-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainmodel.py
42 lines (37 loc) · 1.59 KB
/
trainmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from function import *
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.callbacks import TensorBoard
label_map = {label:num for num, label in enumerate(actions)}
# print(label_map)
sequences, labels = [], []
for action in actions:
for sequence in range(no_sequences):
window = []
for frame_num in range(sequence_length):
res = np.load(os.path.join(DATA_PATH, action, str(sequence), "{}.npy".format(frame_num)))
window.append(res)
sequences.append(window)
labels.append(label_map[action])
X = np.array(sequences)
y = to_categorical(labels).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05)
log_dir = os.path.join('Logs')
tb_callback = TensorBoard(log_dir=log_dir)
model = Sequential()
model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(14,63)))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(64, return_sequences=False, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(actions.shape[0], activation='softmax'))
res = [.7, 0.2, 0.1]
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])
model.fit(X_train, y_train, epochs=20, callbacks=[tb_callback])
model.summary()
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
model.save('model.h5')