-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathHacspec.Poly1305.Proof.fst
197 lines (178 loc) · 9.24 KB
/
Hacspec.Poly1305.Proof.fst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
module Hacspec.Poly1305.Proof
open Hacspec.Lib
open FStar.Mul
module S = Spec.Poly1305
module H = Hacspec.Poly1305
module Seq = Lib.Sequence
#set-options "--fuel 0 --ifuel 0 --z3rlimit 30"
let poly1305_encode_r_equiv (b:H.poly_block_t)
: Lemma (H.poly1305_encode_r b == S.poly1305_encode_r b)
[SMTPat (H.poly1305_encode_r b)] =
let n_1 = uint128_from_le_bytes (array_from_seq (16) (b)) in
let lo : uint64 = Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b 0 8) in
let hi : uint64 = Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b 8 8) in
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U64 #SEC (Lib.Sequence.sub b 0 8);
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U64 #SEC (Lib.Sequence.sub b 8 8);
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U128 #SEC (array_from_seq 16 b);
Lib.ByteSequence.nat_from_intseq_le_slice_lemma b 8;
assert (v n_1 == v lo + pow2 64 * v hi);
let mask128 = (secret (pub_u128 0xffffffc0ffffffc0ffffffc0fffffff)) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
assert (v mask128 == v mask0 + pow2 64 * v mask1);
let n_2 = (n_1) &. mask128 in
let lo' = lo &. mask0 in
let hi' = hi &. mask1 in
logand_spec n_1 mask128;
logand_spec lo mask0;
logand_spec hi mask1;
assert (v n_2 == UInt.logand #128 (v n_1) (v mask128));
assert (v lo' == UInt.logand #64 (v lo) (v mask0));
assert (v hi' == UInt.logand #64 (v hi) (v mask1));
logand_uint64_uint128 (v lo) (v mask0) (v hi) (v mask1)
let prime_equiv: squash (S.prime == 0x03fffffffffffffffffffffffffffffffb)
= _ by (Tactics.compute ())
// [H.field_element_t] is [x:ℕ{x<S.prime}] while [S.felem] is
// [x:ℕ{x<=S.prime-1}]
let lemma_field_element_t_felem: squash (H.field_element_t == S.felem)
= _ by FStar.Tactics.(
compute ();
// Rewrite [a≤b] into [a<b+1]
l_to_r [binder_to_term (tcut (quote ((a:int) -> (b:int) -> squash ((a <= b) == (a < b + 1)))))];
// normalize that `b+1`
norm [primops];
// we're left with the arrow goal [tcut] introduced, convert it to an implication
trefl (); let _ = intros () in ()
)
let poly1305_encode_block_equiv (b:H.poly_block_t)
: Lemma (H.poly1305_encode_block b == S.encode (seq_len b) b)
[SMTPat (H.poly1305_encode_block b)] =
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U128 #SEC (b <: Lib.ByteSequence.lbytes 16)
let poly1305_encode_last_equiv (b:H.sub_block_t {range (Seq.length b) U32})
: Lemma (H.poly1305_encode_last (seq_len b) b == S.encode (seq_len b) b)
[SMTPat (H.poly1305_encode_last (seq_len b) b)] =
let fb = array_from_slice (secret (pub_u8 0x0)) (16) (b) (usize 0) (seq_len (b)) in
let n_1 = uint128_from_le_bytes fb in
let n_2 = Lib.ByteSequence.nat_from_bytes_le b in
assert (Lib.Sequence.sub fb 0 (seq_len b) == b);
assert (forall i. i >= seq_len b ==> v fb.[i] == 0);
nat_from_zero_bytes (Lib.Sequence.sub fb (seq_len b) (seq_len fb - seq_len b));
assert (Lib.ByteSequence.nat_from_intseq_le (Lib.Sequence.sub fb (seq_len b) (seq_len fb - seq_len b)) == 0);
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U128 #SEC fb;
Lib.ByteSequence.nat_from_intseq_le_slice_lemma fb (seq_len b);
assert (v n_1 == n_2)
let poly1305_init_equiv (k:H.poly_key_t)
: Lemma ( let a , r, k'= H.poly1305_init k in
let a', r' = S.poly1305_init k in
a == a' /\ r == r' /\ k' == k
) [SMTPat (H.poly1305_init k)] = ()
let poly1305_update_block_equiv (b:H.poly_block_t) (st:H.poly_state_t)
: Lemma ( let a, r, k = st in
let a' = S.poly1305_update1 r (seq_len b) b a in
H.poly1305_update_block b st == (a', r, k)
) [SMTPat (H.poly1305_update_block b st)] = ()
let poly1305_update_last_equiv (b:H.sub_block_t{seq_len b < 16}) (st:H.poly_state_t)
: Lemma ( let a, r, k = st in
let a' = S.poly1305_update_last r (seq_len b) b a in
H.poly1305_update_last (seq_len b) b st == (a',r,k)
) [SMTPat (H.poly1305_update_last (seq_len b) b st)] = ()
let nat_to_byte_seq_le_lemma (n: pos) (len: uint_size) (x: nat_mod n)
: Lemma (forall (i: nat {i < len}). FStar.Seq.index (nat_to_byte_seq_le n len x) i
== uint #U8 #SEC ((x / pow2 (8 * i)) % pow2 8))
= let y = x % (pow2 (8 * len)) in
introduce forall (i: nat {i < len}). FStar.Seq.index (Lib.ByteSequence.nat_to_intseq_le #U8 #SEC len y) i
== uint #U8 #SEC ((x / pow2 (8 * i)) % pow2 8)
with begin let j = len - i in
Lib.ByteSequence.index_nat_to_intseq_le #U8 #SEC len y i;
Math.Lemmas.modulo_division_lemma x (pow2 (8*i)) (pow2 (8*j));
Math.Lemmas.pow2_plus (8*(j-1)) 8;
Math.Lemmas.modulo_modulo_lemma (x / pow2 (8*i)) (pow2 8) (pow2 (8*(j-1)));
Math.Lemmas.pow2_plus (8*i) (8*j) end
let poly1305_finish_equiv (st:H.poly_state_t)
: Lemma (let (a,r,k) = st in
H.poly1305_finish st == S.poly1305_finish k a)
[SMTPat (H.poly1305_finish st)] =
let (a,r,k) = st in
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U128 #SEC (Lib.Sequence.sub k 16 16);
let s : uint128 = Lib.ByteSequence.uint_from_bytes_le #U128 (Lib.Sequence.sub k 16 16) in
let aby' = nat_to_byte_seq_le (0x03fffffffffffffffffffffffffffffffb) 17 (a) in
let aby = nat_to_byte_seq_le (0x03fffffffffffffffffffffffffffffffb) 16 (a) in
let sliced_aby = array_from_slice (secret (pub_u8 0x0)) 16 aby' 0 16 in
nat_to_byte_seq_le_lemma 0x03fffffffffffffffffffffffffffffffb 17 a;
nat_to_byte_seq_le_lemma 0x03fffffffffffffffffffffffffffffffb 16 a;
assert (aby `Seq.equal` sliced_aby);
Lib.ByteSequence.lemma_reveal_uint_to_bytes_le #U128 #SEC aby;
let a' = a % pow2 128 in
assert (aby == Lib.ByteSequence.nat_to_bytes_le #SEC 16 a');
let afull = Lib.ByteSequence.nat_from_bytes_le aby in
let a128 = Lib.ByteSequence.uint_from_bytes_le #U128 aby in
Lib.ByteSequence.lemma_nat_to_from_bytes_le_preserves_value aby 16 (a % pow2 128);
assert (afull == a % pow2 128);
let res1 = (a + v s) % pow2 128 in
let res2 : uint128 = a128 +. s in
Math.Lemmas.lemma_mod_add_distr (v s) a (pow2 128);
assert ((a + v s) % pow2 128 == (a % pow2 128 + v s) % pow2 128);
assert (res1 == v res2);
let resby1 = Lib.ByteSequence.nat_to_bytes_le #SEC 16 res1 in
let resby2 = Lib.ByteSequence.uint_to_bytes_le #U128 #SEC res2 in
Lib.ByteSequence.lemma_uint_to_bytes_le_preserves_value res2;
Lib.ByteSequence.lemma_nat_to_from_bytes_le_preserves_value resby1 16 res1;
Lib.ByteSequence.nat_from_intseq_le_inj resby1 resby2;
assert (resby1 == resby2);
assert (H.poly1305_finish st == resby2);
assert (S.poly1305_finish k a == resby1)
let foldi_relation
(lo: uint_size)
(hi: uint_size{lo <= hi})
(f: (i:uint_size{i < hi}) -> 'a -> 'a)
(g: (i:uint_size{i < hi}) -> 'b -> 'b)
(rel: (af:'a -> ag:'b -> Type0))
(a0: 'a) (b0: 'b) (a0b0rel: squash (a0 `rel` b0))
: Lemma (requires forall (i:uint_size{i < hi}) (a:'a) (b:'b)
. a `rel` b ==> f i a `rel` g i b)
(ensures foldi lo hi f a0 `rel` foldi lo hi g b0)
= Hacspec.Lib.FoldiLemmas.foldi_relation lo hi f g rel a0 b0
let deconstructy_reconstruct_tup3 st: Lemma (
let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ a r k = st in
Mktuple3?._1 st == a /\ r == Mktuple3?._2 st /\ k == Mktuple3?._3 st
) = ()
#push-options "--z3rlimit 75 --retry 6"
let poly1305_update_equiv_aux (m:byte_seq) (st:H.poly_state_t): Lemma (
let a, r, k = st in
let a' = S.poly1305_update m a r in
H.poly1305_update m st == (a',r,k)
)
= let blocks = seq_len m / H.blocksize_v in
let f0 (i:uint_size {i < blocks}) s
= H.poly1305_update_block (array_from_seq 16 (seq_get_exact_chunk m H.blocksize_v i)) s
in
let f1 r (i:uint_size {i < blocks}) a
= let b = array_from_seq 16 (seq_get_exact_chunk m H.blocksize_v i) in
S.poly1305_update1 r (seq_len b) b a
in
let f2 (i:uint_size {i < blocks}) (a, r, k)
= f1 r i a, r, k
in
introduce forall (i: uint_size {i < blocks}) (s: H.poly_state_t). f0 i s == f2 i s
with ( let b = array_from_seq 16 (seq_get_exact_chunk m H.blocksize_v i) in
assert (f2 i s == H.poly1305_update_block b s) );
Hacspec.Lib.FoldiLemmas.foldi_extensionality 0 blocks f0 f2 st;
Hacspec.Lib.FoldiLemmas.foldi_relation 0 blocks
f2 (f1 st._2)
(fun (a, r, k) a' -> a' == a /\ r == st._2 /\ k == st._3)
st st._1;
Seq.lemma_repeat_blocks #uint8 #S.felem S.size_block m
(S.poly1305_update1 st._2 S.size_block)
(S.poly1305_update_last st._2) st._1;
foldi_equiv_repeat_right 0 blocks (f1 st._2) st._1;
Lib.Sequence.Lemmas.repeati_extensionality #S.felem blocks (f1 st._2) (Seq.repeat_blocks_f S.size_block m (S.poly1305_update1 st._2 S.size_block) blocks) st._1;
Lib.LoopCombinators.repeati_def blocks (f1 st._2) st._1
#pop-options
let poly1305_update_equiv (m:byte_seq) (st:H.poly_state_t)
: Lemma ( let a, r, k = st in
let a' = S.poly1305_update m a r in
H.poly1305_update m st == (a',r,k)
) [SMTPat (H.poly1305_update m st)]
= poly1305_update_equiv_aux m st
let poly1305_mac_equiv (m:byte_seq) (k:H.poly_key_t)
: Lemma (H.poly1305 m k == S.poly1305_mac m k) = ()