forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaggregate_function.rs
909 lines (860 loc) · 32.6 KB
/
aggregate_function.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Aggregate function module contains all built-in aggregate functions definitions
use crate::{Signature, TypeSignature, Volatility};
use arrow::datatypes::{
DataType, Field, TimeUnit, DECIMAL128_MAX_PRECISION, DECIMAL128_MAX_SCALE,
};
use datafusion_common::{DataFusionError, Result};
use std::ops::Deref;
use std::{fmt, str::FromStr};
pub static STRINGS: &[DataType] = &[DataType::Utf8, DataType::LargeUtf8];
pub static NUMERICS: &[DataType] = &[
DataType::Int8,
DataType::Int16,
DataType::Int32,
DataType::Int64,
DataType::UInt8,
DataType::UInt16,
DataType::UInt32,
DataType::UInt64,
DataType::Float32,
DataType::Float64,
];
pub static TIMESTAMPS: &[DataType] = &[
DataType::Timestamp(TimeUnit::Second, None),
DataType::Timestamp(TimeUnit::Millisecond, None),
DataType::Timestamp(TimeUnit::Microsecond, None),
DataType::Timestamp(TimeUnit::Nanosecond, None),
];
pub static DATES: &[DataType] = &[DataType::Date32, DataType::Date64];
pub static TIMES: &[DataType] = &[
DataType::Time32(TimeUnit::Second),
DataType::Time32(TimeUnit::Millisecond),
DataType::Time64(TimeUnit::Microsecond),
DataType::Time64(TimeUnit::Nanosecond),
];
/// Enum of all built-in aggregate functions
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Hash)]
pub enum AggregateFunction {
/// count
Count,
/// sum
Sum,
/// min
Min,
/// max
Max,
/// avg
Avg,
/// median
Median,
/// Approximate aggregate function
ApproxDistinct,
/// array_agg
ArrayAgg,
/// Variance (Sample)
Variance,
/// Variance (Population)
VariancePop,
/// Standard Deviation (Sample)
Stddev,
/// Standard Deviation (Population)
StddevPop,
/// Covariance (Sample)
Covariance,
/// Covariance (Population)
CovariancePop,
/// Correlation
Correlation,
/// Approximate continuous percentile function
ApproxPercentileCont,
/// Approximate continuous percentile function with weight
ApproxPercentileContWithWeight,
/// ApproxMedian
ApproxMedian,
/// Grouping
Grouping,
}
impl fmt::Display for AggregateFunction {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// uppercase of the debug.
write!(f, "{}", format!("{:?}", self).to_uppercase())
}
}
impl FromStr for AggregateFunction {
type Err = DataFusionError;
fn from_str(name: &str) -> Result<AggregateFunction> {
Ok(match name {
"min" => AggregateFunction::Min,
"max" => AggregateFunction::Max,
"count" => AggregateFunction::Count,
"avg" => AggregateFunction::Avg,
"mean" => AggregateFunction::Avg,
"sum" => AggregateFunction::Sum,
"median" => AggregateFunction::Median,
"approx_distinct" => AggregateFunction::ApproxDistinct,
"array_agg" => AggregateFunction::ArrayAgg,
"var" => AggregateFunction::Variance,
"var_samp" => AggregateFunction::Variance,
"var_pop" => AggregateFunction::VariancePop,
"stddev" => AggregateFunction::Stddev,
"stddev_samp" => AggregateFunction::Stddev,
"stddev_pop" => AggregateFunction::StddevPop,
"covar" => AggregateFunction::Covariance,
"covar_samp" => AggregateFunction::Covariance,
"covar_pop" => AggregateFunction::CovariancePop,
"corr" => AggregateFunction::Correlation,
"approx_percentile_cont" => AggregateFunction::ApproxPercentileCont,
"approx_percentile_cont_with_weight" => {
AggregateFunction::ApproxPercentileContWithWeight
}
"approx_median" => AggregateFunction::ApproxMedian,
"grouping" => AggregateFunction::Grouping,
_ => {
return Err(DataFusionError::Plan(format!(
"There is no built-in function named {}",
name
)));
}
})
}
}
/// Returns the datatype of the aggregate function.
/// This is used to get the returned data type for aggregate expr.
pub fn return_type(
fun: &AggregateFunction,
input_expr_types: &[DataType],
) -> Result<DataType> {
// Note that this function *must* return the same type that the respective physical expression returns
// or the execution panics.
let coerced_data_types = coerce_types(fun, input_expr_types, &signature(fun))?;
match fun {
AggregateFunction::Count | AggregateFunction::ApproxDistinct => {
Ok(DataType::Int64)
}
AggregateFunction::Max | AggregateFunction::Min => {
// For min and max agg function, the returned type is same as input type.
// The coerced_data_types is same with input_types.
Ok(coerced_data_types[0].clone())
}
AggregateFunction::Sum => sum_return_type(&coerced_data_types[0]),
AggregateFunction::Variance => variance_return_type(&coerced_data_types[0]),
AggregateFunction::VariancePop => variance_return_type(&coerced_data_types[0]),
AggregateFunction::Covariance => covariance_return_type(&coerced_data_types[0]),
AggregateFunction::CovariancePop => {
covariance_return_type(&coerced_data_types[0])
}
AggregateFunction::Correlation => correlation_return_type(&coerced_data_types[0]),
AggregateFunction::Stddev => stddev_return_type(&coerced_data_types[0]),
AggregateFunction::StddevPop => stddev_return_type(&coerced_data_types[0]),
AggregateFunction::Avg => avg_return_type(&coerced_data_types[0]),
AggregateFunction::ArrayAgg => Ok(DataType::List(Box::new(Field::new(
"item",
coerced_data_types[0].clone(),
true,
)))),
AggregateFunction::ApproxPercentileCont => Ok(coerced_data_types[0].clone()),
AggregateFunction::ApproxPercentileContWithWeight => {
Ok(coerced_data_types[0].clone())
}
AggregateFunction::ApproxMedian | AggregateFunction::Median => {
Ok(coerced_data_types[0].clone())
}
AggregateFunction::Grouping => Ok(DataType::Int32),
}
}
/// Returns the coerced data type for each `input_types`.
/// Different aggregate function with different input data type will get corresponding coerced data type.
pub fn coerce_types(
agg_fun: &AggregateFunction,
input_types: &[DataType],
signature: &Signature,
) -> Result<Vec<DataType>> {
// Validate input_types matches (at least one of) the func signature.
check_arg_count(agg_fun, input_types, &signature.type_signature)?;
match agg_fun {
AggregateFunction::Count | AggregateFunction::ApproxDistinct => {
Ok(input_types.to_vec())
}
AggregateFunction::ArrayAgg => Ok(input_types.to_vec()),
AggregateFunction::Min | AggregateFunction::Max => {
// min and max support the dictionary data type
// unpack the dictionary to get the value
get_min_max_result_type(input_types)
}
AggregateFunction::Sum => {
// Refer to https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
// smallint, int, bigint, real, double precision, decimal, or interval.
if !is_sum_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::Avg => {
// Refer to https://www.postgresql.org/docs/8.2/functions-aggregate.html doc
// smallint, int, bigint, real, double precision, decimal, or interval
if !is_avg_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::Variance => {
if !is_variance_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::VariancePop => {
if !is_variance_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::Covariance => {
if !is_covariance_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::CovariancePop => {
if !is_covariance_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::Stddev => {
if !is_stddev_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::StddevPop => {
if !is_stddev_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::Correlation => {
if !is_correlation_support_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::ApproxPercentileCont => {
if !is_approx_percentile_cont_supported_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
if !matches!(input_types[1], DataType::Float64) {
return Err(DataFusionError::Plan(format!(
"The percentile argument for {:?} must be Float64, not {:?}.",
agg_fun, input_types[1]
)));
}
if input_types.len() == 3 && !is_integer_arg_type(&input_types[2]) {
return Err(DataFusionError::Plan(format!(
"The percentile sample points count for {:?} must be integer, not {:?}.",
agg_fun, input_types[2]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::ApproxPercentileContWithWeight => {
if !is_approx_percentile_cont_supported_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
if !is_approx_percentile_cont_supported_arg_type(&input_types[1]) {
return Err(DataFusionError::Plan(format!(
"The weight argument for {:?} does not support inputs of type {:?}.",
agg_fun, input_types[1]
)));
}
if !matches!(input_types[2], DataType::Float64) {
return Err(DataFusionError::Plan(format!(
"The percentile argument for {:?} must be Float64, not {:?}.",
agg_fun, input_types[2]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::ApproxMedian => {
if !is_approx_percentile_cont_supported_arg_type(&input_types[0]) {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not support inputs of type {:?}.",
agg_fun, input_types[0]
)));
}
Ok(input_types.to_vec())
}
AggregateFunction::Median => Ok(input_types.to_vec()),
AggregateFunction::Grouping => Ok(vec![input_types[0].clone()]),
}
}
/// the signatures supported by the function `fun`.
pub fn signature(fun: &AggregateFunction) -> Signature {
// note: the physical expression must accept the type returned by this function or the execution panics.
match fun {
AggregateFunction::Count
| AggregateFunction::ApproxDistinct
| AggregateFunction::Grouping
| AggregateFunction::ArrayAgg => Signature::any(1, Volatility::Immutable),
AggregateFunction::Min | AggregateFunction::Max => {
let valid = STRINGS
.iter()
.chain(NUMERICS.iter())
.chain(TIMESTAMPS.iter())
.chain(DATES.iter())
.chain(TIMES.iter())
.cloned()
.collect::<Vec<_>>();
Signature::uniform(1, valid, Volatility::Immutable)
}
AggregateFunction::Avg
| AggregateFunction::Sum
| AggregateFunction::Variance
| AggregateFunction::VariancePop
| AggregateFunction::Stddev
| AggregateFunction::StddevPop
| AggregateFunction::Median
| AggregateFunction::ApproxMedian => {
Signature::uniform(1, NUMERICS.to_vec(), Volatility::Immutable)
}
AggregateFunction::Covariance | AggregateFunction::CovariancePop => {
Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable)
}
AggregateFunction::Correlation => {
Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable)
}
AggregateFunction::ApproxPercentileCont => {
// Accept any numeric value paired with a float64 percentile
let with_tdigest_size = NUMERICS.iter().map(|t| {
TypeSignature::Exact(vec![t.clone(), DataType::Float64, t.clone()])
});
Signature::one_of(
NUMERICS
.iter()
.map(|t| TypeSignature::Exact(vec![t.clone(), DataType::Float64]))
.chain(with_tdigest_size)
.collect(),
Volatility::Immutable,
)
}
AggregateFunction::ApproxPercentileContWithWeight => Signature::one_of(
// Accept any numeric value paired with a float64 percentile
NUMERICS
.iter()
.map(|t| {
TypeSignature::Exact(vec![t.clone(), t.clone(), DataType::Float64])
})
.collect(),
Volatility::Immutable,
),
}
}
/// function return type of a sum
pub fn sum_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Int8 | DataType::Int16 | DataType::Int32 | DataType::Int64 => {
Ok(DataType::Int64)
}
DataType::UInt8 | DataType::UInt16 | DataType::UInt32 | DataType::UInt64 => {
Ok(DataType::UInt64)
}
// In the https://www.postgresql.org/docs/current/functions-aggregate.html doc,
// the result type of floating-point is FLOAT64 with the double precision.
DataType::Float64 | DataType::Float32 => Ok(DataType::Float64),
DataType::Decimal128(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+10), s)
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Sum.scala#L66
let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 10);
Ok(DataType::Decimal128(new_precision, *scale))
}
other => Err(DataFusionError::Plan(format!(
"SUM does not support type \"{:?}\"",
other
))),
}
}
/// function return type of variance
pub fn variance_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"VAR does not support {:?}",
other
))),
}
}
/// function return type of covariance
pub fn covariance_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"COVAR does not support {:?}",
other
))),
}
}
/// function return type of correlation
pub fn correlation_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"CORR does not support {:?}",
other
))),
}
}
/// function return type of standard deviation
pub fn stddev_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"STDDEV does not support {:?}",
other
))),
}
}
/// function return type of an average
pub fn avg_return_type(arg_type: &DataType) -> Result<DataType> {
match arg_type {
DataType::Decimal128(precision, scale) => {
// in the spark, the result type is DECIMAL(min(38,precision+4), min(38,scale+4)).
// ref: https://github.com/apache/spark/blob/fcf636d9eb8d645c24be3db2d599aba2d7e2955a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/Average.scala#L66
let new_precision = DECIMAL128_MAX_PRECISION.min(*precision + 4);
let new_scale = DECIMAL128_MAX_SCALE.min(*scale + 4);
Ok(DataType::Decimal128(new_precision, new_scale))
}
DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Float32
| DataType::Float64 => Ok(DataType::Float64),
other => Err(DataFusionError::Plan(format!(
"AVG does not support {:?}",
other
))),
}
}
/// Validate the length of `input_types` matches the `signature` for `agg_fun`.
///
/// This method DOES NOT validate the argument types - only that (at least one,
/// in the case of [`TypeSignature::OneOf`]) signature matches the desired
/// number of input types.
fn check_arg_count(
agg_fun: &AggregateFunction,
input_types: &[DataType],
signature: &TypeSignature,
) -> Result<()> {
match signature {
TypeSignature::Uniform(agg_count, _) | TypeSignature::Any(agg_count) => {
if input_types.len() != *agg_count {
return Err(DataFusionError::Plan(format!(
"The function {:?} expects {:?} arguments, but {:?} were provided",
agg_fun,
agg_count,
input_types.len()
)));
}
}
TypeSignature::Exact(types) => {
if types.len() != input_types.len() {
return Err(DataFusionError::Plan(format!(
"The function {:?} expects {:?} arguments, but {:?} were provided",
agg_fun,
types.len(),
input_types.len()
)));
}
}
TypeSignature::OneOf(variants) => {
let ok = variants
.iter()
.any(|v| check_arg_count(agg_fun, input_types, v).is_ok());
if !ok {
return Err(DataFusionError::Plan(format!(
"The function {:?} does not accept {:?} function arguments.",
agg_fun,
input_types.len()
)));
}
}
_ => {
return Err(DataFusionError::Internal(format!(
"Aggregate functions do not support this {:?}",
signature
)));
}
}
Ok(())
}
fn get_min_max_result_type(input_types: &[DataType]) -> Result<Vec<DataType>> {
// make sure that the input types only has one element.
assert_eq!(input_types.len(), 1);
// min and max support the dictionary data type
// unpack the dictionary to get the value
match &input_types[0] {
DataType::Dictionary(_, dict_value_type) => {
// TODO add checker, if the value type is complex data type
Ok(vec![dict_value_type.deref().clone()])
}
// TODO add checker for datatype which min and max supported
// For example, the `Struct` and `Map` type are not supported in the MIN and MAX function
_ => Ok(input_types.to_vec()),
}
}
pub fn is_sum_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
| DataType::Decimal128(_, _)
)
}
pub fn is_avg_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
| DataType::Decimal128(_, _)
)
}
pub fn is_variance_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
)
}
pub fn is_covariance_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
)
}
pub fn is_stddev_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
)
}
pub fn is_correlation_support_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
)
}
pub fn is_integer_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
)
}
/// Return `true` if `arg_type` is of a [`DataType`] that the
/// [`AggregateFunction::ApproxPercentileCont`] aggregation can operate on.
pub fn is_approx_percentile_cont_supported_arg_type(arg_type: &DataType) -> bool {
matches!(
arg_type,
DataType::UInt8
| DataType::UInt16
| DataType::UInt32
| DataType::UInt64
| DataType::Int8
| DataType::Int16
| DataType::Int32
| DataType::Int64
| DataType::Float32
| DataType::Float64
)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::aggregate_function;
use arrow::datatypes::DataType;
#[test]
fn test_aggregate_coerce_types() {
// test input args with error number input types
let fun = AggregateFunction::Min;
let input_types = vec![DataType::Int64, DataType::Int32];
let signature = aggregate_function::signature(&fun);
let result = coerce_types(&fun, &input_types, &signature);
assert_eq!("Error during planning: The function Min expects 1 arguments, but 2 were provided", result.unwrap_err().to_string());
// test input args is invalid data type for sum or avg
let fun = AggregateFunction::Sum;
let input_types = vec![DataType::Utf8];
let signature = aggregate_function::signature(&fun);
let result = coerce_types(&fun, &input_types, &signature);
assert_eq!(
"Error during planning: The function Sum does not support inputs of type Utf8.",
result.unwrap_err().to_string()
);
let fun = AggregateFunction::Avg;
let signature = aggregate_function::signature(&fun);
let result = coerce_types(&fun, &input_types, &signature);
assert_eq!(
"Error during planning: The function Avg does not support inputs of type Utf8.",
result.unwrap_err().to_string()
);
// test count, array_agg, approx_distinct, min, max.
// the coerced types is same with input types
let funs = vec![
AggregateFunction::Count,
AggregateFunction::ArrayAgg,
AggregateFunction::ApproxDistinct,
AggregateFunction::Min,
AggregateFunction::Max,
];
let input_types = vec![
vec![DataType::Int32],
vec![DataType::Decimal128(10, 2)],
vec![DataType::Utf8],
];
for fun in funs {
for input_type in &input_types {
let signature = aggregate_function::signature(&fun);
let result = coerce_types(&fun, input_type, &signature);
assert_eq!(*input_type, result.unwrap());
}
}
// test sum, avg
let funs = vec![AggregateFunction::Sum, AggregateFunction::Avg];
let input_types = vec![
vec![DataType::Int32],
vec![DataType::Float32],
vec![DataType::Decimal128(20, 3)],
];
for fun in funs {
for input_type in &input_types {
let signature = aggregate_function::signature(&fun);
let result = coerce_types(&fun, input_type, &signature);
assert_eq!(*input_type, result.unwrap());
}
}
// ApproxPercentileCont input types
let input_types = vec![
vec![DataType::Int8, DataType::Float64],
vec![DataType::Int16, DataType::Float64],
vec![DataType::Int32, DataType::Float64],
vec![DataType::Int64, DataType::Float64],
vec![DataType::UInt8, DataType::Float64],
vec![DataType::UInt16, DataType::Float64],
vec![DataType::UInt32, DataType::Float64],
vec![DataType::UInt64, DataType::Float64],
vec![DataType::Float32, DataType::Float64],
vec![DataType::Float64, DataType::Float64],
];
for input_type in &input_types {
let signature =
aggregate_function::signature(&AggregateFunction::ApproxPercentileCont);
let result = coerce_types(
&AggregateFunction::ApproxPercentileCont,
input_type,
&signature,
);
assert_eq!(*input_type, result.unwrap());
}
}
#[test]
fn test_avg_return_data_type() -> Result<()> {
let data_type = DataType::Decimal128(10, 5);
let result_type = avg_return_type(&data_type)?;
assert_eq!(DataType::Decimal128(14, 9), result_type);
let data_type = DataType::Decimal128(36, 10);
let result_type = avg_return_type(&data_type)?;
assert_eq!(DataType::Decimal128(38, 14), result_type);
Ok(())
}
#[test]
fn test_variance_return_data_type() -> Result<()> {
let data_type = DataType::Float64;
let result_type = variance_return_type(&data_type)?;
assert_eq!(DataType::Float64, result_type);
let data_type = DataType::Decimal128(36, 10);
assert!(variance_return_type(&data_type).is_err());
Ok(())
}
#[test]
fn test_sum_return_data_type() -> Result<()> {
let data_type = DataType::Decimal128(10, 5);
let result_type = sum_return_type(&data_type)?;
assert_eq!(DataType::Decimal128(20, 5), result_type);
let data_type = DataType::Decimal128(36, 10);
let result_type = sum_return_type(&data_type)?;
assert_eq!(DataType::Decimal128(38, 10), result_type);
Ok(())
}
#[test]
fn test_stddev_return_data_type() -> Result<()> {
let data_type = DataType::Float64;
let result_type = stddev_return_type(&data_type)?;
assert_eq!(DataType::Float64, result_type);
let data_type = DataType::Decimal128(36, 10);
assert!(stddev_return_type(&data_type).is_err());
Ok(())
}
#[test]
fn test_covariance_return_data_type() -> Result<()> {
let data_type = DataType::Float64;
let result_type = covariance_return_type(&data_type)?;
assert_eq!(DataType::Float64, result_type);
let data_type = DataType::Decimal128(36, 10);
assert!(covariance_return_type(&data_type).is_err());
Ok(())
}
#[test]
fn test_correlation_return_data_type() -> Result<()> {
let data_type = DataType::Float64;
let result_type = correlation_return_type(&data_type)?;
assert_eq!(DataType::Float64, result_type);
let data_type = DataType::Decimal128(36, 10);
assert!(correlation_return_type(&data_type).is_err());
Ok(())
}
}