-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestitemgeneration.py
101 lines (90 loc) · 3.69 KB
/
testitemgeneration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import json
import random
import sys
import pandas as pd
def draw_gene_cpd(db, pathway):
'''
From a kegg pathway entry, draw a random list of genes and compounds involved, of varying length
:param db: dict from the json file containing kegg database information
:param pathway: string, pathway code
:return: (gene, cpd) tuple of lists
'''
p_genes = db[pathway]['genes']
limit = min(25, len(p_genes))
n_genes = random.randint(2, limit)
gene = random.sample(p_genes, n_genes)
p_cpd = db[pathway]['compounds']
limit = min(25, len(p_cpd))
n_cpd = random.randint(2, limit)
cpd = random.sample(p_cpd, n_cpd)
return (gene, cpd)
def draw_example(db, pathway_vc, n_item):
'''
Randomly pick a pathway entry from the kegg json file, and draw gene and cpd from it.
Value count (vc) for each pathway ensure the dataset is balanced.
:param db: kegg database json with pathways, genes and compounds
:param pathway_vc: dict containing the number of example already drawn per pathway
:return: (pathway, gene, cpd) tuple of lists
'''
pathway = random.choice(list(db.keys()))
item_per_pathway = n_item // len(db)
if sum(pathway_vc.values()) < len(db)*item_per_pathway:
while pathway_vc[pathway] >= item_per_pathway:
pathway = random.choice(list(db.keys()))
pathway_vc[pathway] = pathway_vc[pathway ] +1
name = db[pathway]["name"]
gene, cpd = draw_gene_cpd(db, pathway)
return (name, gene, cpd, pathway_vc)
def create_pathway_valuecount():
'''
Create a pathway_vc.csv file containing the list of pathway codes and initial value counts (0)
'''
keggdf = pd.read_json('prompts/pathway_genes_compounds.json', orient='index')
vc = {}
pvc = {}
for i in keggdf.index:
name = keggdf.loc[i, 'name']
if name in vc :
pvc[i] = vc[name]
else :
pvc[i] = 0
pvc = pd.DataFrame.from_dict(pvc, orient='index', columns=['count'])
pvc.to_csv('test/pathway_vc.csv', index_label='pathway_code')
def make_test_item(tuple):
'''
calls previous methods to make an exemple, and return the output as a json formatted file
:param tuple: (pathway, gene, cpd) tuple
:return: dict, json formatted
'''
pathway, gene, cpd = tuple
item = {}
item["input"] = {"genes" : gene,
"cpd" : cpd}
item["target"] = pathway
print(f'{pathway} : {len(gene)} Genes and {len(cpd)} compounds.')
return item
def main(n_item, destfile):
with open('prompts/pathway_genes_compounds.json', 'r') as jsonfile:
db = json.load(jsonfile)
# If 'test/pathway_vc.csv' was not previously created, run this line
# But if generating dataset in multiple batches, comment it
create_pathway_valuecount()
pathway_vc = pd.read_csv('test/pathway_vc.csv', index_col='pathway_code').to_dict()['count']
with open(destfile, 'w', encoding='utf-8') as f:
for i in range(n_item):
print(i)
name, gene, cpd, pathway_vc = draw_example(db, pathway_vc, n_item)
data_ex = (name, gene, cpd)
ex = make_test_item(data_ex)
json.dump(ex, f, ensure_ascii=False)
f.write('\n')
df = pd.DataFrame.from_dict(pathway_vc, orient='index', columns=['count'])
df = df.reset_index().rename(columns={'index': 'pathway_code'})
df.to_csv('test/pathway_vc.csv', index=False)
if __name__ == "__main__":
if len(sys.argv) != 3:
print("Usage: python testitemgeneration.py <number of tems (integer)> <destination_file>\nPlease note that destination file will be overwritten.")
sys.exit(1)
n_ex = sys.argv[1]
destfile = sys.argv[2]
main(int(n_ex), destfile)