forked from Facico/Chinese-Vicuna
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
423 lines (396 loc) · 15.8 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import sys
import torch
from peft import PeftModel, PeftModelForCausalLM, LoraConfig
import transformers
import json
import gradio as gr
import argparse
import warnings
import os
from utils import SteamGenerationMixin, printf
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf")
parser.add_argument("--lora_path", type=str, default="./lora-Vicuna/checkpoint-3000")
parser.add_argument("--use_typewriter", type=int, default=1)
parser.add_argument("--share_link", type=int, default=0)
parser.add_argument("--use_local", type=int, default=1)
args = parser.parse_args()
tokenizer = LlamaTokenizer.from_pretrained(args.model_path)
LOAD_8BIT = True
BASE_MODEL = args.model_path
LORA_WEIGHTS = args.lora_path
# fix the path for local checkpoint
lora_bin_path = os.path.join(args.lora_path, "adapter_model.bin")
print(lora_bin_path)
if not os.path.exists(lora_bin_path) and args.use_local:
pytorch_bin_path = os.path.join(args.lora_path, "pytorch_model.bin")
print(pytorch_bin_path)
if os.path.exists(pytorch_bin_path):
os.rename(pytorch_bin_path, lora_bin_path)
warnings.warn(
"The file name of the lora checkpoint'pytorch_model.bin' is replaced with 'adapter_model.bin'"
)
else:
assert ('Checkpoint is not Found!')
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map={"": 0},
)
model = SteamGenerationMixin.from_pretrained(
model, LORA_WEIGHTS, torch_dtype=torch.float16, device_map={"": 0}
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = SteamGenerationMixin.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = SteamGenerationMixin.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt_and_tokenize0(data_point, maxlen):
# cutoff the history to avoid exceeding length limit
init_prompt = PROMPT_DICT['prompt']
init_ids = tokenizer(init_prompt)['input_ids']
seqlen = len(init_ids)
input_prompt = PROMPT_DICT['input'].format_map(data_point)
input_ids = tokenizer(input_prompt)['input_ids']
seqlen += len(input_ids)
if seqlen > maxlen:
raise Exception('>>> The input question is too long! Cosidering increase the Max Memory value or decrease the length of input! ')
history_prompt = ''
for history in data_point['history']:
history_prompt+= PROMPT_DICT['history'].format_map(history)
# cutoff
history_ids = tokenizer(history_prompt)['input_ids'][-(maxlen - seqlen):]
input_ids = init_ids + history_ids + input_ids
return input_ids
def postprocess0(text, render=True):
# clip user
text = text.split("### Assistant:")[1].strip()
text = text.replace('�','').replace("Belle", "Vicuna")
return text
def generate_prompt_and_tokenize1(data_point, maxlen):
input_prompt = "\n".join(["User:" + i['input']+"\n"+"Assistant:" + i['output'] for i in data_point['history']]) + "\nUser:" + data_point['input'] + "\nAssistant:"
input_prompt = input_prompt[-maxlen:]
input_prompt = PROMPT_DICT['prompt'].format_map({'input':input_prompt})
input_ids = tokenizer(input_prompt)["input_ids"]
return input_ids
def postprocess1(text, render=True):
output = text.split("### Response:")[1].strip()
output = output.replace("Belle", "Vicuna")
printf('>>> output:', output)
if '###' in output:
output = output.split("###")[0]
if 'User' in output:
output = output.split("User")[0]
output = output.replace('�','')
if render:
# fix gradio chatbot markdown code render bug
lines = output.split("\n")
for i, line in enumerate(lines):
if "```" in line:
if line != "```":
lines[i] = f'<pre><code class="language-{lines[i][3:]}">'
else:
lines[i] = '</code></pre>'
else:
if i > 0:
lines[i] = "<br/>" + line.replace("<", "<").replace(">", ">").replace("__", '\_\_')
output = "".join(lines)
# output = output.replace('<br/><pre>','\n<pre>') work for html; but not for gradio
return output
PROMPT_DICT0 = {
'prompt': (
"The following is a conversation between an AI assistant called Assistant and a human user called User."
"Assistant is is intelligent, knowledgeable, wise and polite.\n\n"
),
'history': (
"User:{input}\n\nAssistant:{output}\n\n"
),
'input': (
"User:{input}\n\n### Assistant:"
),
'preprocess': generate_prompt_and_tokenize0,
'postprocess': postprocess0,
}
PROMPT_DICT1 = {
'prompt': (
"The following is a conversation between an AI assistant called Assistant and a human user called User.\n\n"
"### Instruction:\n{input}\n\n### Response:"
),
'preprocess': generate_prompt_and_tokenize1,
'postprocess': postprocess1,
}
PROMPT_DICT = None
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
inputs,
history,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
min_new_tokens=1,
repetition_penalty=2.0,
max_memory=1024,
do_sample=False,
prompt_type='0',
**kwargs,
):
global PROMPT_DICT
if prompt_type == '0':
PROMPT_DICT = PROMPT_DICT0
elif prompt_type == '1':
PROMPT_DICT = PROMPT_DICT1
else:
raise Exception('not support')
history = [] if history is None else history
data_point = {
'history': history,
'input': inputs,
}
printf(data_point)
input_ids = PROMPT_DICT['preprocess'](data_point, max_memory)
printf('>>> input prompts:', tokenizer.decode(input_ids))
input_ids = torch.tensor([input_ids]).to(device) # batch=1
printf(input_ids.shape)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
bos_token_id=1,
eos_token_id=2,
pad_token_id=0,
max_new_tokens=max_new_tokens, # max_length=max_new_tokens+input_sequence
min_new_tokens=min_new_tokens, # min_length=min_new_tokens+input_sequence
do_sample=do_sample,
**kwargs,
)
return_text = [(item['input'], item['output']) for item in history]
out_memory =False
outputs = None
with torch.no_grad():
# 流式输出 / 打字机效果
# streamly output / typewriter style
if args.use_typewriter:
try:
for generation_output in model.stream_generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
repetition_penalty=float(repetition_penalty),
):
outputs = tokenizer.batch_decode(generation_output)
show_text = "\n--------------------------------------------\n".join(
[PROMPT_DICT['postprocess'](output)+" ▌" for output in outputs]
)
printf(show_text)
yield return_text +[(inputs, show_text)], history
except torch.cuda.OutOfMemoryError:
import gc
gc.collect()
torch.cuda.empty_cache()
out_memory=True
# finally only one
show_text = PROMPT_DICT['postprocess'](outputs[0] if outputs is not None else '### Response:')
return_len = len(show_text)
if out_memory==True:
out_memory=False
show_text+= '<p style="color:#FF0000"> [GPU Out Of Memory] </p> '
if return_len > 0:
output = PROMPT_DICT['postprocess'](outputs[0], render=False)
history.append({
'input': inputs,
'output': output,
})
printf(show_text)
return_text += [(inputs, show_text)]
yield return_text, history
# common
else:
try:
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
output = PROMPT_DICT['postprocess'](output)
history.append({
'input': inputs,
'output': output,
})
return_text += [(inputs, output)]
yield return_text, history
except torch.cuda.OutOfMemoryError:
import gc
gc.collect()
torch.cuda.empty_cache()
show_text = '<p style="color:#FF0000"> [GPU Out Of Memory] </p> '
printf(show_text)
return_text += [(inputs, show_text)]
yield return_text, history
# gr.Interface对chatbot的clear有bug,因此我们重新实现了一个基于gr.block的UI逻辑
# gr.Interface has bugs to clear chatbot's history,so we customly implement it based on gr.block
with gr.Blocks() as demo:
fn = evaluate
title = gr.Markdown(
"<h1 style='text-align: center; margin-bottom: 1rem'>"
+ "Chinese-Vicuna 中文小羊驼"
+ "</h1>"
)
description = gr.Markdown(
"中文小羊驼由各种高质量的开源instruction数据集,结合Alpaca-lora的代码训练而来,模型基于开源的llama7B,主要贡献是对应的lora模型。由于代码训练资源要求较小,希望为llama中文lora社区做一份贡献。"
)
history = gr.components.State()
with gr.Row().style(equal_height=False):
with gr.Column(variant="panel"):
input_component_column = gr.Column()
with input_component_column:
input = gr.components.Textbox(
lines=2, label="Input", placeholder="请输入问题."
)
temperature = gr.components.Slider(minimum=0, maximum=1, value=1.0, label="Temperature")
topp = gr.components.Slider(minimum=0, maximum=1, value=0.9, label="Top p")
topk = gr.components.Slider(minimum=0, maximum=100, step=1, value=60, label="Top k")
beam_number = gr.components.Slider(minimum=1, maximum=10, step=1, value=4, label="Beams Number")
max_new_token = gr.components.Slider(
minimum=1, maximum=2000, step=1, value=256, label="Max New Tokens"
)
min_new_token = gr.components.Slider(
minimum=1, maximum=100, step=1, value=5, label="Min New Tokens"
)
repeat_penal = gr.components.Slider(
minimum=0.1, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"
)
max_memory = gr.components.Slider(
minimum=0, maximum=2048, step=1, value=256, label="Max Memory"
)
do_sample = gr.components.Checkbox(label="Use sample")
# must be str, not number !
type_of_prompt = gr.components.Dropdown(
['0', '1'], value='1', label="Prompt Type", info="select the specific prompt; use after clear history"
)
input_components = [
input, history, temperature, topp, topk, beam_number, max_new_token, min_new_token, repeat_penal, max_memory, do_sample, type_of_prompt
]
input_components_except_states = [input, temperature, topp, topk, beam_number, max_new_token, min_new_token, repeat_penal, max_memory, do_sample, type_of_prompt]
with gr.Row():
cancel_btn = gr.Button('Cancel')
submit_btn = gr.Button("Submit", variant="primary")
stop_btn = gr.Button("Stop", variant="stop", visible=False)
with gr.Row():
reset_btn = gr.Button("Reset Parameter")
clear_history = gr.Button("Clear History")
with gr.Column(variant="panel"):
chatbot = gr.Chatbot().style(height=1024)
output_components = [ chatbot, history ]
def wrapper(*args):
# here to support the change between the stop and submit button
try:
for output in fn(*args):
output = [o for o in output]
# output for output_components, the rest for [button, button]
yield output + [
gr.Button.update(visible=False),
gr.Button.update(visible=True),
]
finally:
yield [{'__type__': 'generic_update'}, {'__type__': 'generic_update'}] + [ gr.Button.update(visible=True), gr.Button.update(visible=False)]
def cancel(history, chatbot):
if history == []:
return (None, None)
return history[:-1], chatbot[:-1]
extra_output = [submit_btn, stop_btn]
pred = submit_btn.click(
wrapper,
input_components,
output_components + extra_output,
api_name="predict",
scroll_to_output=True,
preprocess=True,
postprocess=True,
batch=False,
max_batch_size=4,
)
submit_btn.click(
lambda: (
submit_btn.update(visible=False),
stop_btn.update(visible=True),
),
inputs=None,
outputs=[submit_btn, stop_btn],
queue=False,
)
stop_btn.click(
lambda: (
submit_btn.update(visible=True),
stop_btn.update(visible=False),
),
inputs=None,
outputs=[submit_btn, stop_btn],
cancels=[pred],
queue=False,
)
cancel_btn.click(
cancel,
inputs=[history, chatbot],
outputs=[history, chatbot]
)
reset_btn.click(
None,
[],
(
# input_components ; don't work for history...
input_components_except_states
+ [input_component_column]
), # type: ignore
_js=f"""() => {json.dumps([
getattr(component, "cleared_value", None) for component in input_components_except_states ]
+ ([gr.Column.update(visible=True)])
+ ([])
)}
""",
)
clear_history.click(lambda: (None, None), None, [history, chatbot], queue=False)
demo.queue().launch(share=args.share_link!=0, inbrowser=True)