-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMPutils.py
132 lines (123 loc) · 3.77 KB
/
MPutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 12 11:13:43 2022
@author: admin
"""
import time
import torch
import gc
import h5py
import random
import os
import math
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data.dataloader as DataLoader
import torch.utils.data.dataset as Dataset
from torch.nn.modules.utils import _pair
from timm.models.layers import DropPath, trunc_normal_
from torch.nn import init
from torch import Tensor
from einops import rearrange
import torch.nn.functional as F
import scipy.io as sio
from sklearn.metrics import mean_squared_error
def MPSNR(x_true, x_pred):
n_bands = x_true.shape[2]
PSNR = np.zeros(n_bands)
MSE = np.zeros(n_bands)
mask = np.ones(n_bands)
x_true=x_true[:,:,:]
for k in range(n_bands):
x_true_k = x_true[ :, :, k].reshape([-1])
x_pred_k = x_pred[ :, :, k,].reshape([-1])
MSE[k] = mean_squared_error(x_true_k, x_pred_k, )
MAX_k = np.max(x_true_k)
if MAX_k != 0 :
PSNR[k] = 10 * math.log10(math.pow(MAX_k, 2) / MSE[k])
else:
mask[k] = 0
psnr = PSNR.sum() / mask.sum()
mse = MSE.mean()
return psnr
def SSIM(x_true,x_pre):
num=x_true.shape[2]
ssimm=np.zeros(num)
c1=0.0001
c2=0.0009
n=0
for x in range(x_true.shape[2]):
z = np.reshape(x_pre[:, :,x], [-1])
sa=np.reshape(x_true[:,:,x],[-1])
y=[z,sa]
cov=np.cov(y)
oz=cov[0,0]
osa=cov[1,1]
ozsa=cov[0,1]
ez=np.mean(z)
esa=np.mean(sa)
ssimm[n]=((2*ez*esa+c1)*(2*ozsa+c2))/((ez*ez+esa*esa+c1)*(oz+osa+c2))
n=n+1
SSIM=np.mean(ssimm)
return SSIM
def SAM(x_true,x_pre):
num = (x_true.shape[0]) * (x_true.shape[1])
samm = np.zeros(num)
n = 0
for x in range(x_true.shape[0]):
for y in range(x_true.shape[1]):
z = np.reshape(x_pre[ x, y,:], [-1])
sa = np.reshape(x_true[x, y,:], [-1])
tem1=np.dot(z,sa)
tem2=(np.linalg.norm(z))*(np.linalg.norm(sa))
A=(tem1+0.0001)/(tem2+0.0001)
if A>1:
A=1
samm[n]=np.arccos(A)
n=n+1
SAM=(np.mean(samm))*180/np.pi
return SAM
class testDataset(Dataset.Dataset):
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
def __len__(self):
return len(self.Data)
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.Tensor(self.Label[index])
return data, label
class trainDataset(Dataset.Dataset):
def __init__(self, Data, Label):
self.Data = Data
self.Label = Label
def __len__(self):
return len(self.Data)
def __getitem__(self, index):
data = torch.Tensor(self.Data[index])
label = torch.Tensor(self.Label[index])
return data, label
def read_training_data(file):
with h5py.File(file, 'r') as hf:
data = np.array(hf.get('data'))
label = np.array(hf.get('label'))
train_data = data
train_label = label
return train_data, train_label
def getModelSize(model):
param_size = 0
param_sum = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
param_sum += param.nelement()
buffer_size = 0
buffer_sum = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
buffer_sum += buffer.nelement()
all_size = (param_size + buffer_size) / 1024 / 1024
print('model size:{:.3f}MB'.format(all_size))
return (param_size, param_sum, buffer_size, buffer_sum, all_size)