-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretraining.py
293 lines (235 loc) · 11.1 KB
/
pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import argparse
import math
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import scd.builder
from torch.utils.tensorboard import SummaryWriter
from dataset import get_pretraining_set
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('-j', '--workers', default=24, type=int, metavar='N',
help='number of data loading workers (default: 32)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--schedule', default=[100, 160], nargs='*', type=int,
help='learning rate schedule (when to drop lr by 10x)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum of SGD solver')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--checkpoint-path', default='./checkpoints/pretrain/', type=str)
parser.add_argument('--skeleton-representation', type=str,
help='input skeleton-representation for self supervised training (joint or motion or bone)')
parser.add_argument('--pre-dataset', default='ntu60', type=str,
help='which dataset to use for self supervised training (ntu60 or ntu120)')
parser.add_argument('--protocol', default='cross_subject', type=str,
help='training protocol cross_view/cross_subject/cross_setup')
# specific configs:
parser.add_argument('--encoder-dim', default=128, type=int,
help='feature dimension (default: 128)')
parser.add_argument('--encoder-k', default=16384, type=int,
help='queue size; number of negative keys (default: 16384)')
parser.add_argument('--encoder-m', default=0.999, type=float,
help='momentum of updating key encoder (default: 0.999)')
parser.add_argument('--encoder-t', default=0.07, type=float,
help='softmax temperature (default: 0.07)')
parser.add_argument('--cos', action='store_true',
help='use cosine lr schedule')
parser.add_argument('--gpu', default=0)
def main():
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
# pretraining dataset and protocol
from options import options_pretraining as options
if args.pre_dataset == 'ntu60' and args.protocol == 'cross_view':
opts = options.opts_ntu_60_cross_view()
elif args.pre_dataset == 'ntu60' and args.protocol == 'cross_subject':
opts = options.opts_ntu_60_cross_subject()
elif args.pre_dataset == 'ntu120' and args.protocol == 'cross_setup':
opts = options.opts_ntu_120_cross_setup()
elif args.pre_dataset == 'ntu120' and args.protocol == 'cross_subject':
opts = options.opts_ntu_120_cross_subject()
elif args.pre_dataset == 'pku_part1' and args.protocol == 'cross_subject':
opts = options.opts_pku_part1_cross_subject()
elif args.pre_dataset == 'pku_part2' and args.protocol == 'cross_subject':
opts = options.opts_pku_part2_cross_subject()
opts.train_feeder_args['input_representation'] = args.skeleton_representation
# create model
print("=> creating model")
model = scd.builder.SCD_Net(opts.encoder_args, args.encoder_dim, args.encoder_k, args.encoder_m, args.encoder_t)
print("options",opts.train_feeder_args)
print(model)
# single gpu training
model = model.cuda()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
del checkpoint
torch.cuda.empty_cache()
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Data loading code
train_dataset = get_pretraining_set(opts)
train_sampler = None
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
writer = SummaryWriter(args.checkpoint_path)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
loss, acc1 = train(train_loader, model, criterion, optimizer, epoch, args)
writer.add_scalar('train_loss', loss.avg, global_step=epoch)
writer.add_scalar('acc', acc1.avg, global_step=epoch)
if epoch % 50 == 0:
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, is_best=False, filename=args.checkpoint_path+'/checkpoint.pth.tar')
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, losses, top1,],
prefix="Epoch: [{}] Lr_rate [{}]".format(epoch, optimizer.param_groups[0]['lr']))
# switch to train mode
model.train()
end = time.time()
for i, (q_input, k_input) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
q_input = q_input.float().cuda(non_blocking=True)
k_input = k_input.float().cuda(non_blocking=True)
# compute output
output1, output2, output3, output4, target1, target2, target3, target4 = model(q_input, k_input)
batch_size = output2.size(0)
# interactive level loss
loss = criterion(output1, target1) + criterion(output2, target2) + criterion(output3, target3) \
+ criterion(output4, target4)
losses.update(loss.item(), batch_size)
# measure accuracy of model m1 and m2 individually
# acc1/acc5 are (K+1)-way contrast classifier accuracy
# measure accuracy and record loss
acc1, _ = accuracy(output2, target2, topk=(1, 5))
top1.update(acc1[0], batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
return losses, top1
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries), flush=True)
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()