-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcontroller.py
126 lines (110 loc) · 5.92 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import numpy as np
from keras import optimizers
from keras.layers import Dense, LSTM
from keras.models import Model
from keras.engine.input_layer import Input
from keras.preprocessing.sequence import pad_sequences
from mlp_generator import MLPSearchSpace
from CONSTANTS import *
class Controller(MLPSearchSpace):
def __init__(self):
self.max_len = MAX_ARCHITECTURE_LENGTH
self.controller_lstm_dim = CONTROLLER_LSTM_DIM
self.controller_optimizer = CONTROLLER_OPTIMIZER
self.controller_lr = CONTROLLER_LEARNING_RATE
self.controller_decay = CONTROLLER_DECAY
self.controller_momentum = CONTROLLER_MOMENTUM
self.use_predictor = CONTROLLER_USE_PREDICTOR
self.controller_weights = 'LOGS/controller_weights.h5'
self.seq_data = []
super().__init__(TARGET_CLASSES)
self.controller_classes = len(self.vocab) + 1
def sample_architecture_sequences(self, model, number_of_samples):
final_layer_id = len(self.vocab)
dropout_id = final_layer_id - 1
vocab_idx = [0] + list(self.vocab.keys())
samples = []
print("GENERATING ARCHITECTURE SAMPLES...")
print('------------------------------------------------------')
while len(samples) < number_of_samples:
seed = []
while len(seed) < self.max_len:
sequence = pad_sequences([seed], maxlen=self.max_len - 1, padding='post')
sequence = sequence.reshape(1, 1, self.max_len - 1)
if self.use_predictor:
(probab, _) = model.predict(sequence)
else:
probab = model.predict(sequence)
probab = probab[0][0]
next = np.random.choice(vocab_idx, size=1, p=probab)[0]
if next == dropout_id and len(seed) == 0:
continue
if next == final_layer_id and len(seed) == 0:
continue
if next == final_layer_id:
seed.append(next)
break
if len(seed) == self.max_len - 1:
seed.append(final_layer_id)
break
if not next == 0:
seed.append(next)
if seed not in self.seq_data:
samples.append(seed)
self.seq_data.append(seed)
return samples
def control_model(self, controller_input_shape, controller_batch_size):
main_input = Input(shape=controller_input_shape, batch_shape=controller_batch_size, name='main_input')
x = LSTM(self.controller_lstm_dim, return_sequences=True)(main_input)
main_output = Dense(self.controller_classes, activation='softmax', name='main_output')(x)
model = Model(inputs=[main_input], outputs=[main_output])
return model
def train_control_model(self, model, x_data, y_data, loss_func, controller_batch_size, nb_epochs):
if self.controller_optimizer == 'sgd':
optim = optimizers.SGD(lr=self.controller_lr, decay=self.controller_decay, momentum=self.controller_momentum, clipnorm=1.0)
else:
optim = getattr(optimizers, self.controller_optimizer)(lr=self.controller_lr, decay=self.controller_decay, clipnorm=1.0)
model.compile(optimizer=optim, loss={'main_output': loss_func})
if os.path.exists(self.controller_weights):
model.load_weights(self.controller_weights)
print("TRAINING CONTROLLER...")
model.fit({'main_input': x_data},
{'main_output': y_data.reshape(len(y_data), 1, self.controller_classes)},
epochs=nb_epochs,
batch_size=controller_batch_size,
verbose=0)
model.save_weights(self.controller_weights)
def hybrid_control_model(self, controller_input_shape, controller_batch_size):
main_input = Input(shape=controller_input_shape, batch_shape=controller_batch_size, name='main_input')
x = LSTM(self.controller_lstm_dim, return_sequences=True)(main_input)
predictor_output = Dense(1, activation='sigmoid', name='predictor_output')(x)
main_output = Dense(self.controller_classes, activation='softmax', name='main_output')(x)
model = Model(inputs=[main_input], outputs=[main_output, predictor_output])
return model
def train_hybrid_model(self, model, x_data, y_data, pred_target, loss_func, controller_batch_size, nb_epochs):
if self.controller_optimizer == 'sgd':
optim = optimizers.SGD(lr=self.controller_lr, decay=self.controller_decay, momentum=self.controller_momentum, clipnorm=1.0)
else:
optim = getattr(optimizers, self.controller_optimizer)(lr=self.controller_lr, decay=self.controller_decay, clipnorm=1.0)
model.compile(optimizer=optim,
loss={'main_output': loss_func, 'predictor_output': 'mse'},
loss_weights={'main_output': 1, 'predictor_output': 1})
if os.path.exists(self.controller_weights):
model.load_weights(self.controller_weights)
print("TRAINING CONTROLLER...")
model.fit({'main_input': x_data},
{'main_output': y_data.reshape(len(y_data), 1, self.controller_classes),
'predictor_output': np.array(pred_target).reshape(len(pred_target), 1, 1)},
epochs=nb_epochs,
batch_size=controller_batch_size,
verbose=0)
model.save_weights(self.controller_weights)
def get_predicted_accuracies_hybrid_model(self, model, seqs):
pred_accuracies = []
for seq in seqs:
control_sequences = pad_sequences([seq], maxlen=self.max_len, padding='post')
xc = control_sequences[:, :-1].reshape(len(control_sequences), 1, self.max_len - 1)
(_, pred_accuracy) = [x[0][0] for x in model.predict(xc)]
pred_accuracies.append(pred_accuracy[0])
return pred_accuracies