-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwca_dynamics.go
421 lines (370 loc) · 11.7 KB
/
wca_dynamics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
package main
import (
"bufio"
"fmt"
"math"
"os"
"strconv"
"strings"
)
type Particle struct {
x_pos float64
y_pos float64
z_pos float64
x_real float64
y_real float64
z_real float64
x_v float64
y_v float64
z_v float64
}
func main() {
// opening and read particle file
var data = "data.txt"
file, err := os.Open(data)
if err != nil {
fmt.Println("Open failure for data.txt")
os.Exit(3)
}
var particle_data []string = make([]string, 0)
scanner := bufio.NewScanner(file)
var N int
var L float64
for scanner.Scan() {
// append it to the particle data slice
if scanner.Text()[0:1] != "#" {
particle_data = append(particle_data, scanner.Text())
} else {
// grab particle number and box size
tempdata := strings.Split(scanner.Text(), " ")
N, _ = strconv.Atoi(tempdata[0][1:len(tempdata[0])])
L,_ = strconv.ParseFloat(tempdata[1], 64)
}
}
if scanner.Err() != nil {
fmt.Println("Sorry: there was an error during the file reading")
os.Exit(3)
}
file.Close()
// process particle data
parlist := process(particle_data)
// run actual dynamics, recast L and pass for now
p_e, k_e, times := dynamics(parlist, N, L)
// get temperatures too
var temps []float64
temps = make([]float64, len(k_e))
for i := range k_e {
temps[i] = k_e[i]/(3*float64(N)) // say k_b = 1 for now
}
// write pe, ke, temps, and times to file
file_name := "wca_"+strconv.Itoa(len(times))+"_"+strconv.Itoa(N)+".txt"
write_file(times, k_e, p_e, temps, file_name)
}
// run dynamics algorithm, return energy data after so many steps
func dynamics(parlist []Particle, N int, L float64) ([]float64, []float64, []float64) {
// set dt, total_steps
dt := .01
total_steps := 20000
sigma := 1.0
var times []float64 = make([]float64,0)
// store energy vals here
var k_e []float64 = make([]float64, 0)
var p_e []float64 = make([]float64, 0)
// calc initial forces (before starting dynamics loop)
x_forces, y_forces, z_forces := force_matrices(parlist, N, L, sigma)
// open ovito files
periodic_file, err := os.Create("ovito_periodic.xyz")
if err != nil {
fmt.Println(err)
}
defer periodic_file.Close()
real_file, err := os.Create("ovito_real.xyz")
if err != nil {
fmt.Println(err)
}
defer real_file.Close()
// write initial positions
write_ovito(N, parlist, periodic_file, "periodic")
write_ovito(N, parlist, real_file, "real")
// now do main loop, stepping dynamics until time is up
for step := 0; step <= total_steps; step++ {
// for each particle, update x and y positions
for i := 0; i < N; i++ {
parlist[i].x_pos,parlist[i].x_real = update_pos(parlist[i], x_forces, L, dt, "x", i)
parlist[i].y_pos,parlist[i].y_real = update_pos(parlist[i], y_forces, L, dt, "y", i)
parlist[i].z_pos,parlist[i].z_real = update_pos(parlist[i], z_forces, L, dt, "z", i)
}
// now update forces, will use new positions
x_forces_new, y_forces_new, z_forces_new := force_matrices(parlist, N, L, sigma)
// now we can update velocities
for i := 0; i < N; i++ {
parlist[i].x_v = update_veloc(parlist[i], x_forces, x_forces_new, dt, "x", i)
parlist[i].y_v = update_veloc(parlist[i], y_forces, y_forces_new, dt, "y", i)
parlist[i].z_v = update_veloc(parlist[i], z_forces, z_forces_new, dt, "z", i)
}
// update force matrices to new ones
x_forces = set_matrix(x_forces, x_forces_new)
y_forces = set_matrix(y_forces, y_forces_new)
z_forces = set_matrix(z_forces, z_forces_new)
// calc and save pe and ke
p_e = append(p_e, calc_potential(parlist, L))
k_e = append(k_e, calc_kinetic(parlist))
// update time
times = append(times, dt*float64(step))
// write ovito files every 100 steps, checking if in "production run"
if step >= 10000 && math.Mod(float64(step),100) == 0 {
write_ovito(N, parlist, periodic_file, "periodic")
write_ovito(N, parlist, real_file, "real")
}
// show progress
if math.Mod(dt*float64(step), 10.0) == 0 {
time_string := fmt.Sprintf("%f", dt*float64(step))
fmt.Println("AT TIME = "+time_string)
}
}
return p_e, k_e, times
}
// total potential energy of all particles
func calc_potential(parlist []Particle, L float64) float64{
var pe float64
for i := range parlist {
for j := range parlist {
p1 := parlist[i]
p2 := parlist[j]
// following conditonals set p2 positon to minimum image
if (p1.x_pos - p2.x_pos) < -L/2 {
p2.x_pos = p2.x_pos - L
} else if (p1.x_pos - p2.x_pos) > L/2 {
p2.x_pos = p2.x_pos + L
}
if (p1.y_pos - p2.y_pos) < -L/2 {
p2.y_pos = p2.y_pos - L
} else if (p1.y_pos - p2.y_pos) > L/2 {
p2.y_pos = p2.y_pos + L
}
if (p1.z_pos - p2.z_pos) < -L/2 {
p2.z_pos = p2.z_pos - L
} else if (p1.z_pos - p2.z_pos) > L/2 {
p2.z_pos = p2.z_pos + L
}
radius := distance(p1,p2)
if i != j {
pe = pe + 4*((1/math.Pow(radius,12)) - (1/math.Pow(radius,6)) + 1/4.0)
}
}
}
// cover double counting with .5 !
return .5*pe
}
// total kinetic energy of all particles
func calc_kinetic(parlist []Particle) float64{
var ke float64
for i := range parlist {
ke = ke + math.Pow(parlist[i].x_v,2) + math.Pow(parlist[i].y_v,2) + math.Pow(parlist[i].z_v,2)
}
return .5*ke
}
// velocity verlet to update positions
func update_pos(curr_p Particle, forces [][]float64, L float64, dt float64, axis string, index int) (float64, float64) {
var new_pos float64
var real_pos float64
if axis == "x" {
new_pos = curr_p.x_pos + curr_p.x_v*dt + row_sum(forces, index)*dt*dt*.5
real_pos = curr_p.x_real + curr_p.x_v*dt + row_sum(forces, index)*dt*dt*.5
}
if axis == "y" {
new_pos = curr_p.y_pos + curr_p.y_v*dt + row_sum(forces, index)*dt*dt*.5
real_pos = curr_p.y_real + curr_p.y_v*dt + row_sum(forces, index)*dt*dt*.5
}
if axis == "z" {
new_pos = curr_p.z_pos + curr_p.z_v*dt + row_sum(forces, index)*dt*dt*.5
real_pos = curr_p.z_real + curr_p.z_v*dt + row_sum(forces, index)*dt*dt*.5
}
// return periodic modulo of position, and "real" position
return math.Mod((2*L)+new_pos, L), real_pos
}
// velocity verlet to update velocities
func update_veloc(curr_p Particle, forces [][]float64, forces_new [][]float64, dt float64, axis string, index int) float64 {
var new_veloc float64
if axis == "x" {
new_veloc = curr_p.x_v + row_sum(add_matrix(forces, forces_new), index)*dt*.5
}
if axis == "y" {
new_veloc = curr_p.y_v + row_sum(add_matrix(forces, forces_new), index)*dt*.5
}
if axis == "z" {
new_veloc = curr_p.z_v + row_sum(add_matrix(forces, forces_new), index)*dt*.5
}
return new_veloc
}
// construct matrix of forces between all particles
func force_matrices(parlist []Particle, N int, L float64, sigma float64) ([][]float64, [][]float64, [][]float64) {
x_forces := two_d(N)
y_forces := two_d(N)
z_forces := two_d(N)
// calc all forces on upper diag
for i := 0; i < N; i++ {
for j := i + 1; j < N; j++ {
p1 := parlist[i]
p2 := parlist[j]
x_forces[i][j] = force_between(p1, p2, "x", L, sigma)
y_forces[i][j] = force_between(p1, p2, "y", L, sigma)
z_forces[i][j] = force_between(p1, p2, "z", L, sigma)
}
}
// now reflect negative values on lower diag
for i := 1; i < N; i++ {
for j := 0; j < i; j++ {
x_forces[i][j] = -x_forces[j][i]
y_forces[i][j] = -y_forces[j][i]
z_forces[i][j] = -z_forces[j][i]
}
}
return x_forces, y_forces, z_forces
}
// lennard jones force between two particles
func force_between(p1 Particle, p2 Particle, axis string, L float64, sigma float64) float64 {
// first adjust for min image
if (p1.x_pos - p2.x_pos) < -L/2 {
p2.x_pos = p2.x_pos - L
} else if (p1.x_pos - p2.x_pos) > L/2 {
p2.x_pos = p2.x_pos + L
}
if (p1.y_pos - p2.y_pos) < -L/2 {
p2.y_pos = p2.y_pos - L
} else if (p1.y_pos - p2.y_pos) > L/2 {
p2.y_pos = p2.y_pos + L
}
if (p1.z_pos - p2.z_pos) < -L/2 {
p2.z_pos = p2.z_pos - L
} else if (p1.z_pos - p2.z_pos) > L/2 {
p2.z_pos = p2.z_pos + L
}
radius := distance(p1, p2)
// check if past cutoff distance
if radius >= (math.Pow(2.0,1/6.0))*sigma {
return 0
}
temp_f := (48 / math.Pow(radius, 2)) * (1/(math.Pow(radius, 12)) - .5*(1/math.Pow(radius, 6)))
var force float64
// use right directon based on coordinate
if axis == "x" {
force = temp_f * (p1.x_pos - p2.x_pos)
}
if axis == "y" {
force = temp_f * (p1.y_pos - p2.y_pos)
}
if axis == "z" {
// must be z force
force = temp_f * (p1.z_pos - p2.z_pos)
}
return force
}
// distance between two particles
func distance(p1 Particle, p2 Particle) float64 {
return math.Sqrt(math.Pow((p1.x_pos-p2.x_pos), 2) + math.Pow((p1.y_pos-p2.y_pos), 2) + math.Pow((p1.z_pos-p2.z_pos), 2))
}
// adds up floats in row of matrix
func row_sum(matrix [][]float64, index int) float64 {
var sum float64
for i := 0; i < len(matrix); i++ {
sum = sum + matrix[index][i]
}
return sum
}
// sets up 2-d matrix of floats
func two_d(N int) [][]float64 {
matrix := make([][]float64, N)
for i := range matrix {
matrix[i] = make([]float64, N)
}
return matrix
}
// helper function to add two matrices
func add_matrix(mat_1 [][]float64, mat_2 [][]float64) [][]float64 {
mat_3 := two_d(len(mat_1))
for i := 0; i < len(mat_1); i++ {
for j := 0; j < len(mat_1); j++ {
mat_3[i][j] = mat_1[i][j] + mat_2[i][j]
}
}
return mat_3
}
// helper function to set values of 2d matrix equal to other
func set_matrix(mat_1 [][]float64, mat_2 [][]float64) [][]float64 {
for i := 0; i < len(mat_1); i++ {
for j := 0; j < len(mat_1); j++ {
mat_1[i][j] = mat_2[i][j]
}
}
return mat_1
}
// write energy and time data as tab separated columns
func write_file(times []float64, k_e []float64, p_e []float64, temps []float64, file_name string) {
file, err := os.Create(file_name)
if err != nil {
fmt.Println(err)
return
}
defer file.Close()
for i := range k_e {
time := fmt.Sprintf("%f", times[i])
kinetic := fmt.Sprintf("%f", k_e[i])
potential := fmt.Sprintf("%f", p_e[i])
temp := fmt.Sprintf("%f", temps[i])
_,err := file.WriteString(time+" "+kinetic+" "+potential+" "+temp+"\n")
if err != nil {
fmt.Println(err)
return
}
}
}
// specific ovito format writing
func write_ovito(N int, parlist []Particle, file *os.File, kind string) {
string_N := strconv.Itoa(N)
_,err := file.WriteString(string_N+"\n")
_,err2 := file.WriteString("x y z"+"\n")
if err != nil {
fmt.Println("Error writing num particles")
}
if err2 != nil {
fmt.Println("Error writing x y z")
}
// while at a current timestep, write all the positions of all the particles
for i := 0; i < len(parlist); i ++ {
p := parlist[i]
// assume in "real" case, otherwise revalued for periodic values
string_x := fmt.Sprintf("%f", p.x_real)
string_y := fmt.Sprintf("%f", p.y_real)
string_z := fmt.Sprintf("%f", p.z_real)
if kind == "periodic" {
string_x = fmt.Sprintf("%f", p.x_pos)
string_y = fmt.Sprintf("%f", p.y_pos)
string_z = fmt.Sprintf("%f", p.z_pos)
}
_,err := file.WriteString(string_x+" "+string_y+" "+string_z+"\n")
if err != nil {
fmt.Println("Error writing particle data")
}
}
}
// read particle data file and make list of particles
func process(particle_data []string) []Particle {
var parlist []Particle
parlist = make([]Particle, len(particle_data))
for i := 0; i <= len(particle_data)-1; i++ {
// split into separate values
tempdata := strings.Split(particle_data[i], " ")
// grab float64 conversion of each value
parlist[i].x_pos, _ = strconv.ParseFloat(tempdata[0], 64)
parlist[i].y_pos, _ = strconv.ParseFloat(tempdata[1], 64)
parlist[i].z_pos, _ = strconv.ParseFloat(tempdata[2], 64)
parlist[i].x_real = parlist[i].x_pos
parlist[i].y_real = parlist[i].y_pos
parlist[i].z_real = parlist[i].z_pos
parlist[i].x_v, _ = strconv.ParseFloat(tempdata[3], 64)
parlist[i].y_v, _ = strconv.ParseFloat(tempdata[4], 64)
parlist[i].z_v, _ = strconv.ParseFloat(tempdata[5], 64)
}
return parlist
}