-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
291 lines (234 loc) · 12.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from __future__ import print_function, division
import argparse
import os
from builtins import int
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torchvision.utils as vutils
import torch.nn.functional as F
import numpy as np
import time
from tensorboardX import SummaryWriter
from datasets import __datasets__
from models import __models__, model_loss, __loss_type__
from utils import *
from torch.utils.data import DataLoader
import gc
import wandb
from utils.metrics import log_sizes
# from torchinfo import summary
cudnn.benchmark = True
parser = argparse.ArgumentParser(description='LeanStereoNet')
parser.add_argument('--model', default='leanstereo', help='select a model structure', choices=__models__.keys())
parser.add_argument('--maxdisp', type=int, default=192, help='maximum disparity')
parser.add_argument('--dataset', required=True, help='dataset name', choices=__datasets__.keys())
parser.add_argument('--datapath', required=True, help='data path')
parser.add_argument('--trainlist', required=True, help='training list')
parser.add_argument('--testlist', required=True, help='testing list')
parser.add_argument('--lr', type=float, default=0.001, help='base learning rate')
parser.add_argument('--batch_size', type=int, default=16, help='training batch size')
parser.add_argument('--test_batch_size', type=int, default=8, help='testing batch size')
parser.add_argument('--epochs', type=int, required=True, help='number of epochs to train')
parser.add_argument('--lrepochs', type=str, required=True, help='the epochs to decay lr: the downscale rate')
parser.add_argument('--logdir', required=True, help='the directory to save logs and checkpoints')
parser.add_argument('--loadckpt', help='load the weights from a specific checkpoint')
parser.add_argument('--resume', action='store_true', help='continue training the model')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--summary_freq', type=int, default=20, help='the frequency of saving summary')
parser.add_argument('--save_freq', type=int, default=1, help='the frequency of saving checkpoint')
parser.add_argument('--wandb_project_name', type=str, default="test", help='name of the weights and baises project')
parser.add_argument('--wandb_run_name', type=str, default="test",
help='name of the run inside weights and baises project')
parser.add_argument('--loss_type', default='smoothL1', help='select which function to use as loss',
choices=__loss_type__.keys())
parser.add_argument('--aux_mode', default='train', help='select a model mode')
parser.add_argument('--error_optimization_criteria', type=str, default="EPE",
help='optimize the model for EPE or D1', choices={"EPE","D1"})
__optimizer__ ={
"adam": optim.Adam,
"adamw": optim.AdamW,
"sgd": optim.SGD
}
parser.add_argument('--optimizer', default='adam', help='optimizer to use', choices=__optimizer__.keys())
# parse arguments, set seeds
args = parser.parse_args()
# print(args)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs(args.logdir, exist_ok=True)
# create summary logger
print("creating new summary file")
logger = SummaryWriter(args.logdir)
# dataset, dataloader
StereoDataset = __datasets__[args.dataset]
train_dataset = StereoDataset(args.datapath, args.trainlist, True)
test_dataset = StereoDataset(args.datapath, args.testlist, False)
TrainImgLoader = DataLoader(train_dataset, args.batch_size, shuffle=True, num_workers=18, drop_last=True)
TestImgLoader = DataLoader(test_dataset, args.test_batch_size, shuffle=False, num_workers=4, drop_last=False)
# model, optimizer
model = __models__[args.model](args)
# Calculate computational complexity of the model
wandb.init(project=args.wandb_project_name, config=args,
settings=wandb.Settings(start_method='fork'))
log_sizes(model)
model = nn.DataParallel(model)
model.cuda()
if args.optimizer == "sgd":
kwargs= {"lr":args.lr, "momentum":0.9}
else:
kwargs={"lr":args.lr, "betas":(0.9, 0.999)}
optimizer = __optimizer__[args.optimizer](model.parameters(), **kwargs)
# print(model)
loss_type = args.loss_type
criteria= args.error_optimization_criteria
# load parameters
start_epoch = 0
if args.resume:
# find all checkpoints file and sort according to epoch id
all_saved_ckpts = [fn for fn in os.listdir(args.logdir) if fn.endswith(".ckpt")]
all_saved_ckpts = sorted(all_saved_ckpts, key=lambda x: int(x.split('_')[-1].split('.')[0]))
# use the latest checkpoint file
loadckpt = os.path.join(args.logdir, all_saved_ckpts[-1])
print("loading the lastest model in logdir: {}".format(loadckpt))
state_dict = torch.load(loadckpt)
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
start_epoch = state_dict['epoch'] + 1
elif args.loadckpt:
# load the checkpoint file specified by args.loadckpt
print("loading model {}".format(args.loadckpt))
state_dict = torch.load(args.loadckpt)
model.load_state_dict(state_dict['model'],strict=False)
print("start at epoch {}".format(start_epoch))
# pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
def train():
wandb.watch(model, log='gradients', log_freq=args.summary_freq)
error = 100
best_epoch = 1
for epoch_idx in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch_idx, args.lr, args.lrepochs)
# training
for batch_idx, sample in enumerate(TrainImgLoader):
global_step = len(TrainImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % args.summary_freq == 0
loss, scalar_outputs, image_outputs = train_sample(sample, compute_metrics=do_summary)
if do_summary:
wandb.log({'train_loss': scalar_outputs['loss'],
'train_EPE': scalar_outputs['EPE'][-1],
'train_D1': scalar_outputs['D1'][-1],
'train_Thres1': scalar_outputs['Thres1'][-1],
'train_Thres2': scalar_outputs['Thres2'][-1],
'train_Thres3': scalar_outputs['Thres3'][-1],
'train_step': global_step,
'epoch': epoch_idx
})
save_scalars(logger, 'train', scalar_outputs, global_step)
save_images(logger, 'train', image_outputs, global_step)
del scalar_outputs, image_outputs
print('Epoch {}/{}, Iter {}/{}, train loss = {:.3f}, time = {:.3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TrainImgLoader), loss,
time.time() - start_time))
# saving checkpoints
if (epoch_idx + 1) % args.save_freq == 0:
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/checkpoint_{:0>6}.ckpt".format(args.logdir, epoch_idx))
# torch.onnx.export(model, sample ,"checkpoint_{:0>6}.onnx".format(epoch_idx))
wandb.save("checkpoint_{:0>6}.onnx".format(epoch_idx))
gc.collect()
# testing
avg_test_scalars = AverageMeterDict()
for batch_idx, sample in enumerate(TestImgLoader):
global_step = len(TestImgLoader) * epoch_idx + batch_idx
start_time = time.time()
do_summary = global_step % args.summary_freq == 0
val_loss, scalar_outputs, image_outputs = test_sample(sample, compute_metrics=do_summary)
avg_test_scalars.update(scalar_outputs)
if do_summary:
save_scalars(logger, 'test', scalar_outputs, global_step)
save_images(logger, 'test', image_outputs, global_step)
del scalar_outputs, image_outputs
print('Epoch {}/{}, Iter {}/{}, test loss = {:.3f}, time = {:3f}'.format(epoch_idx, args.epochs,
batch_idx,
len(TestImgLoader), val_loss,
time.time() - start_time))
avg_test_scalars = avg_test_scalars.mean()
save_scalars(logger, 'fulltest', avg_test_scalars, len(TrainImgLoader) * (epoch_idx + 1))
print("avg_test_scalars", avg_test_scalars)
wandb.log({'val_loss': avg_test_scalars['loss'],
'val_EPE': avg_test_scalars['EPE'][-1],
'val_D1': avg_test_scalars['D1'][-1],
'val_Thres1': avg_test_scalars['Thres1'][-1],
'val_Thres2': avg_test_scalars['Thres2'][-1],
'val_Thres3': avg_test_scalars['Thres3'][-1],
'val_step': global_step,
'val_epoch': epoch_idx
})
if avg_test_scalars[criteria][-1] < error:
error = avg_test_scalars[criteria][-1]
best_epoch = epoch_idx
print("New best checkpoint found!!")
checkpoint_data = {'epoch': epoch_idx, 'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
torch.save(checkpoint_data, "{}/checkpoint_best.ckpt".format(args.logdir))
wandb.log({'Best ckpt epoch': best_epoch,
'epoch': epoch_idx
})
gc.collect()
# train one sample
def train_sample(sample, compute_metrics=False):
model.train()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
optimizer.zero_grad()
disp_ests = model(imgL, imgR)
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
loss = model_loss(disp_ests, disp_gt, mask, __loss_type__[loss_type])
# if loss_type == "ohemCE":
# disp_ests = [torch.argmax(d, axis=1).type(torch.float32) for d in disp_ests]
scalar_outputs = {"loss": loss}
image_outputs = {"disp_est": disp_ests, "disp_gt": disp_gt, "imgL": imgL, "imgR": imgR}
if compute_metrics:
with torch.no_grad():
image_outputs["errormap"] = [disp_error_image_func.apply(disp_est, disp_gt) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
loss.backward()
optimizer.step()
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
# test one sample
@make_nograd_func
def test_sample(sample, compute_metrics=True):
model.eval()
imgL, imgR, disp_gt = sample['left'], sample['right'], sample['disparity']
imgL = imgL.cuda()
imgR = imgR.cuda()
disp_gt = disp_gt.cuda()
disp_ests = model(imgL, imgR)
mask = (disp_gt < args.maxdisp) & (disp_gt > 0)
loss = model_loss(disp_ests, disp_gt, mask, __loss_type__[loss_type])
# if loss_type == "ohemCE":
# disp_ests = [torch.argmax(d, axis=1).type(torch.float32) for d in disp_ests]
scalar_outputs = {"loss": loss}
image_outputs = {"disp_est": disp_ests, "disp_gt": disp_gt, "imgL": imgL, "imgR": imgR}
scalar_outputs["D1"] = [D1_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["EPE"] = [EPE_metric(disp_est, disp_gt, mask) for disp_est in disp_ests]
scalar_outputs["Thres1"] = [Thres_metric(disp_est, disp_gt, mask, 1.0) for disp_est in disp_ests]
scalar_outputs["Thres2"] = [Thres_metric(disp_est, disp_gt, mask, 2.0) for disp_est in disp_ests]
scalar_outputs["Thres3"] = [Thres_metric(disp_est, disp_gt, mask, 3.0) for disp_est in disp_ests]
if compute_metrics:
image_outputs["errormap"] = [disp_error_image_func.apply(disp_est, disp_gt) for disp_est in disp_ests]
return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
if __name__ == '__main__':
args = wandb.config # just to ensure same params are logged in wandb and also used same in our model
wandb.run.name = args.wandb_run_name
train()
wandb.save("{}/checkpoint_best.ckpt".format(args.logdir))