-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathunet.py
275 lines (242 loc) · 11.4 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torch
import torch.nn as nn
from torch.nn import init
import functools
def norm_layer(norm_str):
if norm_str.lower() == 'instance':
return nn.InstanceNorm2d
elif norm_str.lower() == 'group':
return nn.GroupNorm
elif norm_str.lower() == 'batch':
return nn.BatchNorm2d
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False,
norm_layer=nn.InstanceNorm2d, use_dropout=False,
outer_skip=False):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
self.outer_skip = outer_skip
if norm_layer == None:
use_bias = True
elif type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=5,
# Change kernel size changed to 5 from 4 and padding size from 1 to 2
stride=2, padding=2, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
if norm_layer is not None:
if norm_layer == nn.GroupNorm:
downnorm = norm_layer(8, inner_nc)
else:
downnorm = norm_layer(inner_nc)
else:
downnorm = None
uprelu = nn.ReLU(True)
if norm_layer is not None:
if norm_layer == nn.GroupNorm:
upnorm = norm_layer(8, outer_nc)
else:
upnorm = norm_layer(outer_nc)
else:
upnorm = None
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv, downrelu]
up = [upconv] # Removed tanh and uprelu
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
if norm_layer is not None:
down = [downconv, downnorm, downrelu]
up = [upconv, upnorm, uprelu]
else:
down = [downconv, downrelu]
up = [upconv, uprelu]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
if norm_layer is not None:
down = [downconv, downnorm, downrelu]
up = [upconv, upnorm, uprelu]
else:
down = [downconv, downrelu]
up = [upconv, uprelu]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost and not self.outer_skip:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
def init_latent(latent_num, wavefront_res, ones=False):
if latent_num > 0:
if ones:
latent = nn.Parameter(torch.ones(1, latent_num, *wavefront_res,
requires_grad=True))
else:
latent = nn.Parameter(torch.zeros(1, latent_num, *wavefront_res,
requires_grad=True))
else:
latent = None
return latent
def apply_net(net, input, latent_code, complex=False):
if net is None:
return input
if complex: # Only valid for single batch or single channel complex inputs and outputs
multi_channel = (input.shape[1] > 1)
if multi_channel:
input = torch.view_as_real(input[0,...])
else:
input = torch.view_as_real(input[:,0,...])
input = input.permute(0,3,1,2)
if latent_code is not None:
input = torch.cat((input, latent_code), dim=1)
output = net(input)
if complex:
if multi_channel:
output = output.permute(0,2,3,1).unsqueeze(0)
else:
output = output.permute(0,2,3,1).unsqueeze(1)
output = torch.complex(output[...,0], output[...,1])
return output
def init_weights(net, init_type='normal', init_gain=0.02, outer_skip=False):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find(
'BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(self, input_nc=1, output_nc=1, num_downs=8, nf0=32, max_channels=512,
norm_layer=nn.InstanceNorm2d, use_dropout=False, outer_skip=True,
half_channels=False, eighth_channels=False):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
self.outer_skip = outer_skip
self.input_nc = input_nc
if eighth_channels:
divisor = 8
elif half_channels:
divisor = 2
else:
divisor = 1
# construct unet structure
assert num_downs >= 2
# Add the innermost layer
unet_block = UnetSkipConnectionBlock(min(2 ** (num_downs - 1) * nf0, max_channels) // divisor,
min(2 ** (num_downs - 1) * nf0, max_channels) // divisor,
input_nc=None, submodule=None, norm_layer=norm_layer,
innermost=True)
for i in list(range(1, num_downs - 1))[::-1]:
if i == 1:
norm = None # Praneeth's modification
else:
norm = norm_layer
unet_block = UnetSkipConnectionBlock(min(2 ** i * nf0, max_channels) // divisor,
min(2 ** (i + 1) * nf0, max_channels) // divisor,
input_nc=None, submodule=unet_block,
norm_layer=norm,
use_dropout=use_dropout)
# Add the outermost layer
self.model = UnetSkipConnectionBlock(min(nf0, max_channels) // divisor,
min(2 * nf0, max_channels) // divisor,
input_nc=input_nc, submodule=unet_block, outermost=True,
norm_layer=None, outer_skip=self.outer_skip)
if self.outer_skip:
self.additional_conv = nn.Conv2d(input_nc + min(nf0, max_channels) // divisor, output_nc,
kernel_size=4, stride=1, padding=2, bias=True)
else:
self.additional_conv = nn.Conv2d(min(nf0, max_channels) // divisor, output_nc,
kernel_size=4, stride=1, padding=2, bias=True)
def forward(self, cnn_input):
"""Standard forward"""
output = self.model(cnn_input)
output = self.additional_conv(output)
output = output[:,:,:-1,:-1]
return output
class Conv2dSame(torch.nn.Module):
'''2D convolution that pads to keep spatial dimensions equal.
Cannot deal with stride. Only quadratic kernels (=scalar kernel_size).
'''
def __init__(self, in_channels, out_channels, kernel_size, bias=True, padding_layer=nn.ReflectionPad2d):
'''
:param in_channels: Number of input channels
:param out_channels: Number of output channels
:param kernel_size: Scalar. Spatial dimensions of kernel (only quadratic kernels supported).
:param bias: Whether or not to use bias.
:param padding_layer: Which padding to use. Default is reflection padding.
'''
super().__init__()
ka = kernel_size // 2
kb = ka - 1 if kernel_size % 2 == 0 else ka
self.net = nn.Sequential(
padding_layer((ka, kb, ka, kb)),
nn.Conv2d(in_channels, out_channels, kernel_size, bias=bias, stride=1)
)
self.weight = self.net[1].weight
self.bias = self.net[1].bias
def forward(self, x):
return self.net(x)