-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathfinetune.py
35 lines (29 loc) · 1.44 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from auxiliaries.finetune import *
from model.feature_extractor import get_feature_extractor
if args.wandb_name is not None:
wandb.init(project=args.wandb_name)
if __name__ == '__main__':
warnings.filterwarnings('ignore')
dls, test_loader = setup_dataloaders(args)
try:
slivit = SLIViT(feature_extractor=get_feature_extractor(args.fe_classes, args.fe_path),
vit_dim=args.vit_dim, vit_depth=args.vit_depth, heads=args.heads, mlp_dim=args.mlp_dim,
num_of_patches=args.slices, dropout=args.dropout, emb_dropout=args.emb_dropout)
except RuntimeError as e:
logger.error(f"Could not load model:\n{e}\n\nPlease double-check that you have enough GPU memory, "
f"the pretrained feature extractor is correctly set up and compatible with the "
f"model. This will ensure everything runs smoothly!\n")
sys.exit(1)
learner, best_model_name = create_learner(slivit, dls, args, args.out_dir)
err = None
try:
train(args, learner, best_model_name)
if len(test_loader) > 0:
evaluate(learner, test_loader, best_model_name, args.out_dir,
args.test_meta if args.test_meta else args.meta,
args.pid_col, args.path_col, args.split_col, args.label)
except Exception as e:
err = e
wrap_up(args.out_dir, err)
if args.wandb_name is not None:
wandb.finish()