: len(x))
processed_data["cont_avr_token_len"] = processed_data["cont_token"].progress_map(lambda x: 0 if len(x) == 0 else round(sum(len(i) for i in x )/len(x)))
processed_data["cont_arg"] = docs.progress_map(lambda doc: Text_process.get_arg(doc))
processed_data["cont_root"] = docs.progress_map(lambda doc: Text_process.get_root(doc))
processed_data["cont_ent"] = docs.progress_map(lambda doc:Text_process.get_ent(doc))
processed_data["cont_ent_label"] = docs.progress_map(lambda doc:Text_process.get_ent_label(doc))
processed_data["cont_senti_score"] = docs.progress_map(lambda doc:Text_process.senti_score(doc))
sim_scores = []
for i, row in processed_data[["token","cont_sent"]].iterrows():
if row["cont_sent"] == []:
score = "NA"
sim_scores.append(score)
else:
sim_score = similarity_calculator(row["token"], row["cont_sent"])
sim_scores.append(sim_score)
#processed_data.at[i,'sim_score'] = sim_score
processed_data["sim_score"] = sim_scores
processed_data["avr_sim_score"] = processed_data["sim_score"].progress_map(lambda score: "NA" if score == "NA" else float(np.sum(score)/len(score)))
processed_data["sim_pct"] = processed_data["sim_score"].progress_map(lambda score: "NA" if score == "NA" else round(np.count_nonzero(score)/len(score)*100))
processed_data.drop(columns=['sim_score'])
save_file_name = processed_folder+'/'+ os.path.basename(file_name).replace(".pk","")
#write_csv_file(processed_data,save_file_name)
save_pk_file(processed_data,save_file_name)
print(save_file_name)
if __name__ == "__main__":
preprocess("Data", "Processed_data")