-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipp.py
69 lines (55 loc) · 2.25 KB
/
ipp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
"""
ipp
Copyright 2014 2015 Dan Tyrrell
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import cv2
import logging
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s.%(msecs)d-%(name)s-%(threadName)s-%(levelname)s %(message)s',
datefmt='%M:%S')
log = logging.getLogger(__name__)
# class IppError(Exception):
# pass
class Ipp:
def __init__(self):
print("dddd")
self.original = None
self.img = None
def open(self, name):
# keep a copy of original image
self.original = cv2.imread(name)
#self.img = self.original.copy()
self.img = cv2.imread(name, 0)
def save(self, name):
cv2.imwrite(name, self.img)
def remove_border(self):
# Read the image, convert it into grayscalecv2.CV_LOAD_IMAGE_GRAYSCALE
# todo cv2.CV_LOAD_IMAGE_GRAYSCALE
# img = cv2.imread(IMG_IN,0)
# use binary threshold, all pixel that are beyond 3 are made white
_, thresh_original = cv2.threshold(self.img, 3, 255, cv2.THRESH_BINARY)
# Now find contours in it.
#thresh = cv2.copy(thresh_original)
z, contours, y = cv2.findContours(thresh_original, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# get contours with highest height
lst_contours = []
for cnt in contours:
ctr = cv2.boundingRect(cnt)
lst_contours.append(ctr)
x, y, w, h = sorted(lst_contours, key=lambda coef: coef[3])[-1]
print(x, y, w, h)
self.img = self.original[y:y + h, x:x + w]
def flip_horizontal(self):
self.img = cv2.flip(self.img, flipCode = 1)