-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
executable file
·184 lines (146 loc) · 4.51 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#
#Copyright (C) 2020-2021 ISTI-CNR
#Licensed under the BSD 3-Clause Clear License (see license.txt)
#
import os
import numpy as np
from PIL import Image
from torch.utils import data
import torch
from util import *
from sklearn.model_selection import train_test_split
import sys
import pandas as pd
#
#
#
def split_data(fq_vec, group=1, fps = 30):
if group > 1:
index_v = []
fq_v = []
group_v = []
for i in range(0, len(fq_vec)):
fq_i = fq_vec[i]
index = int(i * fps)
for j in range(0, group):
fq_v.append(fq_i)
index_v.append(index)
group_v.append(j)
d = {'Fq': fq_v, 'Index': index_v, 'Group': group_v}
data = pd.DataFrame(data=d)
data = [data[i:i + group] for i in range(0, len(data), group)]
else:
index_v = []
fq_v = []
for i in range(0, len(fq_vec)):
fq_i = fq_vec[i]
index = int(i * fps)
fq_v.append(fq_i)
index_v.append(index)
d = {'Fq': fq_v, 'Index': index_v}
data = pd.DataFrame(data=d)
train, val = train_test_split(data, test_size=0.2, random_state=42)
if (group > 1):
train = pd.concat(train)
val = pd.concat(val)
return train, val
#
#
#
def ReadFQFile(fn):
fq_vec = []
with open(fn) as f:
for line in f: # read rest of lines
value = [float(x) for x in line.split()]
fq_vec.append(value[0])
return fq_vec
#
#
#
def ReadImageFileNames(data):
frames_names_tmp = [f for f in os.listdir(data) if f.endswith('.jpg')]
for i in range(0, len(frames_names_tmp)):
frames_names_tmp[i] = os.path.join(data, frames_names_tmp[i])
frames_names_tmp = sorted(frames_names_tmp)
return frames_names_tmp
#
#
#
def ReadDataset(data, group = 1, method = 'our', fps = 30):
video_folders = os.listdir(data)
video_folders = sorted(video_folders)
fq_vec = []
img_vec =[]
for i in range(0, len(video_folders)):
v = video_folders[i]
if(os.path.isfile(os.path.join(data, v))):
continue
if(v.startswith(".")):
continue
path_fq_v = os.path.join(os.path.join(data, v), 'fq_' + method + '.txt')
if not os.path.exists(path_fq_v):
continue
fq_vec_v = ReadFQFile(path_fq_v)
max_frames = int(fps * len(fq_vec_v))
fq_vec += fq_vec_v
path_img_fn = os.path.join(data, os.path.join(v, 'data_pre'))
img_vec_v = ReadImageFileNames(path_img_fn)
print(v + " - Usable Max Frames: " + str(max_frames) + " Frames: " + str(len(img_vec_v)))
img_vec_v = img_vec_v[0:max_frames]
img_vec += img_vec_v
return fq_vec, img_vec
#
#
#
class DatasetModelVideo(data.Dataset):
#
#
#
def __init__(self, data, img_vec, fps = 30, transform = None, group = 1, differential = 0):
self.differential = differential
self.fps = int(fps)
self.transform = transform
self.data = data
self.img_vec = img_vec
self.group = group
#
#
#
def __len__(self):
return len(self.data)
#
#
#
def read_images(self, index):
sample = self.data.iloc[index]
#
j = int(sample.Index)
X = []
for i in range(0, self.fps):
name = self.img_vec[i + j]
image = Image.open(name)
if self.group > 1:
image = dataAugmentation(image, sample.Group % self.group)
else:
image = dataAugmentation(image, 0)
if self.transform is not None:
image = self.transform(image)
else:
image = to_tensor(image)
X.append(image)
#differential?
if(self.differential == 1):
for i in range(0, self.fps - 1):
X[i] = X[i + 1] - X[i]
X = torch.stack(X[0:(self.fps - 1)], dim=0)
else:
X = torch.stack(X[0:self.fps], dim=0)
y = torch.from_numpy(np.array(sample.Fq))
y = y.to(torch.float32)
return X, y
#
#
#
def __getitem__(self, index):
X, y = self.read_images(index)
return X, y