forked from CMU-TBD/Group_based_navigation_v1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
img_process.py
190 lines (172 loc) · 7.26 KB
/
img_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import cv2
import numpy as np
from message import Message
from PIL import Image
class ProcessImage(object):
def __init__(self, msg, img_seq):
self.frame_width = msg.frame_width
self.frame_height = msg.frame_height
frame_width = self.frame_width
frame_height = self.frame_height
left = frame_width / 2
up = frame_height / 2
right = frame_width / 2
low = frame_height / 2
for img in img_seq:
im = Image.fromarray(np.uint8(img))
bbox = im.getbbox()
if bbox == None:
continue
if bbox[0] < left:
left = bbox[0]
if bbox[1] < up:
up = bbox[1]
if bbox[2] > right:
right = bbox[2]
if bbox[3] > low:
low = bbox[3]
upper_left = (left, up)
lower_right = (right, low)
upper_left_p = (frame_width - upper_left[0], frame_height - upper_left[1])
lower_right_p = (frame_width - lower_right[0], frame_height - lower_right[1])
self.bbox_crop = (min(upper_left[0], lower_right[0], upper_left_p[0], lower_right_p[0]),
min(upper_left[1], lower_right[1], upper_left_p[1], lower_right_p[1]),
max(upper_left[0], lower_right[0], upper_left_p[0], lower_right_p[0]),
max(upper_left[1], lower_right[1], upper_left_p[1], lower_right_p[1]))
self.box_size = (self.bbox_crop[2] - self.bbox_crop[0],
self.bbox_crop[3] - self.bbox_crop[1])
self.process_scale = 224.0 / max(self.box_size)
self.new_size = (int(self.box_size[0] * self.process_scale),
int(self.box_size[1] * self.process_scale))
return
def process_image(self, img, debug=False):
im = Image.fromarray(np.uint8(img))
im = im.crop(self.bbox_crop)
paste_im = im.resize(self.new_size)
im = Image.new('RGB', (224, 224))
im.paste(paste_im, (112 - paste_im.size[0] // 2, 112 - paste_im.size[1] // 2))
if debug:
return np.array(im)
else:
im = np.array(im) / 255.0
im = im[:, :, 0]
im = np.expand_dims(im, axis = 2)
return im
def reverse_process_image(self, img, debug=False):
im = Image.fromarray(np.uint8(img))
new_crop = (112 - self.new_size[0] // 2,
112 - self.new_size[1] // 2,
112 + int(np.ceil(self.new_size[0] / 2)),
112 + int(np.ceil(self.new_size[1] / 2)))
im = im.crop(new_crop)
paste_im = im.resize(self.box_size)
im = Image.new('RGB', (self.frame_width, self.frame_height))
im.paste(paste_im, (self.bbox_crop[0], self.bbox_crop[1]))
if debug:
return np.array(im)
else:
im = np.array(im) / 255.0
im = im[:, :, 0]
im = np.expand_dims(im, axis = 2)
return im
class DrawGroupShape(object):
def __init__(self, msg):
self.H = msg.H
self.dataset = msg.dataset
self.frame_width = msg.frame_width
self.frame_height = msg.frame_height
self.center_set = False
self.aug_set = False
return
def coordinate_transform(self, coord):
# Transform the coordinates from metric space into pixel space
# Units are now pixels instead of meters after the transformation.
pt = np.matmul(np.linalg.inv(self.H), [[coord[0]], [coord[1]], [1.0]])
x = pt[0][0] / pt[2][0]
y = pt[1][0] / pt[2][0]
if self.dataset == 'ucy':
tmp_y = y
y = self.frame_width / 2 + x
x = self.frame_height / 2 - tmp_y
x = int(round(x))
y = int(round(y))
return (y, x)
def set_center(self, vertice_seq):
self.center_set = True
vertices = vertice_seq[-1]
center = [0, 0]
for v in vertices:
center[0] += v[0]
center[1] += v[1]
center[0] = center[0] / float(len(vertices))
center[1] = center[1] / float(len(vertices))
center = self.coordinate_transform(center)
self.center_offset = (self.frame_width / 2 - center[0],
self.frame_height / 2 - center[1])
return
def set_aug(self, angle=None, trans=None):
self.aug_set = True
if angle is None:
self.aug_angle = np.random.choice(360)
else:
self.aug_angle = angle
if trans is None:
self.aug_trans = (0, 0)
else:
self.aug_trans = trans
return
def move_center(self, coord):
x = coord[0] + self.center_offset[0]
y = coord[1] + self.center_offset[1]
return (int(x), int(y))
def reverse_move_center(self, coord):
x = coord[0] - self.center_offset[0]
y = coord[1] - self.center_offset[1]
return (int(x), int(y))
def reverse_move_center_img(self, img):
M = np.array([[1, 0, -self.center_offset[0]], [0, 1, -self.center_offset[1]]])
rst = cv2.warpAffine(img, M, (self.frame_width, self.frame_height))
return rst
def aug_transform(self, coord):
x = coord[0] + self.aug_trans[0]
y = coord[1] + self.aug_trans[1]
x -= self.frame_width / 2
y -= self.frame_height / 2
nx = np.cos(self.aug_angle) * x - np.sin(self.aug_angle) * y
ny = np.sin(self.aug_angle) * x + np.cos(self.aug_angle) * y
nx += self.frame_width / 2
ny += self.frame_height / 2
return (int(nx), int(ny))
def reverse_aug_transform(self, coord):
x = coord[0]
y = coord[1]
x -= self.frame_width / 2
y -= self.frame_height / 2
nx = np.cos(-self.aug_angle) * x - np.sin(-self.aug_angle) * y
ny = np.sin(-self.aug_angle) * x + np.cos(-self.aug_angle) * y
nx += self.frame_width / 2
ny += self.frame_height / 2
return (int(nx) - self.aug_trans[0], int(ny) - self.aug_trans[1])
def reverse_aug_transform_img(self, img):
M = np.array([[1.0, 0, -self.aug_trans[0]],
[0, 1.0, -self.aug_trans[1]]])
img = cv2.warpAffine(img, M, (self.frame_width, self.frame_height))
M = cv2.getRotationMatrix2D((self.frame_width / 2, self.frame_height / 2),
-self.aug_angle / np.pi * 180, 1)
img = cv2.warpAffine(img, M, (self.frame_width, self.frame_height))
return img
def draw_group_shape(self, vertices, frame, center=False, aug=False):
convex_hull_vertices = []
for i, elem in enumerate(vertices):
coord = self.coordinate_transform(elem)
if center and self.center_set:
coord = self.move_center(coord)
elif center and (not self.center_set):
print('Warning! Centering parameters not set so not performed!')
if aug and self.aug_set:
coord = self.aug_transform(coord)
elif aug and (not self.aug_set):
print('Warning! Augmentation parameterss not set so not performed!')
convex_hull_vertices.append(coord)
cv2.fillConvexPoly(frame, np.array(convex_hull_vertices), (255, 255, 255))
return frame