-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMediator.h
executable file
·197 lines (181 loc) · 3.9 KB
/
Mediator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Sliding median filter
// Created 2012 by Colin Raffel
// Portions Copyright (c) 2011 ashelly.myopenid.com under <http://www.opensource.org/licenses/mit-license>
#ifndef MEDIATOR_H
#define MEDIATOR_H
template <typename Item> class Mediator
{
public:
Mediator(int nItems ):N(nItems)
{
data = new Item[nItems];
pos = new int[nItems];
allocatedHeap = new int[nItems];
heap = allocatedHeap + (nItems/2);
minCt = maxCt = idx = 0;
// Set up initial heap fill pattern: median, max, min, max, ...
while (nItems--)
{
pos[nItems] = ((nItems + 1)/2)*((nItems & 1) ? -1 : 1);
heap[pos[nItems]] = nItems;
}
};
~Mediator()
{
delete[] data;
delete[] pos;
delete[] allocatedHeap;
};
// Inserts item, maintains median in O(lg nItems)
void insert(const Item& v )
{
const int p = pos[idx];
const Item old = data[idx];
data[idx] = v;
idx = (idx+1) % N;
// New item is in minheap
if (p>0)
{
if (minCt < (N-1)/2)
{
minCt++;
}
else if (v > old)
{
minSortDown( p );
return;
}
if (minSortUp( p ) && mmCmpExch( 0, -1 ))
{
maxSortDown( -1 );
}
}
// New item is in maxheap
else if (p<0)
{
if (maxCt < N/2)
{
maxCt++;
}
else if (v < old)
{
maxSortDown( p );
return;
}
if (maxSortUp( p ) && minCt && mmCmpExch( 1, 0 ))
{
minSortDown( 1 );
}
}
// New item is at median
else
{
if (maxCt && maxSortUp( -1 ))
{
maxSortDown( -1 );
}
if (minCt && minSortUp( 1 ))
{
minSortDown( 1 );
}
}
};
// Returns median item (or average of 2 when item count is even)
Item getMedian()
{
Item v = data[heap[0]];
if (minCt<maxCt)
{
v = (v + data[heap[-1]])/2;
}
return v;
};
private:
// Swaps items i&j in heap, maintains indexes
int mmexchange(const int i,const int j )
{
int t = heap[i];
heap[i] = heap[j];
heap[j] = t;
pos[heap[i]] = i;
pos[heap[j]] = j;
return 1;
};
// Maintains minheap property for all items below i.
void minSortDown( int i )
{
for (i*=2; i <= minCt; i*=2)
{
if (i < minCt && mmless( i+1, i ))
{
++i;
}
if (!mmCmpExch( i, i/2 ))
{
break;
}
}
};
// Maintains maxheap property for all items below i. (negative indexes)
void maxSortDown( int i )
{
for (i*=2; i >= -maxCt; i*=2)
{
if (i > -maxCt && mmless( i, i-1 ))
{
--i;
}
if (!mmCmpExch( i/2, i ))
{
break;
}
}
};
// Returns 1 if heap[i] < heap[j]
inline int mmless(const int i,const int j )
{
return (data[heap[i]] < data[heap[j]]);
};
// Swaps items i&j if i<j; returns true if swapped
inline int mmCmpExch(const int i,const int j )
{
return (mmless( i, j ) && mmexchange( i, j ));
};
// Maintains minheap property for all items above i, including median
// Returns true if median changed
inline int minSortUp( int i )
{
while (i > 0 && mmCmpExch( i, i/2 ))
{
i /= 2;
}
return (i == 0);
};
// Maintains maxheap property for all items above i, including median
// Returns true if median changed
inline int maxSortUp( int i )
{
while (i < 0 && mmCmpExch( i/2, i ))
{
i /= 2;
}
return ( i==0 );
};
// Allocated size
const int N;
// Circular queue of values
Item* data;
// Index into `heap` for each value
int* pos;
// Max/median/min heap holding indexes into `data`.
int* heap;
// heap holds a pointer to the middle of its data; this is where the data is allocated.
int* allocatedHeap;
// Position in circular queue
int idx;
// Count of items in min heap
int minCt;
// Count of items in max heap
int maxCt;
};
#endif