The gwas.sif
container file has multiple tools related to imputation and GWAS analysis, as summarized in the Sofware table below.
Note that some specific tools (e.g. bolt
) are added to the path directly from their /tools
folder (e.g. /tools/bolt
) due to hard-linked dependencies.
Either way, all tools can be invoked by their name, as listed above. For example:
>singularity exec gwas.sif regenie
|=============================|
| REGENIE v2.0.2.gz |
|=============================|
Copyright (c) 2020 Joelle Mbatchou and Jonathan Marchini.
Distributed under the MIT License.
Compiled with Boost Iostream library.
Using Intel MKL with Eigen.
ERROR: You must provide an output prefix using '--out'
For more information, use option '--help' or visit the website: https://rgcgithub.github.io/regenie/
List of software included in the container:
OS/tool | version | license |
---|---|---|
ubuntu | 20.04 | Creative Commons CC-BY-SA version 3.0 UK licence |
bcftools1 | 1.19 | MIT/Expat/GPLv3 |
bedtools2 | 2.31.1 | MIT |
beagle3 4 | 22Jul22.46e | GPLv3 |
bgenix5 | 1.1.7 | Boost |
bolt6 | v2.4.1 | GPLv3 |
cat-bgen7 | same version as bgenix | Boost |
duohmm8 | 95bd395 | MIT |
eagle9 | v2.4.1 | GPLv3 |
edit-bgen10 | same version as bgenix | Boost |
flashpca_x86-6411 | 2.0 | GPLv3 |
gcta6412 | 1.94.1 | GPLv3 |
gctb13 | 2.04.3 | MIT |
GWAMA14 | 2.2.2 | BSD-3-Clause |
HTSlib15 | 1.19.1 | MIT/Expat/Modified-BSD |
king16 | 2.3.2 | permissive |
ldak17 | 6 | GPLv3 |
liftOver18 | latest | permissive |
metal19 | 2020-05-05 | - |
minimac420 | v4.1.6 | GPLv3 |
plink21 | v1.90b7.2 64-bit (11 Dec 2023) | GPLv3 |
plink222 | v2.00a5.10LM 64-bit Intel (5 Jan 2024) | GPLv3 |
plink2_avx222 | v2.00a5.10LM AVX2 Intel (5 Jan 2024) | GPLv3 |
PRSice_linux23 | 2.3.5 | GPLv3 |
qctool24 | 2.2.2, revision e5723df2c0c85959 | Boost |
regenie25 | v3.6 | MIT/Boost |
samtools1 | v1.19.2 | MIT/ExpatD |
shapeit4.226 | v4.2.2 | MIT |
shapeit527 phase_rare | v5.1.1 | MIT |
shapeit527 phase_common | v5.1.1 | MIT |
shapeit527 ligate | v5.1.1 | MIT |
shapeit527 switch | v5.1.1 | MIT |
shapeit527 xcftools | v5.1.1 | MIT |
simu_linux28 | v0.9.4 | GPLv3 |
snptest29 | v2.5.6 | permissive |
switchError30 | 6e688b1 | MIT |
vcftools31 | 0.1.17 (git SHA: d511f469e) | GPLv3 |
Footnotes
-
Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, Heng Li, Twelve years of SAMtools and BCFtools, GigaScience, Volume 10, Issue 2, February 2021, giab008, https://doi.org/10.1093/gigascience/giab008 ↩ ↩2
-
Aaron R. Quinlan, Ira M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, Volume 26, Issue 6, March 2010, Pages 841–842, https://doi.org/10.1093/bioinformatics/btq033 ↩
-
B L Browning, X Tian, Y Zhou, and S R Browning (2021) Fast two-stage phasing of large-scale sequence data. Am J Hum Genet 108(10):1880-1890. doi:10.1016/j.ajhg.2021.08.005 ↩
-
B L Browning, Y Zhou, and S R Browning (2018). A one-penny imputed genome from next generation reference panels. Am J Hum Genet 103(3):338-348. doi:10.1016/j.ajhg.2018.07.015 ↩
-
Loh, P.-R. et al. Efficient Bayesian mixed model analysis increases association power in large cohorts. Nature Genetics 47, 284–290 (2015). ↩
-
O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, et al. (2014) A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness. PLOS Genetics 10(4): e1004234. https://doi.org/10.1371/journal.pgen.1004234 ↩
-
Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nature Genetics 48, 1443–1448 (2016) ↩
-
Gad Abraham, Yixuan Qiu, Michael Inouye, FlashPCA2: principal component analysis of Biobank-scale genotype datasets, Bioinformatics, Volume 33, Issue 17, September 2017, Pages 2776–2778, https://doi.org/10.1093/bioinformatics/btx299 ↩
-
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011 Jan 7;88(1):76-82. doi: 10.1016/j.ajhg.2010.11.011. Epub 2010 Dec 17. ↩
-
Zeng, J., de Vlaming, R., Wu, Y. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat Genet 50, 746–753 (2018). https://doi.org/10.1038/s41588-018-0101-4 ↩
-
Mägi, R., Morris, A.P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010). https://doi.org/10.1186/1471-2105-11-288 ↩
-
James K Bonfield, John Marshall, Petr Danecek, Heng Li, Valeriu Ohan, Andrew Whitwham, Thomas Keane, Robert M Davies, HTSlib: C library for reading/writing high-throughput sequencing data, GigaScience, Volume 10, Issue 2, February 2021, giab007, https://doi.org/10.1093/gigascience/giab007 ↩
-
Ani Manichaikul, Josyf C. Mychaleckyj, Stephen S. Rich, Kathy Daly, Michèle Sale, Wei-Min Chen, Robust relationship inference in genome-wide association studies, Bioinformatics, Volume 26, Issue 22, November 2010, Pages 2867–2873, https://doi.org/10.1093/bioinformatics/btq559 ↩
-
Speed, D., Cai, N., the UCLEB Consortium. et al. Reevaluation of SNP heritability in complex human traits. Nat Genet 49, 986–992 (2017). https://doi.org/10.1038/ng.3865 ↩
-
Phuc-Loi Luu, Phuc-Thinh Ong, Thanh-Phuoc Dinh, Susan J Clark, Benchmark study comparing liftover tools for genome conversion of epigenome sequencing data, NAR Genomics and Bioinformatics, Volume 2, Issue 3, September 2020, lqaa054, https://doi.org/10.1093/nargab/lqaa054 ↩
-
Cristen J. Willer, Yun Li, Gonçalo R. Abecasis, METAL: fast and efficient meta-analysis of genomewide association scans, Bioinformatics, Volume 26, Issue 17, September 2010, Pages 2190–2191, https://doi.org/10.1093/bioinformatics/btq340 ↩
-
Christopher C Chang, Carson C Chow, Laurent CAM Tellier, Shashaank Vattikuti, Shaun M Purcell, James J Lee, Second-generation PLINK: rising to the challenge of larger and richer datasets, GigaScience, Volume 4, Issue 1, December 2015, s13742–015–0047–8, https://doi.org/10.1186/s13742-015-0047-8 ↩
-
Shing Wan Choi, Paul F O'Reilly, PRSice-2: Polygenic Risk Score software for biobank-scale data, GigaScience, Volume 8, Issue 7, July 2019, giz082, https://doi.org/10.1093/gigascience/giz082 ↩
-
Mbatchou, J., Barnard, L., Backman, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet 53, 1097–1103 (2021). https://doi.org/10.1038/s41588-021-00870-7 ↩
-
Delaneau, O., Zagury, JF., Robinson, M.R. et al. Accurate, scalable and integrative haplotype estimation. Nat Commun 10, 5436 (2019). https://doi.org/10.1038/s41467-019-13225-y ↩
-
Hofmeister, R.J., Ribeiro, D.M., Rubinacci, S. et al. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat Genet 55, 1243–1249 (2023). https://doi.org/10.1038/s41588-023-01415-w ↩ ↩2 ↩3 ↩4 ↩5
-
O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, et al. (2014) A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness. PLOS Genetics 10(4): e1004234. https://doi.org/10.1371/journal.pgen.1004234 ↩
-
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; ↩