forked from matthewearl/deep-anpr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen.py
executable file
·284 lines (212 loc) · 8.98 KB
/
gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#!/usr/bin/env python
#
# Copyright (c) 2016 Matthew Earl
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
# USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
Generate training and test images.
"""
__all__ = (
'generate_ims',
)
import math
import os
import random
import sys
import cv2
import numpy
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import common
FONT_PATH = "UKNumberPlate.ttf"
FONT_HEIGHT = 32 # Pixel size to which the chars are resized
OUTPUT_SHAPE = (64, 128)
CHARS = common.CHARS + " "
def make_char_ims(output_height):
font_size = output_height * 4
font = ImageFont.truetype(FONT_PATH, font_size)
height = max(font.getsize(c)[1] for c in CHARS)
for c in CHARS:
width = font.getsize(c)[0]
im = Image.new("RGBA", (width, height), (0, 0, 0))
draw = ImageDraw.Draw(im)
draw.text((0, 0), c, (255, 255, 255), font=font)
scale = float(output_height) / height
im = im.resize((int(width * scale), output_height), Image.ANTIALIAS)
yield c, numpy.array(im)[:, :, 0].astype(numpy.float32) / 255.
def euler_to_mat(yaw, pitch, roll):
# Rotate clockwise about the Y-axis
c, s = math.cos(yaw), math.sin(yaw)
M = numpy.matrix([[ c, 0., s],
[ 0., 1., 0.],
[ -s, 0., c]])
# Rotate clockwise about the X-axis
c, s = math.cos(pitch), math.sin(pitch)
M = numpy.matrix([[ 1., 0., 0.],
[ 0., c, -s],
[ 0., s, c]]) * M
# Rotate clockwise about the Z-axis
c, s = math.cos(roll), math.sin(roll)
M = numpy.matrix([[ c, -s, 0.],
[ s, c, 0.],
[ 0., 0., 1.]]) * M
return M
def pick_colors():
first = True
while first or plate_color - text_color < 0.3:
text_color = random.random()
plate_color = random.random()
if text_color > plate_color:
text_color, plate_color = plate_color, text_color
first = False
return text_color, plate_color
def make_affine_transform(from_shape, to_shape,
min_scale, max_scale,
scale_variation=1.0,
rotation_variation=1.0,
translation_variation=1.0):
out_of_bounds = False
from_size = numpy.array([[from_shape[1], from_shape[0]]]).T
to_size = numpy.array([[to_shape[1], to_shape[0]]]).T
scale = random.uniform((min_scale + max_scale) * 0.5 -
(max_scale - min_scale) * 0.5 * scale_variation,
(min_scale + max_scale) * 0.5 +
(max_scale - min_scale) * 0.5 * scale_variation)
if scale > max_scale or scale < min_scale:
out_of_bounds = True
roll = random.uniform(-0.3, 0.3) * rotation_variation
pitch = random.uniform(-0.2, 0.2) * rotation_variation
yaw = random.uniform(-1.2, 1.2) * rotation_variation
# Compute a bounding box on the skewed input image (`from_shape`).
M = euler_to_mat(yaw, pitch, roll)[:2, :2]
h, w = from_shape
corners = numpy.matrix([[-w, +w, -w, +w],
[-h, -h, +h, +h]]) * 0.5
skewed_size = numpy.array(numpy.max(M * corners, axis=1) -
numpy.min(M * corners, axis=1))
# Set the scale as large as possible such that the skewed and scaled shape
# is less than or equal to the desired ratio in either dimension.
scale *= numpy.min(to_size / skewed_size)
# Set the translation such that the skewed and scaled image falls within
# the output shape's bounds.
trans = (numpy.random.random((2,1)) - 0.5) * translation_variation
trans = ((2.0 * trans) ** 5.0) / 2.0
if numpy.any(trans < -0.5) or numpy.any(trans > 0.5):
out_of_bounds = True
trans = (to_size - skewed_size * scale) * trans
center_to = to_size / 2.
center_from = from_size / 2.
M = euler_to_mat(yaw, pitch, roll)[:2, :2]
M *= scale
M = numpy.hstack([M, trans + center_to - M * center_from])
return M, out_of_bounds
def generate_code():
return "{}{}{}{} {}{}{}".format(
random.choice(common.LETTERS),
random.choice(common.LETTERS),
random.choice(common.DIGITS),
random.choice(common.DIGITS),
random.choice(common.LETTERS),
random.choice(common.LETTERS),
random.choice(common.LETTERS))
def rounded_rect(shape, radius):
out = numpy.ones(shape)
out[:radius, :radius] = 0.0
out[-radius:, :radius] = 0.0
out[:radius, -radius:] = 0.0
out[-radius:, -radius:] = 0.0
cv2.circle(out, (radius, radius), radius, 1.0, -1)
cv2.circle(out, (radius, shape[0] - radius), radius, 1.0, -1)
cv2.circle(out, (shape[1] - radius, radius), radius, 1.0, -1)
cv2.circle(out, (shape[1] - radius, shape[0] - radius), radius, 1.0, -1)
return out
def generate_plate(font_height, char_ims):
h_padding = random.uniform(0.2, 0.4) * font_height
v_padding = random.uniform(0.1, 0.3) * font_height
spacing = font_height * random.uniform(-0.05, 0.05)
radius = 1 + int(font_height * 0.1 * random.random())
code = generate_code()
text_width = sum(char_ims[c].shape[1] for c in code)
text_width += (len(code) - 1) * spacing
out_shape = (int(font_height + v_padding * 2),
int(text_width + h_padding * 2))
text_color, plate_color = pick_colors()
text_mask = numpy.zeros(out_shape)
x = h_padding
y = v_padding
for c in code:
char_im = char_ims[c]
ix, iy = int(x), int(y)
text_mask[iy:iy + char_im.shape[0], ix:ix + char_im.shape[1]] = char_im
x += char_im.shape[1] + spacing
plate = (numpy.ones(out_shape) * plate_color * (1. - text_mask) +
numpy.ones(out_shape) * text_color * text_mask)
return plate, rounded_rect(out_shape, radius), code.replace(" ", "")
def generate_bg(num_bg_images):
found = False
while not found:
fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1))
bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255.
if (bg.shape[1] >= OUTPUT_SHAPE[1] and
bg.shape[0] >= OUTPUT_SHAPE[0]):
found = True
x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1])
y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0])
bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]]
return bg
def generate_im(char_ims, num_bg_images):
bg = generate_bg(num_bg_images)
plate, plate_mask, code = generate_plate(FONT_HEIGHT, char_ims)
M, out_of_bounds = make_affine_transform(
from_shape=plate.shape,
to_shape=bg.shape,
min_scale=0.6,
max_scale=0.875,
rotation_variation=1.0,
scale_variation=1.5,
translation_variation=1.2)
plate = cv2.warpAffine(plate, M, (bg.shape[1], bg.shape[0]))
plate_mask = cv2.warpAffine(plate_mask, M, (bg.shape[1], bg.shape[0]))
out = plate * plate_mask + bg * (1.0 - plate_mask)
out = cv2.resize(out, (OUTPUT_SHAPE[1], OUTPUT_SHAPE[0]))
out += numpy.random.normal(scale=0.05, size=out.shape)
out = numpy.clip(out, 0., 1.)
return out, code, not out_of_bounds
def generate_ims(num_images):
"""
Generate a number of number plate images.
:param num_images:
Number of images to generate.
:return:
Iterable of number plate images.
"""
variation = 1.0
char_ims = dict(make_char_ims(FONT_HEIGHT))
num_bg_images = len(os.listdir("bgs"))
for i in range(num_images):
yield generate_im(char_ims, num_bg_images)
if __name__ == "__main__":
os.mkdir("test")
im_gen = generate_ims(int(sys.argv[1]))
for img_idx, (im, c, p) in enumerate(im_gen):
fname = "test/{:08d}_{}_{}.png".format(img_idx, c,
"1" if p else "0")
print fname
cv2.imwrite(fname, im * 255.)