Skip to content

Commit 47dc744

Browse files
committed
New Problem Solution -"Maximize Number of Nice Divisors"
1 parent 3d9ce82 commit 47dc744

File tree

2 files changed

+141
-0
lines changed

2 files changed

+141
-0
lines changed

README.md

+1
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ LeetCode
99

1010
| # | Title | Solution | Difficulty |
1111
|---| ----- | -------- | ---------- |
12+
|1808|[Maximize Number of Nice Divisors](https://leetcode.com/problems/maximize-number-of-nice-divisors/) | [C++](./algorithms/cpp/maximizeNumberOfNiceDivisors/MaximizeNumberOfNiceDivisors.cpp)|Hard|
1213
|1807|[Evaluate the Bracket Pairs of a String](https://leetcode.com/problems/evaluate-the-bracket-pairs-of-a-string/) | [C++](./algorithms/cpp/evaluateTheBracketPairsOfAString/EvaluateTheBracketPairsOfAString.cpp)|Medium|
1314
|1806|[Minimum Number of Operations to Reinitialize a Permutation](https://leetcode.com/problems/minimum-number-of-operations-to-reinitialize-a-permutation/) | [C++](./algorithms/cpp/minimumNumberOfOperationsToReinitializeAPermutation/MinimumNumberOfOperationsToReinitializeAPermutation.cpp)|Medium|
1415
|1805|[Number of Different Integers in a String](https://leetcode.com/problems/number-of-different-integers-in-a-string/) | [C++](./algorithms/cpp/numberOfDifferentIntegersInAString/NumberOfDifferentIntegersInAString.cpp)|Easy|
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,140 @@
1+
// Source : https://leetcode.com/problems/maximize-number-of-nice-divisors/
2+
// Author : Hao Chen
3+
// Date : 2021-03-28
4+
5+
/*****************************************************************************************************
6+
*
7+
* You are given a positive integer primeFactors. You are asked to construct a positive integer n that
8+
* satisfies the following conditions:
9+
*
10+
* The number of prime factors of n (not necessarily distinct) is at most primeFactors.
11+
* The number of nice divisors of n is maximized. Note that a divisor of n is nice if it is
12+
* divisible by every prime factor of n. For example, if n = 12, then its prime factors are [2,2,3],
13+
* then 6 and 12 are nice divisors, while 3 and 4 are not.
14+
*
15+
* Return the number of nice divisors of n. Since that number can be too large, return it modulo 10^9
16+
* + 7.
17+
*
18+
* Note that a prime number is a natural number greater than 1 that is not a product of two smaller
19+
* natural numbers. The prime factors of a number n is a list of prime numbers such that their product
20+
* equals n.
21+
*
22+
* Example 1:
23+
*
24+
* Input: primeFactors = 5
25+
* Output: 6
26+
* Explanation: 200 is a valid value of n.
27+
* It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200].
28+
* There is not other value of n that has at most 5 prime factors and more nice divisors.
29+
*
30+
* Example 2:
31+
*
32+
* Input: primeFactors = 8
33+
* Output: 18
34+
*
35+
* Constraints:
36+
*
37+
* 1 <= primeFactors <= 10^9
38+
******************************************************************************************************/
39+
40+
/*
41+
considering `primeFactors = 5`
42+
43+
So, we can have the following options:
44+
1) [2,3,5,7,11] - all of factors are different, then we only can have 1 nice divisor
45+
2) [2,2,3,5,7] - we can have 2*1*1*1 = 2 nice divisors: 2*3*5*7 and 2*2*3*5*7
46+
3) [2,2,3,3,5] - we can have 2*2*1 = 4 nice divisors: 2*3*5, 2*2*3*5, 2*3*3*5, 2*2*3*3*5
47+
4) [2,2,3,3,3] - we can have 2*3 = 6 nice divisors
48+
5)[2,2,2,2,3] - we can have 4*1 =4 nice divisors: 2*3, 2*2*3, 2*2*2*3, 2*2*2*2*3
49+
6) [2,2,2,2,2] - we can have 5 nice divisors: 2, 2*2, 2*2*2, 2*2*2*2, 2*2*2*2*2
50+
51+
So, we can see we must have some duplicated factors.
52+
53+
And what is the best number of duplication ?
54+
primeFactors = 1, then 1 - example: [2]
55+
primeFactors = 2, then 2 - example: [2,2]
56+
primeFactors = 3, then 3 - example: [5,5,5]
57+
primeFactors = 4, then 4 = 2*2 - example: [2,2,5,5])
58+
primeFactors = 5, then 5 = 2*3 - example: [3,3,3,5,5])
59+
primeFactors = 5, then 6 = 3*3 - example: [3,3,3,5,5,5])
60+
primeFactors = 7, then 3*4 = 12 - example: [3,3,3,5,5,5,5])
61+
primeFactors = 8, then 3*3*2 = 18 whcih > (2*2*2*2, 2*4*2, 3*5)
62+
primeFactors = 9, then 3*3*3 = 27
63+
primeFactors = 10, then 3*3*4 = 36
64+
65+
So, we can see the '3' & '4' are specifial,
66+
- most of case, we can be greedy for `3`
67+
- but if the final rest is 4, then we need take 4.
68+
69+
*/
70+
71+
const int mod = 1000000007;
72+
73+
class Solution {
74+
public:
75+
int maxNiceDivisors(int primeFactors) {
76+
return maxNiceDivisors_03(primeFactors);
77+
return maxNiceDivisors_02(primeFactors); //TLE
78+
return maxNiceDivisors_01(primeFactors); //TLE
79+
}
80+
81+
int maxNiceDivisors_01(int primeFactors) {
82+
int result = 1;
83+
while ( primeFactors > 4 ) {
84+
primeFactors -= 3;
85+
result = (result * 3l) % mod;
86+
}
87+
result = (result * (long)primeFactors) % mod;
88+
return result;
89+
}
90+
91+
int maxNiceDivisors_02(int primeFactors) {
92+
if (primeFactors <= 4 ) return primeFactors;
93+
int result = 1;
94+
for (int i = 4; i > 0; i-- ){
95+
if ((primeFactors - i) % 3 == 0){
96+
result = i;
97+
primeFactors -= i;
98+
// now, `primeFactors` is 3 times - 3X
99+
// we need convert 3X to 3^X
100+
for (int x = primeFactors/3; x > 0; x-- ) {
101+
result = (result * 3l) % mod;
102+
}
103+
break;
104+
}
105+
}
106+
return result;
107+
}
108+
109+
int pow3(int x) {
110+
long result = 1;
111+
long factor = 3;
112+
while(x > 0) {
113+
if (x & 1) {
114+
result = (result * factor) % mod;
115+
116+
}
117+
factor *= factor;
118+
factor %= mod;
119+
x /= 2;
120+
}
121+
return result % mod;
122+
}
123+
124+
int maxNiceDivisors_03(int primeFactors) {
125+
126+
if (primeFactors <= 4 ) return primeFactors;
127+
int result = 1;
128+
for (int i = 4; i > 0; i-- ){
129+
if ((primeFactors - i) % 3 == 0){
130+
primeFactors -= i;
131+
// now, `primeFactors` is 3 times - 3X
132+
// we need convert 3X to 3^X
133+
int x = primeFactors / 3;
134+
result = (long(i) * pow3(x)) % mod;
135+
break;
136+
}
137+
}
138+
return result;
139+
}
140+
};

0 commit comments

Comments
 (0)