forked from ckolivas/cgminer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbf16-communication.c
317 lines (237 loc) · 7.26 KB
/
bf16-communication.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
#include "bf16-communication.h"
#include "bf16-ctrldevice.h"
#include "bf16-gpiodevice.h"
#include "miner.h"
#define MSP_BUFF_SIZE 96
static device_t* spi0_device;
static device_t* spi1_device;
static device_t* uart1_device;
static device_t* uart2_device;
static device_t* ctrl_device;
static device_t* gpio_device;
/* transfer functions */
int8_t device_spi_transfer(spi_channel_id_t channel_id, uint8_t* data, int size)
{
switch (channel_id) {
case SPI_CHANNEL1:
memset(spi0_device->tx, 0, spi0_device->size);
memset(spi0_device->rx, 0, spi0_device->size);
spi0_device->datalen = size;
cg_memcpy(spi0_device->tx, data, size);
spi_transfer(spi0_device);
cg_memcpy(data, spi0_device->rx, size);
break;
case SPI_CHANNEL2:
memset(spi1_device->tx, 0, spi1_device->size);
memset(spi1_device->rx, 0, spi1_device->size);
spi1_device->datalen = size;
cg_memcpy(spi1_device->tx, data, size);
spi_transfer(spi1_device);
cg_memcpy(data, spi1_device->rx, size);
break;
}
return 0;
}
int8_t device_spi_txrx(spi_channel_id_t channel_id, uint8_t* tx, uint8_t* rx, int size)
{
switch (channel_id) {
case SPI_CHANNEL1:
memset(spi0_device->tx, 0, spi0_device->size);
memset(spi0_device->rx, 0, spi0_device->size);
spi0_device->datalen = size;
cg_memcpy(spi0_device->tx, tx, size);
spi_transfer(spi0_device);
cg_memcpy(rx, spi0_device->rx, size);
break;
case SPI_CHANNEL2:
memset(spi1_device->tx, 0, spi1_device->size);
memset(spi1_device->rx, 0, spi1_device->size);
spi1_device->datalen = size;
cg_memcpy(spi1_device->tx, tx, size);
spi_transfer(spi1_device);
cg_memcpy(rx, spi1_device->rx, size);
break;
}
return 0;
}
static void add_crc(char* data)
{
uint8_t crc = 0;
while (*data) {
crc += *data;
data++;
}
sprintf(data, "#%d\n", crc);
}
int8_t device_uart_transfer(uart_channel_id_t channel_id, char* cmd)
{
uint8_t buff[MSP_BUFF_SIZE];
memset(buff, 0, MSP_BUFF_SIZE);
uint16_t cmdlen = strlen(cmd);
if (cmdlen > 0) {
(cmdlen == 1) ? sprintf((char *)buff, "%s:", cmd) : sprintf((char *)buff, "%s", cmd);
add_crc((char *)buff);
}
switch (channel_id) {
case UART_CHANNEL1:
memset(uart1_device->tx, 0, uart1_device->size);
memset(uart1_device->rx, 0, uart1_device->size);
uart1_device->datalen = strlen((char *)buff);
cg_memcpy(uart1_device->tx, buff, uart1_device->datalen);
return uart_transfer(uart1_device);
break;
case UART_CHANNEL2:
memset(uart2_device->tx, 0, uart2_device->size);
memset(uart2_device->rx, 0, uart2_device->size);
uart2_device->datalen = strlen((char *)buff);
cg_memcpy(uart2_device->tx, buff, uart2_device->datalen);
return uart_transfer(uart2_device);
break;
}
return 0;
}
int16_t device_uart_txrx(uart_channel_id_t channel_id, char* cmd, char* data)
{
uint8_t buff[MSP_BUFF_SIZE];
memset(buff, 0, MSP_BUFF_SIZE);
uint16_t cmdlen = strlen(cmd);
if (cmdlen > 0) {
(cmdlen == 1) ? sprintf((char *)buff, "%s:", cmd) : sprintf((char *)buff, "%s", cmd);
add_crc((char *)buff);
}
switch (channel_id) {
case UART_CHANNEL1:
memset(uart1_device->tx, 0, uart1_device->size);
memset(uart1_device->rx, 0, uart1_device->size);
uart1_device->datalen = strlen((char *)buff);
cg_memcpy(uart1_device->tx, buff, uart1_device->datalen);
if (uart_transfer(uart1_device) < 0)
return -1;
cg_memcpy(data, uart1_device->rx, uart1_device->datalen);
return uart1_device->datalen;
break;
case UART_CHANNEL2:
memset(uart2_device->tx, 0, uart2_device->size);
memset(uart2_device->rx, 0, uart2_device->size);
uart2_device->datalen = strlen((char *)buff);
cg_memcpy(uart2_device->tx, buff, uart2_device->datalen);
if (uart_transfer(uart2_device) < 0)
return -1;
cg_memcpy(data, uart2_device->rx, uart2_device->datalen);
return uart2_device->datalen;
break;
}
return 0;
}
int8_t device_ctrl_transfer(uint8_t channel_id, int state, int fn)
{
int8_t ret = 0;
char* cmd = get_ctrl_data(channel_id, state, fn);
memset(ctrl_device->tx, 0, ctrl_device->size);
memset(ctrl_device->rx, 0, ctrl_device->size);
ctrl_device->datalen = strlen(cmd) + 1;
cg_memcpy(ctrl_device->tx, cmd, ctrl_device->datalen);
ret = ctrl_transfer(ctrl_device);
free(cmd);
return ret;
}
int8_t device_ctrl_txrx(uint8_t channel_id, int state, int fn, char* data)
{
int8_t ret = 0;
char* cmd = get_ctrl_data(channel_id, state, fn);
memset(ctrl_device->tx, 0, ctrl_device->size);
memset(ctrl_device->rx, 0, ctrl_device->size);
ctrl_device->datalen = strlen(cmd) + 1;
cg_memcpy(ctrl_device->tx, cmd, ctrl_device->datalen);
ret = ctrl_transfer(ctrl_device);
cg_memcpy(data, ctrl_device->rx, ctrl_device->datalen);
free(cmd);
return ret;
}
/* open device functions */
int8_t open_spi_device(spi_channel_id_t channel_id)
{
switch (channel_id) {
case SPI_CHANNEL1:
if ((spi0_device = malloc(sizeof(device_t))) == NULL)
quit(1, "Failed to allocate spi_device1 memory: %s", strerror(errno));
memset(spi0_device, 0, sizeof(device_t));
return spi_init(spi0_device, channel_id, 1, SPI_SPEED, SPI_BUFFER_SIZE);
break;
case SPI_CHANNEL2:
if ((spi1_device = malloc(sizeof(device_t))) == NULL)
quit(1, "Failed to allocate spi_device2 memory: %s", strerror(errno));
memset(spi1_device, 0, sizeof(device_t));
return spi_init(spi1_device, channel_id, 1, SPI_SPEED, SPI_BUFFER_SIZE);
break;
}
return 0;
}
int8_t open_uart_device(uart_channel_id_t channel_id)
{
switch (channel_id) {
case UART_CHANNEL1:
if ((uart1_device = malloc(sizeof(device_t))) == NULL)
quit(1, "Failed to allocate uart_device1 memory: %s", strerror(errno));
memset(uart1_device, 0, sizeof(device_t));
return uart_init(uart1_device, channel_id, 0, B115200, UART_BUFFER_SIZE);
break;
case UART_CHANNEL2:
if ((uart2_device = malloc(sizeof(device_t))) == NULL)
quit(1, "Failed to allocate uart_device2 memory: %s", strerror(errno));
memset(uart2_device, 0, sizeof(device_t));
return uart_init(uart2_device, channel_id, 0, B115200, UART_BUFFER_SIZE);
break;
}
return 0;
}
int8_t open_ctrl_device(void)
{
if ((ctrl_device = malloc(sizeof(device_t))) == NULL)
quit(1, "Failed to allocate ctrl_device memory: %s", strerror(errno));
memset(ctrl_device, 0, sizeof(device_t));
if ((gpio_device = malloc(sizeof(device_t))) == NULL)
quit(1, "Failed to allocate gpio_device memory: %s", strerror(errno));
memset(gpio_device, 0, sizeof(device_t));
if (gpio_init(gpio_device, gpio_device_name, GPIO_BUFFER_SIZE) < 0)
quit(1, "Failed to open [%s] device in open_ctrl_device", gpio_device_name);
applog(LOG_INFO, "BF16: opened [%s] device", gpio_device_name);
return ctrl_init(ctrl_device, ctrl_device_name, CTRL_BUFFER_SIZE);
}
/* close device functions */
int8_t close_spi_device(spi_channel_id_t channel_id)
{
switch (channel_id) {
case SPI_CHANNEL1:
spi_release(spi0_device);
free(spi0_device);
break;
case SPI_CHANNEL2:
spi_release(spi1_device);
free(spi1_device);
break;
}
return 0;
}
int8_t close_uart_device(uart_channel_id_t channel_id)
{
switch (channel_id) {
case UART_CHANNEL1:
uart_release(uart1_device);
free(uart1_device);
break;
case UART_CHANNEL2:
uart_release(uart2_device);
free(uart2_device);
break;
}
return 0;
}
int8_t close_ctrl_device(void)
{
ctrl_release(ctrl_device);
gpio_release(gpio_device);
free(ctrl_device);
free(gpio_device);
return 0;
}