-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
41 lines (34 loc) · 1.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import torch
import argparse
import torch.backends.cudnn as cudnn
import numpy as np
from cdt_reconstruction import CDTReconstruction
cudnn.benchmark = True
scene_choices = ['cones', 'letter_s', 'letters_ut', 'mannequin',
'letter_t', 'resolution_50', 'resolution_70'] +\
[f'letter_u_{x}' for x in np.arange(50, 82, 2)]
# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument('--scene', type=str, default='letter_s',
choices=scene_choices,
help='name of scene to reconstruct.')
parser.add_argument('--cpu', action='store_true', default=False, help='Force run on CPU, default=False')
parser.add_argument('--gpu_id', type=int, default=0, help='index of which GPU to run on, default=0')
parser.add_argument('--pause', type=int, default=5, help='how long to display figure, default=5 (seconds)')
opt = parser.parse_args()
print('Confocal diffuse tomography reconstruction')
print('\n'.join(["\t%s: %s" % (key, value) for key, value in vars(opt).items()]))
# check to see if GPU is available
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(opt.gpu_id)
if opt.cpu:
device = torch.device('cpu')
else:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main():
cdt = CDTReconstruction(opt.scene, pause=opt.pause, device=device)
cdt.run()
return
if __name__ == '__main__':
main()