forked from studywolf/blog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_data.py
64 lines (54 loc) · 2.11 KB
/
plot_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
""" Copyright (C) 2018 Travis DeWolf
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import matplotlib.pyplot as plt
def bootstrapci(data, func, n=3000, p=0.95):
index = int(n*(1-p)/2)
samples = np.random.choice(data, size=(n, len(data)))
r = [func(s) for s in samples]
r.sort()
return r[index], r[-index]
fig = plt.figure(figsize=(7, 3.5))
for name, color in zip(
['policy_gradient', 'natural_policy_gradient'], ['b', 'g']):
# load in data
all_max_rewards = []
all_total_episodes =[]
for ii in range(10):
data = np.load('data/%s_%i.npz' % (name, ii))
all_max_rewards.append(data['max_rewards'])
all_total_episodes.append(data['total_episodes'])
all_max_rewards = np.array(all_max_rewards)
all_total_episodes = np.array(all_total_episodes)
# calculate mean
mean = np.mean(all_max_rewards, axis=0)
# calculate 95% confidence intervals
sample = []
upper_bound = []
lower_bound = []
for ii in range(all_max_rewards.shape[1]):
data = all_max_rewards[:, ii]
ci = bootstrapci(data, np.mean)
sample.append(np.mean(data))
lower_bound.append(ci[0])
upper_bound.append(ci[1])
plt.plot(
range(all_max_rewards.shape[1]), mean, color=color, lw=2)
plt.fill_between(
range(all_max_rewards.shape[1]), upper_bound, lower_bound,
color=color, alpha=.5)
plt.xlabel('Batch number')
plt.ylabel('Max reward from batch')
plt.legend(['Policy gradient', 'Natural policy gradient'], loc=4)
plt.tight_layout()
plt.show()