|
| 1 | +// Source : https://leetcode.com/problems/maximize-number-of-nice-divisors/ |
| 2 | +// Author : Hao Chen |
| 3 | +// Date : 2021-03-28 |
| 4 | + |
| 5 | +/***************************************************************************************************** |
| 6 | + * |
| 7 | + * You are given a positive integer primeFactors. You are asked to construct a positive integer n that |
| 8 | + * satisfies the following conditions: |
| 9 | + * |
| 10 | + * The number of prime factors of n (not necessarily distinct) is at most primeFactors. |
| 11 | + * The number of nice divisors of n is maximized. Note that a divisor of n is nice if it is |
| 12 | + * divisible by every prime factor of n. For example, if n = 12, then its prime factors are [2,2,3], |
| 13 | + * then 6 and 12 are nice divisors, while 3 and 4 are not. |
| 14 | + * |
| 15 | + * Return the number of nice divisors of n. Since that number can be too large, return it modulo 10^9 |
| 16 | + * + 7. |
| 17 | + * |
| 18 | + * Note that a prime number is a natural number greater than 1 that is not a product of two smaller |
| 19 | + * natural numbers. The prime factors of a number n is a list of prime numbers such that their product |
| 20 | + * equals n. |
| 21 | + * |
| 22 | + * Example 1: |
| 23 | + * |
| 24 | + * Input: primeFactors = 5 |
| 25 | + * Output: 6 |
| 26 | + * Explanation: 200 is a valid value of n. |
| 27 | + * It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200]. |
| 28 | + * There is not other value of n that has at most 5 prime factors and more nice divisors. |
| 29 | + * |
| 30 | + * Example 2: |
| 31 | + * |
| 32 | + * Input: primeFactors = 8 |
| 33 | + * Output: 18 |
| 34 | + * |
| 35 | + * Constraints: |
| 36 | + * |
| 37 | + * 1 <= primeFactors <= 10^9 |
| 38 | + ******************************************************************************************************/ |
| 39 | + |
| 40 | +/* |
| 41 | + considering `primeFactors = 5` |
| 42 | + |
| 43 | + So, we can have the following options: |
| 44 | + 1) [2,3,5,7,11] - all of factors are different, then we only can have 1 nice divisor |
| 45 | + 2) [2,2,3,5,7] - we can have 2*1*1*1 = 2 nice divisors: 2*3*5*7 and 2*2*3*5*7 |
| 46 | + 3) [2,2,3,3,5] - we can have 2*2*1 = 4 nice divisors: 2*3*5, 2*2*3*5, 2*3*3*5, 2*2*3*3*5 |
| 47 | + 4) [2,2,3,3,3] - we can have 2*3 = 6 nice divisors |
| 48 | + 5)[2,2,2,2,3] - we can have 4*1 =4 nice divisors: 2*3, 2*2*3, 2*2*2*3, 2*2*2*2*3 |
| 49 | + 6) [2,2,2,2,2] - we can have 5 nice divisors: 2, 2*2, 2*2*2, 2*2*2*2, 2*2*2*2*2 |
| 50 | + |
| 51 | + So, we can see we must have some duplicated factors. |
| 52 | + |
| 53 | + And what is the best number of duplication ? |
| 54 | + primeFactors = 1, then 1 - example: [2] |
| 55 | + primeFactors = 2, then 2 - example: [2,2] |
| 56 | + primeFactors = 3, then 3 - example: [5,5,5] |
| 57 | + primeFactors = 4, then 4 = 2*2 - example: [2,2,5,5]) |
| 58 | + primeFactors = 5, then 5 = 2*3 - example: [3,3,3,5,5]) |
| 59 | + primeFactors = 5, then 6 = 3*3 - example: [3,3,3,5,5,5]) |
| 60 | + primeFactors = 7, then 3*4 = 12 - example: [3,3,3,5,5,5,5]) |
| 61 | + primeFactors = 8, then 3*3*2 = 18 whcih > (2*2*2*2, 2*4*2, 3*5) |
| 62 | + primeFactors = 9, then 3*3*3 = 27 |
| 63 | + primeFactors = 10, then 3*3*4 = 36 |
| 64 | + |
| 65 | + So, we can see the '3' & '4' are specifial, |
| 66 | + - most of case, we can be greedy for `3` |
| 67 | + - but if the final rest is 4, then we need take 4. |
| 68 | + |
| 69 | + */ |
| 70 | + |
| 71 | +const int mod = 1000000007; |
| 72 | + |
| 73 | +class Solution { |
| 74 | +public: |
| 75 | + int maxNiceDivisors(int primeFactors) { |
| 76 | + return maxNiceDivisors_03(primeFactors); |
| 77 | + return maxNiceDivisors_02(primeFactors); //TLE |
| 78 | + return maxNiceDivisors_01(primeFactors); //TLE |
| 79 | + } |
| 80 | + |
| 81 | + int maxNiceDivisors_01(int primeFactors) { |
| 82 | + int result = 1; |
| 83 | + while ( primeFactors > 4 ) { |
| 84 | + primeFactors -= 3; |
| 85 | + result = (result * 3l) % mod; |
| 86 | + } |
| 87 | + result = (result * (long)primeFactors) % mod; |
| 88 | + return result; |
| 89 | + } |
| 90 | + |
| 91 | + int maxNiceDivisors_02(int primeFactors) { |
| 92 | + if (primeFactors <= 4 ) return primeFactors; |
| 93 | + int result = 1; |
| 94 | + for (int i = 4; i > 0; i-- ){ |
| 95 | + if ((primeFactors - i) % 3 == 0){ |
| 96 | + result = i; |
| 97 | + primeFactors -= i; |
| 98 | + // now, `primeFactors` is 3 times - 3X |
| 99 | + // we need convert 3X to 3^X |
| 100 | + for (int x = primeFactors/3; x > 0; x-- ) { |
| 101 | + result = (result * 3l) % mod; |
| 102 | + } |
| 103 | + break; |
| 104 | + } |
| 105 | + } |
| 106 | + return result; |
| 107 | + } |
| 108 | + |
| 109 | + int pow3(int x) { |
| 110 | + long result = 1; |
| 111 | + long factor = 3; |
| 112 | + while(x > 0) { |
| 113 | + if (x & 1) { |
| 114 | + result = (result * factor) % mod; |
| 115 | + |
| 116 | + } |
| 117 | + factor *= factor; |
| 118 | + factor %= mod; |
| 119 | + x /= 2; |
| 120 | + } |
| 121 | + return result % mod; |
| 122 | + } |
| 123 | + |
| 124 | + int maxNiceDivisors_03(int primeFactors) { |
| 125 | + |
| 126 | + if (primeFactors <= 4 ) return primeFactors; |
| 127 | + int result = 1; |
| 128 | + for (int i = 4; i > 0; i-- ){ |
| 129 | + if ((primeFactors - i) % 3 == 0){ |
| 130 | + primeFactors -= i; |
| 131 | + // now, `primeFactors` is 3 times - 3X |
| 132 | + // we need convert 3X to 3^X |
| 133 | + int x = primeFactors / 3; |
| 134 | + result = (long(i) * pow3(x)) % mod; |
| 135 | + break; |
| 136 | + } |
| 137 | + } |
| 138 | + return result; |
| 139 | + } |
| 140 | +}; |
0 commit comments