forked from matthewearl/deep-anpr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·254 lines (202 loc) · 7.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python
#
# Copyright (c) 2016 Matthew Earl
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
# NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
# USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
Routines for training the network.
"""
__all__ = (
'train',
)
import functools
import glob
import itertools
import multiprocessing
import random
import sys
import time
import cv2
import numpy
import tensorflow as tf
import common
import gen
import model
def code_to_vec(p, code):
def char_to_vec(c):
y = numpy.zeros((len(common.CHARS),))
y[common.CHARS.index(c)] = 1.0
return y
c = numpy.vstack([char_to_vec(c) for c in code])
return numpy.concatenate([[1. if p else 0], c.flatten()])
def read_data(img_glob):
for fname in sorted(glob.glob(img_glob)):
im = cv2.imread(fname)[:, :, 0].astype(numpy.float32) / 255.
code = fname.split("/")[1][9:16]
p = fname.split("/")[1][17] == '1'
yield im, code_to_vec(p, code)
def unzip(b):
xs, ys = zip(*b)
xs = numpy.array(xs)
ys = numpy.array(ys)
return xs, ys
def batch(it, batch_size):
out = []
for x in it:
out.append(x)
if len(out) == batch_size:
yield out
out = []
if out:
yield out
def mpgen(f):
def main(q, args, kwargs):
try:
for item in f(*args, **kwargs):
q.put(item)
finally:
q.close()
@functools.wraps(f)
def wrapped(*args, **kwargs):
q = multiprocessing.Queue(3)
proc = multiprocessing.Process(target=main,
args=(q, args, kwargs))
proc.start()
try:
while True:
item = q.get()
yield item
finally:
proc.terminate()
proc.join()
return wrapped
@mpgen
def read_batches(batch_size):
def gen_vecs():
for im, c, p in gen.generate_ims(batch_size):
yield im, code_to_vec(p, c)
while True:
yield unzip(gen_vecs())
def train(learn_rate, report_steps, batch_size, initial_weights=None):
"""
Train the network.
The function operates interactively: Progress is reported on stdout, and
training ceases upon `KeyboardInterrupt` at which point the learned weights
are saved to `weights.npz`, and also returned.
:param learn_rate:
Learning rate to use.
:param report_steps:
Every `report_steps` batches a progress report is printed.
:param batch_size:
The size of the batches used for training.
:param initial_weights:
(Optional.) Weights to initialize the network with.
:return:
The learned network weights.
"""
x, y, params = model.get_training_model()
y_ = tf.placeholder(tf.float32, [None, 7 * len(common.CHARS) + 1])
digits_loss = tf.nn.softmax_cross_entropy_with_logits(
tf.reshape(y[:, 1:],
[-1, len(common.CHARS)]),
tf.reshape(y_[:, 1:],
[-1, len(common.CHARS)]))
digits_loss = tf.reduce_sum(digits_loss)
presence_loss = 10. * tf.nn.sigmoid_cross_entropy_with_logits(
y[:, :1], y_[:, :1])
presence_loss = tf.reduce_sum(presence_loss)
cross_entropy = digits_loss + presence_loss
train_step = tf.train.AdamOptimizer(learn_rate).minimize(cross_entropy)
best = tf.argmax(tf.reshape(y[:, 1:], [-1, 7, len(common.CHARS)]), 2)
correct = tf.argmax(tf.reshape(y_[:, 1:], [-1, 7, len(common.CHARS)]), 2)
if initial_weights is not None:
assert len(params) == len(initial_weights)
assign_ops = [w.assign(v) for w, v in zip(params, initial_weights)]
init = tf.initialize_all_variables()
def vec_to_plate(v):
return "".join(common.CHARS[i] for i in v)
def do_report():
r = sess.run([best,
correct,
tf.greater(y[:, 0], 0),
y_[:, 0],
digits_loss,
presence_loss,
cross_entropy],
feed_dict={x: test_xs, y_: test_ys})
num_correct = numpy.sum(
numpy.logical_or(
numpy.all(r[0] == r[1], axis=1),
numpy.logical_and(r[2] < 0.5,
r[3] < 0.5)))
r_short = (r[0][:190], r[1][:190], r[2][:190], r[3][:190])
for b, c, pb, pc in zip(*r_short):
print "{} {} <-> {} {}".format(vec_to_plate(c), pc,
vec_to_plate(b), float(pb))
num_p_correct = numpy.sum(r[2] == r[3])
print ("B{:3d} {:2.02f}% {:02.02f}% loss: {} "
"(digits: {}, presence: {}) |{}|").format(
batch_idx,
100. * num_correct / (len(r[0])),
100. * num_p_correct / len(r[2]),
r[6],
r[4],
r[5],
"".join("X "[numpy.array_equal(b, c) or (not pb and not pc)]
for b, c, pb, pc in zip(*r_short)))
def do_batch():
sess.run(train_step,
feed_dict={x: batch_xs, y_: batch_ys})
if batch_idx % report_steps == 0:
do_report()
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
sess.run(init)
if initial_weights is not None:
sess.run(assign_ops)
test_xs, test_ys = unzip(list(read_data("test/*.png"))[:50])
try:
last_batch_idx = 0
last_batch_time = time.time()
batch_iter = enumerate(read_batches(batch_size))
for batch_idx, (batch_xs, batch_ys) in batch_iter:
do_batch()
if batch_idx % report_steps == 0:
batch_time = time.time()
if last_batch_idx != batch_idx:
print "time for 60 batches {}".format(
60 * (last_batch_time - batch_time) /
(last_batch_idx - batch_idx))
last_batch_idx = batch_idx
last_batch_time = batch_time
except KeyboardInterrupt:
last_weights = [p.eval() for p in params]
numpy.savez("weights.npz", *last_weights)
return last_weights
if __name__ == "__main__":
if len(sys.argv) > 1:
f = numpy.load(sys.argv[1])
initial_weights = [f[n] for n in sorted(f.files,
key=lambda s: int(s[4:]))]
else:
initial_weights = None
train(learn_rate=0.001,
report_steps=20,
batch_size=50,
initial_weights=initial_weights)