-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathuuid_v4.h
276 lines (228 loc) · 8.78 KB
/
uuid_v4.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
MIT License
Copyright (c) 2018 Xavier "Crashoz" Launey
*/
#pragma once
#include <random>
#include <string>
#include <limits>
#include <iostream>
#include <sstream>
#include <cstdint>
#include <memory>
#include <emmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#include "endianness.h"
namespace UUIDv4 {
/*
Converts a 128-bits unsigned int to an UUIDv4 string representation.
Uses SIMD via Intel's AVX2 instruction set.
*/
void inline m128itos(__m128i x, char* mem) {
// Expand each byte in x to two bytes in res
// i.e. 0x12345678 -> 0x0102030405060708
// Then translate each byte to its hex ascii representation
// i.e. 0x0102030405060708 -> 0x3132333435363738
const __m256i mask = _mm256_set1_epi8(0x0F);
const __m256i add = _mm256_set1_epi8(0x06);
const __m256i alpha_mask = _mm256_set1_epi8(0x10);
const __m256i alpha_offset = _mm256_set1_epi8(0x57);
__m256i a = _mm256_castsi128_si256(x);
__m256i as = _mm256_srli_epi64(a, 4);
__m256i lo = _mm256_unpacklo_epi8(as, a);
__m128i hi = _mm256_castsi256_si128(_mm256_unpackhi_epi8(as, a));
__m256i c = _mm256_inserti128_si256(lo, hi, 1);
__m256i d = _mm256_and_si256(c, mask);
__m256i alpha = _mm256_slli_epi64(_mm256_and_si256(_mm256_add_epi8(d, add), alpha_mask), 3);
__m256i offset = _mm256_blendv_epi8(_mm256_slli_epi64(add, 3), alpha_offset, alpha);
__m256i res = _mm256_add_epi8(d, offset);
// Add dashes between blocks as specified in RFC-4122
// 8-4-4-4-12
const __m256i dash_shuffle = _mm256_set_epi32(0x0b0a0908, 0x07060504, 0x80030201, 0x00808080, 0x0d0c800b, 0x0a090880, 0x07060504, 0x03020100);
const __m256i dash = _mm256_set_epi64x(0x0000000000000000ull, 0x2d000000002d0000ull, 0x00002d000000002d, 0x0000000000000000ull);
__m256i resd = _mm256_shuffle_epi8(res, dash_shuffle);
resd = _mm256_or_si256(resd, dash);
_mm256_storeu_si256((__m256i*)mem, betole256(resd));
*(uint16_t*)(mem+16) = betole16(_mm256_extract_epi16(res, 7));
*(uint32_t*)(mem+32) = betole32(_mm256_extract_epi32(res, 7));
}
/*
Converts an UUIDv4 string representation to a 128-bits unsigned int.
Uses SIMD via Intel's AVX2 instruction set.
*/
__m128i inline stom128i(const char* mem) {
// Remove dashes and pack hex ascii bytes in a 256-bits int
const __m256i dash_shuffle = _mm256_set_epi32(0x80808080, 0x0f0e0d0c, 0x0b0a0908, 0x06050403, 0x80800f0e, 0x0c0b0a09, 0x07060504, 0x03020100);
__m256i x = betole256(_mm256_loadu_si256((__m256i*)mem));
x = _mm256_shuffle_epi8(x, dash_shuffle);
x = _mm256_insert_epi16(x, betole16(*(uint16_t*)(mem+16)), 7);
x = _mm256_insert_epi32(x, betole32(*(uint32_t*)(mem+32)), 7);
// Build a mask to apply a different offset to alphas and digits
const __m256i sub = _mm256_set1_epi8(0x2F);
const __m256i mask = _mm256_set1_epi8(0x20);
const __m256i alpha_offset = _mm256_set1_epi8(0x28);
const __m256i digits_offset = _mm256_set1_epi8(0x01);
const __m256i unweave = _mm256_set_epi32(0x0f0d0b09, 0x0e0c0a08, 0x07050301, 0x06040200, 0x0f0d0b09, 0x0e0c0a08, 0x07050301, 0x06040200);
const __m256i shift = _mm256_set_epi32(0x00000000, 0x00000004, 0x00000000, 0x00000004, 0x00000000, 0x00000004, 0x00000000, 0x00000004);
// Translate ascii bytes to their value
// i.e. 0x3132333435363738 -> 0x0102030405060708
// Shift hi-digits
// i.e. 0x0102030405060708 -> 0x1002300450067008
// Horizontal add
// i.e. 0x1002300450067008 -> 0x12345678
__m256i a = _mm256_sub_epi8(x, sub);
__m256i alpha = _mm256_slli_epi64(_mm256_and_si256(a, mask), 2);
__m256i sub_mask = _mm256_blendv_epi8(digits_offset, alpha_offset, alpha);
a = _mm256_sub_epi8(a, sub_mask);
a = _mm256_shuffle_epi8(a, unweave);
a = _mm256_sllv_epi32(a, shift);
a = _mm256_hadd_epi32(a, _mm256_setzero_si256());
a = _mm256_permute4x64_epi64(a, 0b00001000);
return _mm256_castsi256_si128(a);
}
/*
* UUIDv4 (random 128-bits) RFC-4122
*/
class UUID {
public:
UUID()
{}
UUID(const UUID &other) {
__m128i x = _mm_load_si128((__m128i*)other.data);
_mm_store_si128((__m128i*)data, x);
}
/* Builds a 128-bits UUID */
UUID(__m128i uuid) {
_mm_store_si128((__m128i*)data, uuid);
}
UUID(uint64_t x, uint64_t y) {
__m128i z = _mm_set_epi64x(x, y);
_mm_store_si128((__m128i*)data, z);
}
UUID(const uint8_t* bytes) {
__m128i x = _mm_loadu_si128((__m128i*)bytes);
_mm_store_si128((__m128i*)data, x);
}
/* Builds an UUID from a byte string (16 bytes long) */
explicit UUID(const std::string &bytes) {
__m128i x = betole128(_mm_loadu_si128((__m128i*)bytes.data()));
_mm_store_si128((__m128i*)data, x);
}
/* Static factory to parse an UUID from its string representation */
static UUID fromStrFactory(const std::string &s) {
return fromStrFactory(s.c_str());
}
static UUID fromStrFactory(const char* raw) {
return UUID(stom128i(raw));
}
void fromStr(const char* raw) {
_mm_store_si128((__m128i*)data, stom128i(raw));
}
UUID& operator=(const UUID &other) {
if (&other == this) {
return *this;
}
__m128i x = _mm_load_si128((__m128i*)other.data);
_mm_store_si128((__m128i*)data, x);
return *this;
}
friend bool operator==(const UUID &lhs, const UUID &rhs) {
__m128i x = _mm_load_si128((__m128i*)lhs.data);
__m128i y = _mm_load_si128((__m128i*)rhs.data);
__m128i neq = _mm_xor_si128(x, y);
return _mm_test_all_zeros(neq, neq);
}
friend bool operator<(const UUID &lhs, const UUID &rhs) {
// There are no trivial 128-bits comparisons in SSE/AVX
// It's faster to compare two uint64_t
uint64_t *x = (uint64_t*)lhs.data;
uint64_t *y = (uint64_t*)rhs.data;
return *x < *y || (*x == *y && *(x + 1) < *(y + 1));
}
friend bool operator!=(const UUID &lhs, const UUID &rhs) { return !(lhs == rhs); }
friend bool operator> (const UUID &lhs, const UUID &rhs) { return rhs < lhs; }
friend bool operator<=(const UUID &lhs, const UUID &rhs) { return !(lhs > rhs); }
friend bool operator>=(const UUID &lhs, const UUID &rhs) { return !(lhs < rhs); }
/* Serializes the uuid to a byte string (16 bytes) */
std::string bytes() const {
std::string mem;
bytes(mem);
return mem;
}
void bytes(std::string &out) const {
out.resize(sizeof(data));
bytes((char*)out.data());
}
void bytes(char* bytes) const {
__m128i x = betole128(_mm_load_si128((__m128i*)data));
_mm_storeu_si128((__m128i*)bytes, x);
}
/* Converts the uuid to its string representation */
std::string str() const {
std::string mem;
str(mem);
return mem;
}
void str(std::string &s) const {
s.resize(36);
str((char*)s.data());
}
void str(char *res) const {
__m128i x = _mm_load_si128((__m128i*)data);
m128itos(x, res);
}
friend std::ostream& operator<< (std::ostream& stream, const UUID& uuid) {
return stream << uuid.str();
}
friend std::istream& operator>> (std::istream& stream, UUID& uuid) {
std::string s;
stream >> s;
uuid = fromStrFactory(s);
return stream;
}
size_t hash() const {
const uint64_t a = *((uint64_t*)data);
const uint64_t b = *((uint64_t*)&data[8]);
return a ^ (b + 0x9e3779b9 + (a << 6) + (a >> 2));
}
private:
alignas(16) uint8_t data[16];
};
/*
Generates UUIDv4 from a provided random generator (c++11 <random> module)
std::mt19937_64 is highly recommended as it has a SIMD implementation that
makes it very fast and it produces high quality randomness.
*/
template <typename RNG>
class UUIDGenerator {
public:
UUIDGenerator() : generator(new RNG(std::random_device()())), distribution(std::numeric_limits<uint64_t>::min(), std::numeric_limits<uint64_t>::max())
{}
UUIDGenerator(uint64_t seed) : generator(new RNG(seed)), distribution(std::numeric_limits<uint64_t>::min(), std::numeric_limits<uint64_t>::max())
{}
UUIDGenerator(RNG &gen) : generator(gen), distribution(std::numeric_limits<uint64_t>::min(), std::numeric_limits<uint64_t>::max())
{}
/* Generates a new UUID */
UUID getUUID() {
// The two masks set the uuid version (4) and variant (1)
const __m128i and_mask = _mm_set_epi64x(0xFFFFFFFFFFFFFF3Full, 0xFF0FFFFFFFFFFFFFull);
const __m128i or_mask = _mm_set_epi64x(0x0000000000000080ull, 0x0040000000000000ull);
__m128i n = _mm_set_epi64x(distribution(*generator), distribution(*generator));
__m128i uuid = _mm_or_si128(_mm_and_si128(n, and_mask), or_mask);
return UUID(uuid);
}
private:
std::shared_ptr<RNG> generator;
std::uniform_int_distribution<uint64_t> distribution;
};
}
namespace std {
template <> struct hash<UUIDv4::UUID>
{
size_t operator()(const UUIDv4::UUID & uuid) const
{
return uuid.hash();
}
};
}