-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
168 lines (125 loc) · 5.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
def interpolate(grid, lin_ind_frustrum, voxel_coords, device_id):
""" linear interpolation for frequency-wavenumber migration
adapted from https://github.com/vsitzmann/deepvoxels/blob/49369e243001658ccc8ba3be97d87c85273c9f15/projection.py
"""
depth, width, height = grid.shape
lin_ind_frustrum = lin_ind_frustrum.long()
x_indices = voxel_coords[1, :]
y_indices = voxel_coords[2, :]
z_indices = voxel_coords[0, :]
mask = ((x_indices < 0) | (y_indices < 0) | (z_indices < 0) |
(x_indices > width-1) | (y_indices > height-1) | (z_indices > depth-1)).to(device_id)
x0 = x_indices.floor().long()
y0 = y_indices.floor().long()
z0 = z_indices.floor().long()
x0 = torch.clamp(x0, 0, width - 1)
y0 = torch.clamp(y0, 0, height - 1)
z0 = torch.clamp(z0, 0, depth - 1)
z1 = (z0 + 1).long()
z1 = torch.clamp(z1, 0, depth - 1)
x_indices = torch.clamp(x_indices, 0, width - 1)
y_indices = torch.clamp(y_indices, 0, height - 1)
z_indices = torch.clamp(z_indices, 0, depth - 1)
x = x_indices - x0.float()
y = y_indices - y0.float()
z = z_indices - z0.float()
output = torch.zeros(height * width * depth).to(device_id)
tmp1 = grid[z0, x0, y0] * (1 - z) * (1 - x) * (1 - y)
tmp2 = grid[z1, x0, y0] * z * (1 - x) * (1 - y)
output[lin_ind_frustrum] = tmp1 + tmp2
output = output * (1 - mask.float())
output = output.contiguous().view(depth, width, height)
return output
def roll_n(X, axis, n):
""" circular shift function """
f_idx = tuple(slice(None, None, None) if i != axis else slice(0, n, None) for i in range(X.dim()))
b_idx = tuple(slice(None, None, None) if i != axis else slice(n, None, None) for i in range(X.dim()))
front = X[f_idx]
back = X[b_idx]
return torch.cat([back, front], axis)
def fftshift(x):
real, imag = torch.unbind(x, -1)
if real.ndim > 3:
dim_start = 2
else:
dim_start = 0
for dim in range(dim_start, len(real.size())):
n_shift = real.size(dim)//2
if real.size(dim) % 2 != 0:
n_shift += 1 # for odd-sized images
real = roll_n(real, axis=dim, n=n_shift)
imag = roll_n(imag, axis=dim, n=n_shift)
return torch.stack((real, imag), -1) # last dim=2 (real&imag)
def ifftshift(x):
real, imag = torch.unbind(x, -1)
if real.ndim > 3:
dim_stop = 1
else:
dim_stop = -1
for dim in range(len(real.size()) - 1, dim_stop, -1):
real = roll_n(real, axis=dim, n=real.size(dim)//2)
imag = roll_n(imag, axis=dim, n=imag.size(dim)//2)
return torch.stack((real, imag), -1) # last dim=2 (real&imag)
def compl_mul(X, Y):
""" complex multiplication for pytorch; real and imaginary parts are
stored in the last channel of the arrays
see https://discuss.pytorch.org/t/aten-cuda-implementation-of-complex-multiply/17215/2
"""
assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2'
return torch.stack(
(X[..., 0] * Y[..., 0] - X[..., 1] * Y[..., 1],
X[..., 0] * Y[..., 1] + X[..., 1] * Y[..., 0]),
dim=-1)
def conj(x):
# complex conjugation for pytorch
tmp = x.clone()
tmp[:, :, :, :, :, 1] = tmp[:, :, :, :, :, 1] * -1
return tmp
def fk(meas, width, mrange):
""" perform f--k migration """
device = meas.device
meas = meas.squeeze()
width = torch.FloatTensor([width]).to(device)
mrange = torch.FloatTensor([mrange]).to(device)
N = meas.size()[1]//2 # spatial resolution
M = meas.size()[0]//2 # temporal resolution
data = torch.sqrt(torch.clamp(meas, 0))
M_grid = torch.arange(-M, M).to(device)
N_grid = torch.arange(-N, N).to(device)
[z, x, y] = torch.meshgrid(M_grid, N_grid, N_grid)
z = (z.type(torch.FloatTensor) / M).to(device)
x = (x.type(torch.FloatTensor) / N).to(device)
y = (y.type(torch.FloatTensor) / N).to(device)
# pad data
tdata = data
# fourier transform
if tdata.ndim > 3:
tdata = fftshift(tdata.fft(3))
else:
tdata = fftshift(tdata.rfft(3, onesided=False))
tdata_real, tdata_imag = torch.unbind(tdata, -1)
# interpolation coordinates
z_interp = torch.sqrt(abs((((N * mrange) / (M * width * 4))**2) *
(x**2 + y**2) + z**2))
coords = torch.stack((z_interp.flatten(), x.flatten(), y.flatten()), 0)
lin_ind = torch.arange(z.numel()).to(device)
coords[0, :] = (coords[0, :] + 1) * M
coords[1, :] = (coords[1, :] + 1) * N
coords[2, :] = (coords[2, :] + 1) * N
# run interpolation
tvol_real = interpolate(tdata_real, lin_ind, coords, device)
tvol_imag = interpolate(tdata_imag, lin_ind, coords, device)
tvol = torch.stack((tvol_real, tvol_imag), -1)
# zero out redundant spectrum
x = x[:, :, :, None]
y = y[:, :, :, None]
z = z[:, :, :, None]
tvol = tvol * abs(z) / torch.clamp(torch.sqrt(abs((((N * mrange) / (M * width * 4))**2) *
(x**2 + y**2)+z**2)), 1e-8)
tvol = tvol * (z > 0).type(torch.FloatTensor).to(device)
# inverse fourier transform and crop
tvol = ifftshift(tvol).ifft(3).squeeze()
geom = tvol[:, :, :, 0]**2 + tvol[:, :, :, 1]**2
geom = geom[None, None, :, :, :]
return geom