-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_checks.py
377 lines (329 loc) Β· 13.7 KB
/
data_checks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
# Goals for this tool:
#
# Take in a CSV file with three columns (file_path, transcript),
# and return information on:
# 1) definitely bad data
# 2) probably bad data
# 3) probably good data
from coqui_stt_training.util.audio import (
read_audio,
read_duration,
get_loadable_audio_type_from_extension,
)
from pandarallel import pandarallel
from pathlib import Path
import pandas as pd
import os
import stt
import librosa
import numpy as np
from tqdm import tqdm
class SttTranscriber:
"""Audio transcriber using coqui stt python client.
Faster than aws transcriber if you have a gpu so only use with gpu.
Args:
model_path (str): Path to tflite file.
scorer_path (str): Path to language model for scoring.
"""
def __init__(self, model_path, scorer_path):
self.model = stt.Model(model_path)
self.model.enableExternalScorer(scorer_path)
def transcribe(self, audio_path):
"""Run stt model on audio file and get transcript
Args:
audio_path (str): Path to audio file to run stt on.
"""
data, sr = librosa.load(audio_path, sr=16000)
wav_norm = data * (32767 / max(0.01, np.max(np.abs(data))))
return self.model.stt(wav_norm.astype(np.int16))
def get_abspath(df, csv_file):
def find_abspath(csv_dir, audio_path):
if os.path.isfile(os.path.abspath(audio_path)):
return os.path.abspath(audio_path)
elif os.path.isfile(os.path.abspath(os.path.join(csv_dir, audio_path))):
return os.path.abspath(os.path.join(csv_dir, audio_path))
else:
print("π¨ ERROR: could not resolve abspath for {}".format(audio_path))
csv_dir = Path(csv_file).parent.resolve().absolute()
df["abspath"] = df.parallel_apply(
lambda x: find_abspath(csv_dir, x.wav_filename), axis=1
)
return df
def is_audio_readable(df, csv_file, AUDIO_TYPE):
def is_audio_readable_(AUDIO_TYPE, audio_path):
try:
read_audio(AUDIO_TYPE, audio_path)
return True
except Exception as exception:
print(
" Β· Cannot read {}, raised exception {}".format(audio_path, exception),
)
return False
print(" Β· Checking if audio is readable...")
df["is_readable"] = df.abspath.parallel_apply(lambda x: is_audio_readable_(AUDIO_TYPE, x))
# df["is_readable"] = df.abspath.parallel_apply(is_audio_readable_)
df_unreadable = df[df.is_readable == False]
if df_unreadable.shape[0]:
print("π β Found {} unreadable audiofiles".format(df_unreadable.shape[0]))
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".UNREADABLE"
)
df_unreadable.to_csv(csv_name, index=False)
print(" Β· Wrote unreadable data to {}".format(csv_name))
else:
print("π Found no unreadable audiofiles")
df = df[df.is_readable == True]
return df
def get_audio_type(df):
# TODO -- check all filenames, not just first
if not type(df["wav_filename"][0]) is str:
print("π¨ ERROR: expected string, found type {}".format(type(df["wav_filesize"][0])))
exit(1)
AUDIO_TYPE = get_loadable_audio_type_from_extension(os.path.splitext(df["wav_filename"][0])[1].lower())
if AUDIO_TYPE:
print(" Β· First audio file found: {} of type {}".format((df["wav_filename"][0]), AUDIO_TYPE))
return AUDIO_TYPE
else:
print("π¨ ERROR: unknown Audio type file extension")
exit(1)
def get_num_feat_vectors(df):
# seconds -> milliseconds, divide by 20 millisecond feature_win_step
# round up to nearest int
def calculate_num_feat_vecs(seconds):
return int(seconds * 1000 / 20)
print(" Β· Get num feature vectors...")
df["num_feat_vectors"] = df.audio_len.parallel_apply(calculate_num_feat_vecs)
def get_audio_duration(df, AUDIO_TYPE):
# get number of seconds of audio
def _read_duration(audio):
read_duration(AUDIO_TYPE, audio)
print(" Β· Reading audio duration...")
df["audio_len"] = df.abspath.parallel_apply(lambda x: read_duration(AUDIO_TYPE, x))
# df["audio_len"] = df.abspath.parallel_apply(_read_duration)
def get_transcript_length(df):
print(" Β· Get transcript length...")
df["transcript_len"] = df.transcript.parallel_apply(lambda x: len(str(x)))
def remove_offending_input_output_ratio(df, csv_file):
# CTC algorithm assumes the input is not shorter than the ouput
# if this is not the case, training breaks, and there's probably
# something funky with the data
print(" Β· Get ratio (num_feats / transcript_len)...")
df["input_output_ratio"] = df.parallel_apply(
lambda x: float(x.num_feat_vectors) / float(x.transcript_len), axis=1
)
offending_samples_df = df[df["input_output_ratio"] <= 1.0]
if offending_samples_df.shape[0]:
print(
"π β¬ Found {} <transcript,clip> pairs with more text than audio (bad for CTC)".format(
offending_samples_df.shape[0]
)
)
total_hours = (offending_samples_df["audio_len"].sum() / 3600)
print(
" β Removing a total of {:0.2f} hours of data from BEST dataset".format(
total_hours
)
)
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".OFFENDING_DATA"
)
offending_samples_df.to_csv(csv_name, index=False)
print(" β Wrote offending data to {}".format(csv_name))
df = df[df["input_output_ratio"] > 1.0]
return df
else:
print("π Found no offending <transcript,clip> pairs")
return df
def remove_text_outliers(df, csv_file, num_std_devs, stt_model_path, stt_scorer_path):
print(" . Running stt model...")
stt_model = SttTranscriber(stt_model_path, stt_scorer_path)
stt_texts = []
for i in tqdm(range(len(df))):
stt_texts.append(stt_model.transcribe(df.iloc[i]['abspath']))
df['stt_transcript'] = stt_texts
# df['stt_transcript'] = df.abspath.parallel_apply(lambda x: stt_model.transcribe(x), axis=1)
df['stt_len'] = df.parallel_apply(lambda x: len(x.stt_transcript), axis=1)
df["text_ratio"] = df.parallel_apply(
lambda x: float(x.transcript_len) / float(x.stt_len), axis=1
)
mean = df["text_ratio"].mean()
std = df["text_ratio"].std()
df["text_ratio_deviation"] = df.parallel_apply(
lambda x: abs(x.text_ratio - mean) - (num_std_devs * std), axis=1
)
offending_samples_df = df[df["text_ratio_deviation"] > 0]
if offending_samples_df.shape[0]:
print(
"π β¬ Found {} <transcript,stt_text> pairs more than {} standard deviations from the mean".format(
offending_samples_df.shape[0],
num_std_devs
)
)
total_hours = (offending_samples_df["audio_len"].sum() / 3600)
print(
" β Removing a total of {:0.2f} hours of data from BEST dataset".format(
total_hours
)
)
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".NON_NORMAL"
)
offending_samples_df.to_csv(csv_name, index=False)
print(" β Wrote offending data to {}".format(csv_name))
df = df[df["text_ratio_deviation"] <= 0]
return df
else:
print("π Found no <transcript,stt_transcript> pairs more than {} standard deviations from the mean".format(num_std_devs))
return df
def remove_outliers(df, csv_file, num_std_devs):
# remove all data whose audio_len/trans_len ratio
# is more than num_std_devs standard deviations from the mean
print(" Β· Calculating ratio (num_feats : transcript_len)...")
df["lens_ratio"] = df.parallel_apply(
lambda x: float(x.audio_len) / float(x.transcript_len), axis=1
)
mean = df["lens_ratio"].mean()
std = df["lens_ratio"].std()
df["lens_ratio_deviation"] = df.parallel_apply(
lambda x: abs(x.lens_ratio - mean) - (num_std_devs * std), axis=1
)
offending_samples_df = df[df["lens_ratio_deviation"] > 0]
if offending_samples_df.shape[0]:
print(
"π β¬ Found {} <transcript,clip> pairs more than {} standard deviations from the mean".format(
offending_samples_df.shape[0],
num_std_devs
)
)
total_hours = (offending_samples_df["audio_len"].sum() / 3600)
print(
" β Removing a total of {:0.2f} hours of data from BEST dataset".format(
total_hours
)
)
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".NON_NORMAL"
)
offending_samples_df.to_csv(csv_name, index=False)
print(" β Wrote offending data to {}".format(csv_name))
df = df[df["lens_ratio_deviation"] <= 0]
return df
else:
print("π Found no <transcript,clip> pairs more than {} standard deviations from the mean".format(num_std_devs))
return df
def cut_off_audio_len(df, csv_file, max_len):
# remove all data whose over a max audio len
offending_samples_df = df[df["audio_len"] > max_len]
if offending_samples_df.shape[0]:
print(
"π β¬ Found {} audio clips over {} seconds long".format(
offending_samples_df.shape[0], max_len
)
)
total_hours = (offending_samples_df["audio_len"].sum() / 3600)
print(
" β Removing a total of {:0.2f} hours of data from BEST dataset".format(
total_hours
)
)
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".TOO_LONG"
)
offending_samples_df.to_csv(csv_name, index=False)
print(" β Wrote too long data to {}".format(csv_name))
df = df[df["audio_len"] < 30]
return df
else:
print("π Found no audio clips over {} seconds in length".format(max_len))
return df
def cut_off_transcript_len(df, csv_file, min_len):
# remove all data with transcripts under min length
offending_samples_df = df[df["transcript_len"] < min_len]
if offending_samples_df.shape[0]:
print(
"π β¬ Found {} transcripts under {} characters long".format(
offending_samples_df.shape[0], min_len
)
)
total_hours = (offending_samples_df["audio_len"].sum() / 3600)
print(
" β Removing a total of {:0.2f} hours of data from BEST dataset".format(
total_hours
)
)
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".TOO_SHORT_TRANS"
)
offending_samples_df.to_csv(csv_name, index=False)
print(" β Wrote too short transcript data to {}".format(csv_name))
df = df[df["transcript_len"] > 10]
return df
else:
print("π Found no transcripts under {} characters in length".format(min_len))
return df
if __name__ == "__main__":
import sys
os.environ["JOBLIB_TEMP_FOLDER"] = "/tmp"
csv_file = sys.argv[1]
num_std_devs = float(sys.argv[2])
# can't use progress_bar=True https://github.com/nalepae/pandarallel/issues/131
# in Docker, big CSVs run out of space in /dev/shm https://github.com/nalepae/pandarallel/issues/127
pandarallel.initialize(use_memory_fs=False)
### Must-run ###
df = pd.read_csv(csv_file)
if ("transcript" not in df.columns) or ("wav_filename" not in df.columns):
print("π¨ ERROR: missing headers 'transcript' and 'wav_filename'")
exit(1)
df = get_abspath(df, csv_file)
org_total_samples = df.shape[0]
print("π β Found {} <transcript,clip> pairs in {}".format(
org_total_samples, csv_file
))
AUDIO_TYPE = get_audio_type(df)
df = is_audio_readable(df, csv_file, AUDIO_TYPE)
### Following checks are as you wish ###
get_audio_duration(df, AUDIO_TYPE)
org_total_hours = (df["audio_len"].sum() / 3600)
print(
"π β Found a total of {:0.2f} hours of readable data".format(
org_total_hours
)
)
get_transcript_length(df)
get_num_feat_vectors(df)
df = cut_off_audio_len(df, csv_file, 30)
df = cut_off_transcript_len(df, csv_file, 10)
df = remove_offending_input_output_ratio(df, csv_file)
df = remove_outliers(df, csv_file, num_std_devs=num_std_devs)
if len(sys.argv) > 3:
stt_model_path = sys.argv[3]
stt_scorer_path = sys.argv[4]
df = remove_text_outliers(df, csv_file, num_std_devs=num_std_devs, stt_model_path=stt_model_path, stt_scorer_path=stt_scorer_path)
csv_name = (
str(Path(csv_file).resolve().absolute().with_suffix("")) + ".BEST"
)
df.to_csv(csv_name, index=False)
new_total_hours = (df["audio_len"].sum() / 3600)
total_hours_removed = org_total_hours - new_total_hours
percent_hours_removed = (total_hours_removed / org_total_hours) * 100
new_total_samples = df.shape[0]
total_samples_removed = org_total_samples - new_total_samples
percent_samples_removed = (total_samples_removed / org_total_samples) * 100
print(
"π β¬ Saved a total of {:0.2f} hours of data to BEST dataset".format(
new_total_hours
)
)
print(
" β Removed a total of {:0.2f} hours ({:0.2f}% of original data)".format(
total_hours_removed,
percent_hours_removed
)
)
print(
" β Removed a total of {} samples ({:0.2f}% of original data)".format(
total_samples_removed,
percent_samples_removed
)
)
print(" β Wrote best data to {}".format(csv_name))