-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
246 lines (201 loc) · 9.07 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import argparse
import time
import timeit
import cv2
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch import nn
from torchvision.utils import save_image
import tqdm
from config import get_cfg_defaults
from dataset import EvalDataset, VideoMatting108_Test, Demo_Test
from helpers import *
torch.set_grad_enabled(False)
EPS = 0
def parse_args():
parser = argparse.ArgumentParser(description='Train network')
parser.add_argument("--gpu", type=str, default='0')
parser.add_argument('--trimap', default='medium', choices=['narrow', 'medium', 'wide'])
parser.add_argument("--viz", action='store_true')
parser.add_argument("--demo", action='store_true')
args = parser.parse_args()
cfg = get_cfg_defaults()
cfg.TRAIN.STAGE = 4
if args.demo:
cfg.SYSTEM.OUTDIR = './demo_results'
cfg.DATASET.PATH = './demo'
return args, cfg
def main(cfg, args, GPU):
os.environ['CUDA_VISIBLE_DEVICES'] = GPU
if torch.cuda.is_available():
print('using Cuda devices, num:', torch.cuda.device_count())
MODEL = get_model_name(cfg)
random_seed = cfg.SYSTEM.RANDOM_SEED
output_dir = os.path.join(cfg.SYSTEM.OUTDIR, 'alpha')
start = timeit.default_timer()
cudnn.benchmark = False
cudnn.deterministic = cfg.SYSTEM.CUDNN_DETERMINISTIC
cudnn.enabled = cfg.SYSTEM.CUDNN_ENABLED
if random_seed > 0:
import random
print('Seeding with', random_seed)
random.seed(random_seed)
torch.manual_seed(random_seed)
if args.demo:
outdir_tail = MODEL
else:
outdir_tail = os.path.join(args.trimap, MODEL)
alpha_outdir = os.path.join(output_dir, 'test', outdir_tail)
viz_outdir_img = os.path.join(output_dir, 'viz', 'img', outdir_tail)
viz_outdir_vid = os.path.join(output_dir, 'viz', 'vid', outdir_tail)
if args.trimap == 'narrow':
dilate_kernel = 5 # width: 11
elif args.trimap == 'medium':
dilate_kernel = 12 # width: 25
elif args.trimap == 'wide':
dilate_kernel = 20 # width: 41
model_trimap = get_model_trimap(cfg, mode='Test', dilate_kernel=dilate_kernel)
model = get_model_alpha(cfg, model_trimap, mode='Test', dilate_kernel=dilate_kernel)
load_ckpt = os.path.join('weights', '{:s}.pth'.format(MODEL))
dct = torch.load(load_ckpt, map_location=torch.device('cpu'))
model.load_state_dict(dct)
model = nn.DataParallel(model.cuda())
if args.demo:
valid_dataset = Demo_Test(data_root=cfg.DATASET.PATH)
else:
valid_dataset = VideoMatting108_Test(
data_root=cfg.DATASET.PATH,
mode='val',
)
with torch.no_grad():
eval(args, cfg, valid_dataset, model, alpha_outdir, viz_outdir_img, viz_outdir_vid, args.viz)
end = timeit.default_timer()
print('done | Total time: {}'.format(format_time(end-start)))
def write_image(outdir, out, filename, max_batch=4):
with torch.no_grad():
scaled_imgs, tri_pred, tri_gt, alphas, scaled_gts, comps = out
b, s, _, h, w = scaled_imgs.shape
alphas = alphas.expand(-1,-1,3,-1,-1)
scaled_gts = scaled_gts.expand(-1,-1,3,-1,-1)
b = max_batch if b > max_batch else b
img_list = list()
img_list.append(scaled_imgs[:max_batch].reshape(b*s, 3, h, w))
img_list.append(comps[:max_batch].reshape(b*s, 3, h, w))
img_list.append(tri_gt[:max_batch].reshape(b*s, 3, h, w))
img_list.append(scaled_gts[:max_batch].reshape(b*s, 3, h, w))
img_list.append(tri_pred[:max_batch].reshape(b*s, 3, h, w))
img_list.append(alphas[:max_batch].reshape(b*s, 3, h, w))
imgs = torch.cat(img_list, dim=0).reshape(-1, 3, h, w)
imgs = F.interpolate(imgs, size=(h//2, w//2), mode='bilinear', align_corners=False)
save_image(imgs, outdir%(filename), nrow=int(s*b*2))
def eval(args, cfg, valid_dataset, model, alpha_outdir, viz_outdir_img, viz_outdir_vid, VIZ):
model.eval()
for i_iter, (data_name, data_root, FG, BG, a, tri, seq_name) in enumerate(valid_dataset):
if cfg.SYSTEM.TESTMODE:
if i_iter not in [0, len(valid_dataset)-1]:
continue
torch.cuda.empty_cache()
num_frames = 1
eval_sequence = EvalDataset(
data_name=data_name,
data_root=data_root,
FG=FG,
BG=BG,
a=a,
tri_gt=tri, # GT trimap
trimap=None,
num_frames=num_frames,
)
eval_loader = torch.utils.data.DataLoader(
eval_sequence,
batch_size=1,
# num_workers=cfg.SYSTEM.NUM_WORKERS,
num_workers=0,
pin_memory=False,
drop_last=False,
shuffle=False,
sampler=None)
print('[{}/{}] Set FIXED dilate of unknown region: [{}]'.format(i_iter, len(valid_dataset), args.trimap))
save_path = os.path.join(alpha_outdir, 'pred', seq_name)
os.makedirs(save_path, exist_ok=True)
if VIZ:
visualization_path_img = os.path.join(viz_outdir_img, 'viz', seq_name)
visualization_path_vid = os.path.join(viz_outdir_vid, 'viz')
os.makedirs(visualization_path_img, exist_ok=True)
os.makedirs(visualization_path_vid, exist_ok=True)
iterations = tqdm.tqdm(eval_loader)
for i_seq, dp in enumerate(iterations):
if cfg.SYSTEM.TESTMODE:
if i_seq > 10:
break
def handle_batch(dp, first_frame, last_frame, memorize, max_memory_num, large_input):
fg, bg, a, eps, tri_gt, tri, _, filename = dp # [B, 3, 3 or 1, H, W]
if tri.dim() == 1:
tri = None
if tri_gt.dim() == 1:
tri_gt = None
out = model(a, fg, bg, tri=tri, tri_gt=tri_gt,
first_frame=first_frame,
last_frame=last_frame,
memorize=memorize,
max_memory_num=max_memory_num,
large_input=large_input,)
return out, filename[0]
first_frame = (i_seq==0)
last_frame = (i_seq==(len(iterations)-1))
memorize = False
MEMORY_SKIP_FRAME = cfg.TEST.MEMORY_SKIP_FRAME
MEMORY_MAX_NUM = cfg.TEST.MEMORY_MAX_NUM
large_input = False
if min(dp[0].shape[-2:]) > 1100:
MEMORY_SKIP_FRAME = int(MEMORY_SKIP_FRAME * 2)
MEMORY_MAX_NUM = int(MEMORY_MAX_NUM / 2)
large_input = True
if MEMORY_SKIP_FRAME > 2:
memorize = (i_seq % MEMORY_SKIP_FRAME) == 0
max_memory_num = MEMORY_MAX_NUM
if first_frame:
print('[{}/{}] {} | {} | Large input: {}'.format(i_iter, len(valid_dataset), seq_name, dp[0].shape[-2:], large_input))
torch.cuda.synchronize()
out, filename = handle_batch(dp, first_frame, last_frame, memorize, max_memory_num, large_input,)
torch.cuda.synchronize()
scaled_imgs, tri_pred, tri_gt, alphas, scaled_gts = out
green_bg = torch.zeros_like(scaled_imgs)
green_bg[:,:,1] = 1.
comps = scaled_imgs * alphas + green_bg * (1. - alphas)
if VIZ:
frame_path = os.path.join(visualization_path_img, 'f%d.jpg')
else:
frame_path = None
alpha_pred_img = (alphas*255).byte().cpu().squeeze(0).squeeze(0).squeeze(0).numpy()
filename_for_save = os.path.splitext(filename)[0]+'.png'
def write_result_images(alpha_pred_img, path, VIZ, frame_path, vis_out, i_seq):
if VIZ:
write_image(frame_path,
vis_out,
i_seq)
cv2.imwrite(path, alpha_pred_img)
write_result_images(alpha_pred_img,
os.path.join(save_path, filename_for_save),
VIZ,
frame_path,
# [scaled_imgs, tri_pred, tri_gt, alphas, scaled_gts, comps],
[scaled_imgs.cpu(), tri_pred.cpu(), tri_gt.cpu(), alphas.cpu(), scaled_gts.cpu(), comps.cpu()],
i_seq)
torch.cuda.synchronize()
if VIZ:
if '/' in seq_name:
vid_name = seq_name.split('/')
vid_name = '_'.join(vid_name)
else:
vid_name = seq_name
vid_path = os.path.join(visualization_path_vid, '{}.mp4'.format(vid_name))
def make_viz_video(frame_path, vid_path):
os.system('ffmpeg -framerate 10 -i {} {} -nostats -loglevel 0 -y'.format(frame_path, vid_path))
time.sleep(10) # wait 10 seconds
make_viz_video(frame_path, vid_path)
if __name__ == "__main__":
args, cfg = parse_args()
main(cfg, args, args.gpu)