Skip to content

Latest commit

 

History

History
15 lines (13 loc) · 463 Bytes

README.md

File metadata and controls

15 lines (13 loc) · 463 Bytes

Optimistic Approximate Posterior Sampling for Exploration in Distributional Reinforcement Learning

gymnasium supports and tests only up to python 3.11, so setup the conda environment with:

conda create --name forl-distributional python=3.11
conda activate forl-distributional
pip install swig
pip install -r requirements.txt

The following commands might be necessary:

pip install "gymnasium[all]"
pip install "gymnasium[accept-rom-license]"