-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1 - Cleaning.Rmd
206 lines (153 loc) · 5.42 KB
/
1 - Cleaning.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
**loading libraries**
```{r message=FALSE}
library(tidyverse)
```
**Importing the CSV files**
```{r}
in13 <- read.csv('Data_files/in13.csv', row.names = 1)
an13 <- read.csv('Data_files/an13.csv', row.names = 1)
dati1 <- read.csv('Data_files/dati1.csv', row.names = 1)
```
# Data cleaning
**Looking for NA values**
```{r}
sum(is.na(in13))
sum(is.na(an13))
sum(is.na(dati1))
# As we can observe, the datasets 'an13' and 'dati1'
# contains many missing values, while '1n13' has 0 NA.
```
**Now let's analyze each csv singularly:**
## in13:
### General cleaning
```{r}
in13$prov_museo[in13$museo == "CENTRO FAUNISTICO UOMINI E LUPI"] <- "CN"
in13$com_museo[in13$museo == "CENTRO FAUNISTICO UOMINI E LUPI"] <- "ENTRACQUE"
in13$prov_museo[in13$museo == "MOSTRA BORN SOMEWHERE"] <- "TO"
in13$com_museo[in13$museo == "MOSTRA BORN SOMEWHERE"] <- "TORINO"
```
### Changing variable type
```{r}
in13$museo <- as.factor(in13$museo)
in13$prov_museo <- as.factor(in13$prov_museo)
in13$com_museo <- as.factor(in13$com_museo)
in13$datai <- as.Date(in13$datai, "%d/%m/%Y")
in13$orai <- str_sub(in13$orai, end = -4)
in13$orai <- as.integer(in13$orai)
```
## an13 & dati1
### Cleaning time variables
```{r}
dati1$ultimo_ing.x <- sub( '(?<=.{6})', '20', dati1$ultimo_ing.x, perl=TRUE)
dati1$abb13 <- sub( '(?<=.{6})', '20', dati1$abb13, perl=TRUE)
dati1$abb14 <- sub( '(?<=.{6})', '20', dati1$abb14, perl=TRUE)
dati1$ultimo_ing.x <- as.Date(dati1$ultimo_ing.x, "%d/%m/%Y")
dati1$abb13 <- as.Date(dati1$abb13, "%d/%m/%Y")
dati1$abb14 <- as.Date(dati1$abb14, "%d/%m/%Y")
an13$data_inizio <- str_sub(an13$data_inizio, end = -7) # remove hours and minutes
an13$data_inizio <- as.Date(an13$data_inizio, "%d/%m/%Y")
```
### Cleaning Cap
```{r}
turin_caps <- c(10121:10156)
turin_caps <- as.character(turin_caps)
#First: create cap for Turin --> 2328
generate_cap_for_turin <- function(comune, cap) {
if (comune == 'TORINO' && cap == 'XXXXX') {
cap <- sample(turin_caps, 1, replace = TRUE)
}
return(cap)
}
set.seed(1)
an13$cap <- mapply(generate_cap_for_turin, an13$comune, an13$cap)
#second: delete rows with dato mancante and XXXXX --> 181
an13 <- subset(an13, !(comune == 'DATO MANCANTE' & cap == 'XXXXX'))
#third: deleting remaining rows with XXXXX --> 181
an13 <- subset(an13, !( cap == 'XXXXX'))
#see results
# an13 %>% filter(cap=='XXXXX')
```
### Cleaning comune
```{r}
# an13 %>% filter(comune=='DATO MANCANTE') #-->1238
cap <- read_csv('Data_files/Cap.csv', show_col_types = FALSE)
# cap
matching_indices <- match(an13$cap, cap$CAP)
# Identify the rows in 'an13' with missing 'Comune' values ('DATO MANCANTE')
missing_comune_rows <- an13$comune == "DATO MANCANTE"
# Update the missing 'Comune' values in 'an13' using the 'cap' dataset
an13$comune[missing_comune_rows] <- cap$Comune[matching_indices[missing_comune_rows]]
# an13 %>% filter(comune=='DATO MANCANTE')
```
### General cleaning
```{r}
an13 <- an13[an13$data_nascita != "1-01", ]
an13 <- an13[an13$data_nascita != "9-02", ]
an13$data_nascita <- as.integer(an13$data_nascita)
an13 <- an13[an13$data_nascita <2014, ]
# an13 <- an13[an13$comune != "DATO MANCANTE", ]
# an13 <- an13[an13$cap != "XXXXX", ]
an13$agenzia_tipo[an13$agenzia == "ASSOCIAZIONE TORINO CITTA' CAPITALE EURO"] <- "ASSOCIAZIONE"
an13$agenzia_tipo[an13$agenzia == "LICEO SCIENTIFICO GALILEO FERRARIS"] <- "OFFERTA SCUOLE "
colnames(an13)[colnames(an13) == "OFFERTA SCUOLE "] <- "OFFERTA SCUOLE"
an13 <- an13[an13$cap != "10.12", ]
an13 <- an13[an13$cap != "BIANC", ]
an13 <- an13[an13$cap != "\xa0 100", ]
an13 <- an13[an13$cap != "100", ]
an13 <- an13[an13$cap != "10000", ]
an13 <- an13[an13$cap != "10007", ]
an13 <- an13[an13$cap != "CORSO", ]
an13 <- an13[an13$cap != "ESTER", ]
an13 <- an13[an13$cap != "L2210", ]
an13 <- an13[ nchar(an13$cap) >= 5, ]
an13$cap[an13$codcliente == 14061] <- "10129"
an13$cap[an13$codcliente == 127888] <- "10124"
an13$cap[an13$codcliente == 199123] <- "10145"
an13$cap[an13$codcliente == 203569] <- "10048"
an13$cap[an13$codcliente == 211576] <- "10125"
```
### Merging
```{r}
total <- merge(an13, dati1, by="codcliente", all.x = TRUE)
```
```{r}
sapply(total, function(x) sum(is.na(x)))
```
```{r}
total <- total[, !(names(total) %in% c('sesso.y', 'prezzo13', 'prov', 'professione'))]
colnames(total)[colnames(total) == "sesso.x"] <- "sesso"
total["nvisite0512"][is.na(total["nvisite0512"])] <- 0
total["nmusei0512"][is.na(total["nmusei0512"])] <- 0
```
### Changing variable type
```{r}
total$churn <- ifelse(total$si2014 == 0, 1, 0)
total$si2014 <- NULL
total$si2013 <- NULL
total$data_nascita <- NULL
total$sconto <- as.factor(total$sconto)
total$riduzione <- as.factor(total$riduzione)
total$tipo_pag <- as.factor(total$tipo_pag)
total$agenzia <- as.factor(total$agenzia)
total$agenzia_tipo <- as.factor(total$agenzia_tipo)
total$sesso <- as.factor(total$sesso)
total$comune <- as.factor(total$comune)
total$cap <- as.integer(total$cap)
total$nuovo_abb <- as.factor(total$nuovo_abb)
total$data_inizio <- as.integer(month(total$data_inizio))
total$ultimo_ing.x <- as.integer(month(total$ultimo_ing.x))
total$abb14 <- as.integer(month(total$abb14))
total$abb13 <- as.integer(month(total$abb13))
total$ultimo_ing.x <- ifelse(is.na(total$ultimo_ing.x),0, total$ultimo_ing.x)
total$abb14 <- ifelse(is.na(total$abb14),0, total$abb14)
total$abb13 <- ifelse(is.na(total$abb13),0, total$abb13)
```
```{r}
sapply(total, function(x) sum(is.na(x)))
```
```{r}
total <- na.omit(total)
```
```{r}
sapply(total, function(x) sum(is.na(x)))
```