-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
computesim.py
60 lines (48 loc) · 1.79 KB
/
computesim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy as np
from mrjob.job import MRJob
from itertools import combinations, permutations
from math import sqrt
from scipy.stats.stats import pearsonr
class RestaurantSimilarities(MRJob):
def steps(self):
thesteps = [
self.mr(mapper=self.line_mapper, reducer=self.users_items_collector),
self.mr(mapper=self.pair_items_mapper, reducer=self.calc_sim_collector)
]
return thesteps
def line_mapper(self,_,line):
user_id,business_id,stars,business_avg,user_avg=line.split(',')
yield user_id, (business_id,stars,business_avg,user_avg)
def users_items_collector(self, user_id, values):
ratings=[]
for business_id,stars,business_avg,user_avg in values:
ratings.append((business_id,(stars, user_avg)))
yield user_id, ratings
def pair_items_mapper(self, user_id, values):
ratings = values
for biz1tuple, biz2tuple in combinations(ratings, 2):
biz1, biz1r=biz1tuple
biz2, biz2r=biz2tuple
if biz1 <= biz2 :
yield (biz1, biz2), (biz1r, biz2r)
else:
yield (biz2, biz1), (biz2r, biz1r)
def calc_sim_collector(self, key, values):
(rest1, rest2), common_ratings = key, values
diff1=[]
diff2=[]
n_common=0
for rt1, rt2 in common_ratings:
diff1.append(float(rt1[0])-float(rt1[1]))
diff2.append(float(rt2[0])-float(rt2[1]))
n_common=n_common+1
if n_common==0:
rho=0.
else:
rho=pearsonr(diff1, diff2)[0]
if np.isnan(rho):
rho=0.
yield (rest1, rest2), (rho, n_common)
#Below MUST be there for things to work!
if __name__ == '__main__':
RestaurantSimilarities.run()